alexander kusenko (ucla/kavli ipmu) pheno-2014 ...€¦ · alexander kusenko (ucla/kavli ipmu)...

of 57 /57
Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Astroparticle physics news The mystery of distant blazars secondary gamma rays and PeV neutrinos IceCube neutrinos: astrophysical or dark matter? X-ray line at 3.5 keV? If it’s real, what it implies. (...more or less, in the order from “astro” to “particle”.) 1

Upload: others

Post on 25-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Astroparticle physics news

• The mystery of distant blazars ⇒ secondary gamma rays

and PeV neutrinos

• IceCube neutrinos: astrophysical or dark matter?

• X-ray line at 3.5 keV? If it’s real, what it implies.

(...more or less, in the order from “astro” to “particle”.)

1

Page 2: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Active galactic nuclei: blazars

when AGN jet points at Earth, called blazar

2

Page 3: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

3

Page 4: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Atmospheric Cherenkov Telescopes

4

Page 5: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

5

Page 6: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Gamma-ray observations of distant blazars:1ES 0229+200 (z = 0.14) and 3C66A (z = 0.44)

Energy [ TeV ]1 10

]-1

TeV

-1 s

-2dN

/dE

[ c

m

-1610

-1510

-1410

-1310

-1210

100 200 500 1000 2000 5000

10−17

10−16

10−15

10−14

10−13

10−12

E(GeV)

dN/d

E (

GeV

cm

s )−2

−1−1

HESS (black), MAGIC (blue) and VERITAS (red) data points

6

Page 7: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Gamma-ray observations of distant blazars:1ES 0229+200 (z = 0.14) and 3C66A (z = 0.44)

Energy [ TeV ]1 10

]-1

TeV

-1 s

-2dN

/dE

[ c

m

-1610

-1510

-1410

-1310

-1210

100 200 500 1000 2000 5000

10−17

10−16

10−15

10−14

10−13

10−12

E(GeV)

dN/d

E (

GeV

cm

s )−2

−1−1

HESS (black), MAGIC (blue) and VERITAS (red) data points

Theory, e.g., Stecker, et al. (1992): ...“we predict a sharp cutoff between 0.1 and 1 TeV”

6

Page 8: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Gamma-ray observations of distant blazars:1ES 0229+200 (z = 0.14) and 3C66A (z = 0.44)

Energy [ TeV ]1 10

]-1

TeV

-1 s

-2dN

/dE

[ c

m

-1610

-1510

-1410

-1310

-1210

100 200 500 1000 2000 5000

10−17

10−16

10−15

10−14

10−13

10−12

E(GeV)

dN/d

E (

GeV

cm

s )−2

−1−1

HESS (black), MAGIC (blue) and VERITAS (red) data points

Theory, e.g., Stecker, et al. (1992): ...“we predict a sharp cutoff between 0.1 and 1 TeV”

The data: no signs of absorption due to γγEBL → e+e−

6

Page 9: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Extragalactic background light (EBL)(direct and processed starlight)

• intimately connected with star formation history and with dust content of the galaxies

• models uncertain, but robust lower limits exist from star counts, especially for UV EBL

0.1

1

10

100

0.1 1 10 100 1000 10000

λ[µm]

νIν

[nW

/m2 /s

r]

Madau & Pozzetti ’00 (HST)Elbaz et al. ’02 (ISO)

Papovich et al. ’04 (Spitzer)Fazio et al. ’04 (Spitzer)Xu et al. ’05 (GALEX)Dole et al. ’06 (Spitzer)

Frayer et al. ’06 (Spitzer)Gardner et al. ’00 (HST)

Berta et al. ’11 (Hershel/PEP)Wright & Reese ’00 (DIRBE)

Wright ’04 (DIRBE)Levenson et al. ’07 (DIRBE)

Levenson & Wright ’08 (DIRBE)Bernstein ’07 (HST)

Matsuoka et al. ’11 (Pioneer)Matsumoto et al. ’11 (IRTS)Matsuura et al. ’11 (AKARI)Cambrésy et al. ’01 (DIRBE)Dwek & Arendt ’98 (DIRBE)

Gorijian et al ’00 (DIRBE)Finkbeiner et al ’00 (DIRBE)

Hauser et al ’98 (DIRBE)Lagache et al ’00 (DIRBE)

Edelstein et al ’00 (Voyger)Brown et al ’00 (HST/STIS)

Albert et al ’08 (MAGIC)

Baseline ModelKneikse et al. ’04Stecker et al. ’06

Franceschini et al. ’08Gilmore et al. ’09

Finke et al. ’10Kneiske & Dole ’10

Gilmore et al. ’12

γγEBL → e+e− should degrade

the energy of TeV photons

7

Page 10: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Distant blazars have implausibly hard spectra

E [TeV]

-110 1 10

/s]

2 d

N/d

E [e

rg/c

m2

E

-1310

-1210

-1110

-1010

-910

-810

-710

-610

-510 1ES 0229+200(scaled)

1ES 1218+30.4(scaled)

1ES 1101+232

= 2.40 Γ

= 1.30 Γ

= 1.28 Γ

Absorption-corrected spectra are

extremely hard, Γ < 1.5, for distant

blazars. [Aharonian et al.]

8

Page 11: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Blazar spectra

E [TeV]0.05 0.1 0.2 1 2 3 4 5 6 10 20 30

]-1 s

-2 d

N/d

E [T

eV c

m2

E-1410

-1310

-1210

-1110

-1010

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

RGB_J0152+0173C_66A1ES_0229+2001ES_0347-121PKS_0548-322RGB_J0710+591S5_0716+7141ES_0806+5241ES_1011+4961ES_1101-232Markarian_421Markarian_1801ES_1218+304W_ComaePKS_1424+240H_1426+428PG_1553+113Markarian_5011ES_1959+650PKS_2005-489PKS_2155-304BL_Lacertae1ES_2344+514H_2356-309

Measured Spectra

E [TeV]0.05 0.1 0.2 1 2 3 4 5 6 10 20 30

]-1 s

-2 d

N/d

E [T

eV c

m2

E

-1410

-1310

-1210

-1110

-1010

Measured Spectra

E [TeV]0.05 0.1 0.2 1 2 3 4 5 10 20 30

]-1 s

-2 d

N/d

E [T

eV c

m2

E

-1410

-1310

-1210

-1110

-1010

EBL corrected spectrum

M. Errando

measured spectra naive EBL−corrected spectra

9

Page 12: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Softening of the spectrum as a function of the redshift

0.00 0.05 0.10 0.15 0.20 0.25 0.30-1

0

1

2

3

Redshift z

DG

∆Γ = ΓGeV − ΓTeV [Stecker, Scully]

10

Page 13: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Distant blazars are different:

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6z

Stecker−ScullyΓδ

δΓ = ΓGeV − ΓTeV [Stecker, Scully]

11

Page 14: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Proposed “new physics” solutions:

The lack of absorption prompted some exotic solutions:

• photons may convert into some hypothetical axion-like particles that convert back

into photons in the galactic magnetic fields

[Hooper et al.; de Angelis et al.; Simet et al.]

• Lorentz invariance violation for high-velocity particles may prevent pair production

[Protheroe et al.]

Is there a more conventional explanation?

12

Page 15: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

AGN produce both cosmic rays and gamma rays

EBL

ee−

+

CMB+EBL CMB+EBL

pB

primary γsecondary gamma rays

13

Page 16: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Cosmic rays from AGN

• No significant attenuation below GZK cutoff.

Propagate cosmological distances for E <∼ 1018 eV.

• Rectilinear propagation affected only by IGMFs.

Clusters of galaxies (size R, density n) cause large deflections, but the mean free path

of a proton

Λ ∼ 1/(πR2n) ∼ 3 × 103Mpc

The mean MFP for linear propagation is of the order of the size of the observed

universe.

• IGMFs are not known:

– upper limits: B < 10−9 G from non-observation of Faraday rotations

– lower limits: B > 10−30 G if one believes the galactic fields are seed fields

amplified by dynamo.

For magnetic fields B < 10−14 G, deflections are smaller than the angular resolution

of ACTs.

14

Page 17: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Secondary gamma rays from cosmic rays along the line of sight?

Gamma-rays produced at the source can attenuate via pair production on EBL for TeV

energies: expect attenuation of TeV γ rays.

Protons below GZK cutoff interact with EBL, CMB and produce γ rays via

pγ → pe+e−, pγ → pπ0: expect regeneration of TeV γ rays

Photon backgrounds provide opacity/sink for the former, source for the latter.

What is the scaling of these effects with distance?

15

Page 18: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Different scaling

Fprimary,γ(d) ∝1

d2exp−d/λγ (1)

Fsecondary,γ(d) =pλγ

4πd2

[

1 − e−d/λγ

]

1/d, for d ≪ λγ,

1/d2, for d ≫ λγ.(2)

Fsecondary,ν(d) ∝ (Fprotons × d) ∝1

d. (3)

16

Page 19: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Different scaling

Fprimary,γ(d) ∝1

d2exp−d/λγ (1)

Fsecondary,γ(d) =pλγ

4πd2

[

1 − e−d/λγ

]

1/d, for d ≪ λγ,

1/d2, for d ≫ λγ.(2)

Fsecondary,ν(d) ∝ (Fprotons × d) ∝1

d. (3)

For distant sources, secondary signals win

16

Page 20: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Secondary photons and neutrinos from 1ES0229+200 (z = 0.14)

10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

10 0

10 1

10 2

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 10 1020 21

E2 d

N/d

E, e

V c

m−

2s−

1

E, eV

10

10

1020

17

19eV

eV

eVgamma rays

neutrinos

p, maxE =

[Essey, Kalashev, AK, Beacom, PRL 104, 141102 (2010)]

17

Page 21: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Robust spectral shapes explain the observed universality

10 −6

10 −5

10 −4

10 −3

10 −2

10 −1

10 0

10 1

10 2

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 10 1020 21

E2 d

N/d

E, e

V c

m−

2s−

1

E, eV

10

10

1020

17

19eV

eV

eVgamma rays

neutrinos

p, maxE =

E [TeV]0.05 0.1 0.2 1 2 3 4 5 6 10 20 30

]-1 s

-2 d

N/d

E [T

eV c

m2

E

-1410

-1310

-1210

-1110

-1010

Measured Spectra

18

Page 22: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

IceCube detector

19

Page 23: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

PeV neutrinos discovered by IceCube

20

Page 24: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

PeV neutrinos discovered by IceCube consistent withsecondary spectrum

10−1

100

101

102

103

104

105

106

107

1010 1012 1014 1016 1018

jE2 , e

V c

m−2 s

−1 s

r−1

E, eV

pγν

[Kalashev, Kusenko, Essey, Phys.Rev.Lett. 111 (2013) 041103]

21

Page 25: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Can the IceCube neutrinos come from decays of heavy dark matter?

Possible types of DM particles: gravitino with R-partity violation; hidden sector gauge

boson; a singlet fermion in an extra dimension; a heavy right-handed neutrino.

[Feldstein, AK, Matsumoto, Yanagida (2013)]

22

Page 26: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Sterile neutrinos, moduli, and dark matter with a keV mass.

• Dark matter candidates at a keV scale: sterile neutrinos, string/supersymmetry moduli

• Warm or cold, depending on the production scenario

• Particle physics models

• – Sterile neutrinos and an SU(2) singlet Higgs boson

– Sterile neutrinos and the Split Seesaw

– String/supersymmetry moduli

• Detection strategy: the search for a keV line

23

Page 27: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Unidentified line from Bulbul et al.; Boyarsky et al.

24

Page 28: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Unidentified line from Bulbul et al.; Boyarsky et al.

25

Page 29: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Neutrino masses and light sterile neutrinos

Discovery of the neutrino masses implies a plausible existence of right-handed (sterile)

neutrinos. Most models of neutrino masses introduce sterile states

νe, νµ, ντ ,νs,1, νs,2, ..., νs,N

and consider the following Lagrangian:

L = LSM + νs,a

(

i∂µγµ)

νs,a − yαaH Lανs,a −Mab

cs,aνs,b + h.c. ,

where H is the Higgs boson and Lα (α = e, µ, τ ) are the lepton doublets. The mass

matrix:

M =

(

0 D3×N

DTN×3 MN×N

)

What is the natural scale of M?

26

Page 30: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Seesaw mechanism

In the Standard Model, the matrix D arises from the Higgs mechanism:

Dij = yij〈H〉

Smallness of neutrino masses does not imply the smallness of Yukawa couplings. For large

M ,

mν ∼y2〈H〉2

MOne can understand the smallness of neutrino masses even if the Yukawa couplings are

y ∼ 1 [Gell-Mann, Ramond, Slansky; Yanagida; Glashow; Mohapatra, Senjanovic].

27

Page 31: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Seesaw mechanism

0.1 eVy=1

M GUT scale

28

Page 32: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Seesaw mechanism

0.1 eVy<<1

keV scaleM

(dark matter)(pulsar kicks)

GUT scale

29

Page 33: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Various approaches to small Majorana masses

• Just write them down.

– One sterile keV sterile neutrino, the dark matter candidate [Dodelson, Widrow].

– Three sterile neutrinos, one with a several keV mass (dark matter) and two degenerate

with GeV masses and a keV splitting, νMSM [Shaposhnikov et al.].

• Use lepton number conservation as the reason for a small mass [de Gouvea].

• Use flavor symmetries, new gauge symmetries [Lindner et al.]

• Singlet Higgs (discussed below) at the electroweak scale can generate the Majorana

mass. Added bonuses:

– production from S → NN at the electroweak scale generates the right amount of

dark matter.

– production from S → NN at the electroweak scale generates colder dark matter.

A “miracle”: EW scale and mass at the keV scale (for stability)

⇒ correct DM abundance. [AK; AK, Petraki]

• Split seesaw (discussed below) makes the scale separation natural. Dark matter cooled

by various effects. ⇒ democracy of scales

30

Page 34: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Sterile neutrinos as dark matter: production scenarios

Production color coded by “warmness” vs “coldness”:

31

Page 35: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Sterile neutrinos as dark matter: production scenarios

Production color coded by “warmness” vs “coldness”:

• Neutrino oscillations off resonance [Dodelson, Widrow] No prerequisites; production

determined by the mixing angle alone; no way to turn off this channel, except for

low-reheat scenarios [Gelmini et al.]

31

Page 36: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Sterile neutrinos as dark matter: production scenarios

Production color coded by “warmness” vs “coldness”:

• Neutrino oscillations off resonance [Dodelson, Widrow] No prerequisites; production

determined by the mixing angle alone; no way to turn off this channel, except for

low-reheat scenarios [Gelmini et al.]

• MSW resonance in νa → νs oscillations [Shi, Fuller] Pre-requisite: sizable lepton

asymmetry of the universe. The latter may be generated by the decay of heavier sterile

neutrinos [Laine, Shaposhnikov]

31

Page 37: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Sterile neutrinos as dark matter: production scenarios

Production color coded by “warmness” vs “coldness”:

• Neutrino oscillations off resonance [Dodelson, Widrow] No prerequisites; production

determined by the mixing angle alone; no way to turn off this channel, except for

low-reheat scenarios [Gelmini et al.]

• MSW resonance in νa → νs oscillations [Shi, Fuller] Pre-requisite: sizable lepton

asymmetry of the universe. The latter may be generated by the decay of heavier sterile

neutrinos [Laine, Shaposhnikov]

• Higgs decays [AK, Petraki] Assumes the Majorana mass is due to Higgs mechanism.

Sterile miracle: abundance a “natural” consequence of singlet at the electroweak

scale. Advantage: “natural” dark matter abundance

31

Page 38: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Sterile neutrinos as dark matter: production scenarios

Production color coded by “warmness” vs “coldness”:

• Neutrino oscillations off resonance [Dodelson, Widrow] No prerequisites; production

determined by the mixing angle alone; no way to turn off this channel, except for

low-reheat scenarios [Gelmini et al.]

• MSW resonance in νa → νs oscillations [Shi, Fuller] Pre-requisite: sizable lepton

asymmetry of the universe. The latter may be generated by the decay of heavier sterile

neutrinos [Laine, Shaposhnikov]

• Higgs decays [AK, Petraki] Assumes the Majorana mass is due to Higgs mechanism.

Sterile miracle: abundance a “natural” consequence of singlet at the electroweak

scale. Advantage: “natural” dark matter abundance

• Split seesaw: [AK, Takahashi, Yanagida]

Two production mechanisms, cold and even colder.

Advantage: “naturally” low mass scale

31

Page 39: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Lyman-α bounds on Dodelson-Widrow production

1 keV/m s

F WD

M

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

0.2

0.4

0.6

0.8

1

m =

5 k

eVDW fractionallowed

(e.g. Higgs decays)mechanismanother production

or a different candidate

[Boyarsky, Lesgourgues, Ruchayskiy, Viel]

Free-streaming properties: [Boyanovsky; Petraki]

32

Page 40: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

New scale or new Higgs physics?

L = LSM + Na (i∂µγµ)Na − yαaH LαNa − Ma

2Nc

aNa + h.c. ,

To explain the pulsar kicks and dark matter, one needs M ∼ keV. Is this a new

fundamental scale? Perhaps. Alternatively, it could arise from the Higgs mechanism:

L = LSM + Na (i∂µγµ)Na − yαaH LαNa − ha S Nc

aNa + V (H,S)

M = h〈S〉

Now S → NN decays can produce sterile neutrinos.

33

Page 41: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

For small h, the sterile neutrinos are out of equilibrium in the early universe, but S is in

equilibrium. There is a new mechanism to produce sterile dark matter at T ∼ mS from

decays S → NN :

Ωs = 0.2

(

33

ξ

)(

h

1.4 × 10−8

)3(

〈S〉

mS

)

Here ξ is the dilution factor due to the change in effective numbers of degrees of freedom.

〈S〉 ∼ 102 GeV (EW scale)

Ms ∼ keV (for stability) ⇒ h ∼ 10−8

⇒ Ω ≈ 0.2

The sterile neutrino momenta are red-shifted by factor ξ1/3 > 3.2. [AK, Petraki]

34

Page 42: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Cooling changes the clustering properties

1´10-11 2´10-11 5´10-11 1´10-10 2´10-10 5´10-10 1´10-91.0

10.0

5.0

2.0

20.0

3.0

1.5

15.0

7.0

excluded region

m(k

eV)

2sin θ

pulsar kick via MSW

no MSW(allowed)

pulsar kick

dark matter (allowed, subject tosome model−dependent constraints)

[AK, PRL 97:241301 (2006); Petraki, AK, PRD 77, 065014 (2008); Petraki, PRD 77, 105004 (2008)]

35

Page 43: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Implications for the EW phase transition and the LHC

One may be able to discover the singlet Higgs at the LHC [Profumo, Ramsey-Musolf, G.

Shaughnessy; Davoudiasl et al.; O’Connell et al.; Ramsey-Musolf, Wise]

The presence of S in the Higgs sector changes the nature of the electroweak phase

transition [AK, Petraki]

0 50 100 150 200Η

-200

0

200

400

Σ

T>>Tc

0 50 100 150 200 250 300Η

-300

-200

-100

0

100

200

300

Σ

T=Tc

0 50 100 150 200 250 300Η

-300

-200

-100

0

100

200

300

Σ

T=0

First-order transition, CP in the Higgs sector =⇒ electroweak baryogenesis

36

Page 44: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Split seesaw

N1

2,3N

Standard Model

37

Page 45: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Split seesaw

N1

2,3N

Standard Model

38

Page 46: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

N1

2,3N

Standard Model

Standard Model on z = 0 brane. A Dirac

fermion with a bulk mass m:

S =

d4x dzM

(

iΨΓA∂AΨ +mΨΨ

)

,

The zero mode: (iΓ5∂5 + m)Ψ(0) = 0.

behaves as ∼ exp(±mz). The 4D fermion:

Ψ(0)R (z, x) =

2m

e2mℓ − 1

1√Memzψ

(4D)R (x).

Also, a U(1)(B−L) gauge boson in the bulk,

(B − L) = −2 Higgs φ on the SM

brane. The VEV 〈φ〉 ∼ 1015GeV gives

right-handed neutrinos heavy Majorana masses.

[AK, Takahashi, Yanagida]

39

Page 47: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Split seesaw

N1

2,3N

Standard Model

Effective Yukawa coupling and the mass are

suppressed:

M(R)d=4 = M

(R)d=5

(

2mi

M(e2miℓ − 1)

)

,

yd=4 = yd=5

2mi

M(e2miℓ − 1)

successful seesaw relation unchanged:

mν ∼y2d=4〈H〉2

M(R)d=4

=y2d=5〈H〉2

M(R)d=5

[AK, Takahashi, Yanagida]

40

Page 48: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Split seesaw: economical, natural extension of SM

N1

2,3N

Standard Model

• Democracy of scales: small difference in the

bulk massesmi results in exponentially large

splitting between the sterile neutrino masses.

• An rather minimal model: SM augmented

by three right-handed singlets can explain

– observed neutrino masses

– baryon asymmetry (via leptogenesis)

– dark matter

if, for example

M1 = 5 keV or M1 = 17 keV, and

M2,3 ∼ 1015GeV

[AK, Takahashi, Yanagida]

41

Page 49: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

An alternative DM at a keV scale: string/supersymmetry moduli

• Expansion of the universe breaks supersymmetry: the effective potential acquires terms

of the form −cH2φ2, where c is of order one

• on average, each degree of freedom carries a non-zero energy in the de Sitter universe.

U( )

inflH

φ

φ

1. the minimum of the effective potential during inflation is displaced, for a light field, by

a large amount (∼ MPl)

2. at the end of inflation, the field is not necessarily in the minimum of either de Sitter or

flat effective potential

42

Page 50: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Moduli problem

Oscillating scalar field is a cosmological equivalent of matter. The field starts oscillating

when H ∼ mφ, and the temperature is

Tφ ∼ (90/π2g∗)1/4√

MPlmφ.

The density to entropy ratio is

ρφ

s∼

m2φφ

20/2

(2π2/45)g∗T 3φ

∼ 105GeV

(

keV

)1/2( φ0

MPl

)2

.

...to be compared with dark matter:

ρDM

s= 0.2

ρc

s= 3 × 10

−10GeV,

bad discrepancy. Moreover, the universe with so much dark matter forms only one form of

structures: black holes.

43

Page 51: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

The density to entropy ratio is can be small enough in those (superhorion-size) patches

that have φ0 ≪ MPl:

ρφ

s∼

m2φφ

20/2

(2π2/45)g∗T 3φ

∼ 10−9

GeV

(

keV

)1/2( φ0

10−7MPl

)2

.

44

Page 52: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

The density to entropy ratio is can be small enough in those (superhorion-size) patches

that have φ0 ≪ MPl:

ρφ

s∼

m2φφ

20/2

(2π2/45)g∗T 3φ

∼ 10−9

GeV

(

keV

)1/2( φ0

10−7MPl

)2

.

Can life exist in those parts of the universe where ΩDM/Ωbaryon ≫ 1?

44

Page 53: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

The density to entropy ratio is can be small enough in those (superhorion-size) patches

that have φ0 ≪ MPl:

ρφ

s∼

m2φφ

20/2

(2π2/45)g∗T 3φ

∼ 10−9

GeV

(

keV

)1/2( φ0

10−7MPl

)2

.

Can life exist in those parts of the universe where ΩDM/Ωbaryon ≫ 1?

Structures start forming at Teq ∼ 105 GeV(

mφkeV

)1/2 (φ0MG

)2

. and only black holes

emerge, unless ΩDM/Ωbaryon < 10. [Tegmark, Aguirre, Rees, Wilczek]

44

Page 54: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

The density to entropy ratio is can be small enough in those (superhorion-size) patches

that have φ0 ≪ MPl:

ρφ

s∼

m2φφ

20/2

(2π2/45)g∗T 3φ

∼ 10−9

GeV

(

keV

)1/2( φ0

10−7MPl

)2

.

Can life exist in those parts of the universe where ΩDM/Ωbaryon ≫ 1?

Structures start forming at Teq ∼ 105 GeV(

mφkeV

)1/2 (φ0MG

)2

. and only black holes

emerge, unless ΩDM/Ωbaryon < 10. [Tegmark, Aguirre, Rees, Wilczek]

Anthropic selection favors the maximal allowed value φ0, which corresponds to dark matter

density close to the observed ΩDM/Ωbaryon.

44

Page 55: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

The density to entropy ratio is can be small enough in those (superhorion-size) patches

that have φ0 ≪ MPl:

ρφ

s∼

m2φφ

20/2

(2π2/45)g∗T 3φ

∼ 10−9

GeV

(

keV

)1/2( φ0

10−7MPl

)2

.

Can life exist in those parts of the universe where ΩDM/Ωbaryon ≫ 1?

Structures start forming at Teq ∼ 105 GeV(

mφkeV

)1/2 (φ0MG

)2

. and only black holes

emerge, unless ΩDM/Ωbaryon < 10. [Tegmark, Aguirre, Rees, Wilczek]

Anthropic selection favors the maximal allowed value φ0, which corresponds to dark matter

density close to the observed ΩDM/Ωbaryon.

Anthropic solution to moduli problem ⇒ correct amount of dark matter.

[AK, Loewenstein, Yanagida]

44

Page 56: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Radiative decays of sterile neutrinos and moduli

Sterile neutrino in the mass range of interest have lifetimes longer than the age of the

universe, but they do decay:

γ

νν ννs s e

e

γ

γ

φγ

W

W

Photons have energies m/2: X-rays. Concentrations of dark matter emit X-rays.

[Abazajian, Fuller, Tucker; Loewenstein et al., others]

Can one distiguish between sterile neutrinos and moduli? Not from the spectrum.

However, moduli make a very cold dark matter, while

sterile neutrios can have a measurable free-streaming length.

45

Page 57: Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 ...€¦ · Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014 Extragalactic background light (EBL) (direct and processed starlight) •

Alexander Kusenko (UCLA/Kavli IPMU) PHENO-2014

Conclusions: many exciting news

• The IceCube discovery of PeV neutrinos may be able to

confirm our understanding of secondary particle production

from blazars.

• It can also point to decays of heavy dark matter particles!

• Dark matter at a keV mass scale is viable, well-motivated,

and hinted by the recent X-ray data.

46