algorithms, evolution and network-based approaches in...

41
Building innovative drug discovery alliances Algorithms, Evolution and Network-Based Approaches in Molecular Discovery ECML PKDD, Nancy, September 2014

Upload: others

Post on 01-Feb-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

Building innovative

drug discovery alliances

Algorithms, Evolution and Network-Based Approaches in Molecular Discovery

ECML PKDD, Nancy, September 2014

Page 2: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Drug Discovery

1

The State of the Art

A man doesn’t know what happiness is until he’s married, by then it’s too late! (Frank Skinner)

Page 3: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Antipsychotic drugs and their Poly-Pharmacology

2

The chart shows the known affinity (Ki) values of antipsychotic drugs for a panel of receptors.

Haloperidol

Loxapine Clozapine Olanzapine Ziprasidone

Thioridazine Thiothixene Zotepine

How can we go about discovering a novel antipsychotic?.

Page 4: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

What do I make next?

3

Medicinal Chemistry Optimisation

Page 5: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Mapping Computational Drug Discovery

The toolbox

Page 6: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

ChEMBL

5

ChEMBLSpace

. https://www.ebi.ac.uk/chembldb/

ChEMBLSpace – a graphical explorer of the

chemogenomic space covered by ChEMBL

Bioinformatics (2013) 29 (4): 523-524

10.6k Targets

1.4m Compounds

12.8m Activities

Page 7: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

ChEMBLSpace search: D2 & a1BA

6 Available for download search: [email protected]

Dopamine D2

a1B-Adrenergic

Page 8: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

ChEMBLSpace: D2, a1BA, H1

7 Available for download search: [email protected]

Histamine H1

Dopamine D2

a1B-Adrenergic

Page 9: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Similarity Ensemble Approach (SEA)

8

Keiser et al.

Nature 462, 175-181(12 November 2009)

Page 10: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Phenotypic Deconvolution

9 Drakakis et al., Med Chem Commun 5, 386-396 (2014)

• Combination of: • Target Prediction • BioSAR - Laplacian-modified Naïve Bayes algorithm • Information gain prefiltering • Decision Trees (C4.5) for Classification

• Yields 70% accurate,

• Interpretable model for sleep outcome.

BIOPRINT

IF

ACTIVITY_ON D(2) Dopamine receptor

AND

ACTIVITY_ON Histamine H1 receptor

AND

ACTIVITY_ON 5-hydroxytryptamine receptor 2A

THEN

“Good Sleep”

Page 11: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Accessing Chemical Space

10 J. Chem. Inf. Model., 2012, 52, 2864-2875

Heavy Atom Count (hac)

166 Billion

2.5 Million

89 Thousand

367 Compounds

A virtual enumeration of chemical space up to 17 heavy atoms generated 166,443,860,262 molecules *

Plo

tte

d o

n a

lo

g s

ca

le

A Pharma screening collection up to 17 heavy atoms is typically 100–500K molecules

== 0.000003% of accessible space

Page 12: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Strategies in Automated Molecule Design

11 De Novo Design 2013 | ISBN 978-3-527-67700-9

Core X B A

C

Core X B A

C Grow

Replace Scaffold

Constraints

2D or 3D

Generation

Protein Cavity

Volume Based

Feature Based

Synthetic Feasibility

Reaction Based

Reagent Enumeration

Transformation Based

Complexity Score

User Assessment

Core X B

C

Core Y

Merge Molecules

A

Page 13: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Motivation

12

Using reaction databases

public

reaction

databases

reactions

covering general

organic chemistry

reaction

database

commercial

reaction

databases U

Adding say ~250,000

reactions per year, strong

medicinal chemistry bias

wealth of reaction data

– extract the knowledge hidden in these data

– use this knowledge to assist the medicinal chemist

– suggest new, synthetically feasible molecules with desired bio profile

500 chemists

~10 reactions per week

lab notebooks (eLN)

proprietary

reaction

database

Page 14: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Reaction Vectors

13 Broughton, H. B., Hunt, P. & Mackey, M. (2003) Methods for Classifying and Searching Chemical Reactions.

United States Patent Application 367550.

I 1 2 3 4

Bond C-C C=O C-OH C-OR

# 0 0 -2 2

reactant vector, R = (R1 + R2) product vector, P

reaction vector, D = P - R

OH

O

OHO

O

+

I 1 2 3 4

Bond C-C C=O C-OH C-OR

# 4 1 2 0

I 1 2 3 4

Bond C-C C=O C-OH C-OR

# 4 1 0 2

R1 R2 P

Page 15: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Reaction Vectors in Structure Generation

14 J. Chem. Inf. Model., 2009, 49 (5), pp 1163–1184. Knowledge-Based Approach to de Novo Design Using Reaction Vectors

• The reaction vector, D, equals the difference between the product

vector, P, and the reactant vector, R

D = P – R

I 1 2 3 4

Bond C-C C=O C-OH C-OR

# 4 1 0 2

O O

O

O

O

O

better descriptor

is required

Given a reaction vector, D, and a reactant vector, R, the product vector, P,

can be obtained

P = D + R

Given a product vector, P, can we reconstruct the product molecule(s)?

Page 16: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Modified Atom Pairs

15

Atom Pairs 2 (AP2) : X1(n, p, r)-2(BO)-X2(n, p, r)

X: element type

n: number of bonds to heavy atoms

p: number of π bonds

r: number of ring memberships

BO: bond order

Atom Pairs 3 (AP3): X1(n, p, r)-3-X2(n, p, r)

• Extending the bond distance in atom pairs encodes more of

the environment of the reaction centre

Page 17: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Beckmann Rearrangement

16

Cl

N

OH Cl

NH

O

Reaction vector

O(1,1,0)-3-C(1,0,0)f+N(2,1,0)-3-C(1,0,0)f-

N(2,0,0)-3-O(1,1,0)e+C(3,1,0)-3-O(1,0,0)e-

N(2,0,0)-3-C(1,0,0)d+C(3,1,0)-3-C(2,2,1)d-

C(2,2,1)-3-N(2,0,0)c+C(3,1,0)-3-C(2,2,1)c-

C(2,2,1)-3-N(2,0,0)b+C(3,2,1)-3-C(1,0,0)b-

C(2,2,1)-3-N(2,0,0)a+C(3,2,1)-3-N(2,1,0)a-

C(3,1,0)-2(2)-O(1,1,0)3+N(2,1,0)-2(1)-O(1,0,0)3-

C(3,1,0)-2(1)-N(2,0,0)2+C(3,1,0)-2(2)-N(2,1,0)2-

C(3,2,1)-2(1)-N(2,0,0)1+C(3,2,1)-2(1)-C(3,1,0)1-

Positive APsNegative APs

O(1,1,0)-3-C(1,0,0)f+N(2,1,0)-3-C(1,0,0)f-

N(2,0,0)-3-O(1,1,0)e+C(3,1,0)-3-O(1,0,0)e-

N(2,0,0)-3-C(1,0,0)d+C(3,1,0)-3-C(2,2,1)d-

C(2,2,1)-3-N(2,0,0)c+C(3,1,0)-3-C(2,2,1)c-

C(2,2,1)-3-N(2,0,0)b+C(3,2,1)-3-C(1,0,0)b-

C(2,2,1)-3-N(2,0,0)a+C(3,2,1)-3-N(2,1,0)a-

C(3,1,0)-2(2)-O(1,1,0)3+N(2,1,0)-2(1)-O(1,0,0)3-

C(3,1,0)-2(1)-N(2,0,0)2+C(3,1,0)-2(2)-N(2,1,0)2-

C(3,2,1)-2(1)-N(2,0,0)1+C(3,2,1)-2(1)-C(3,1,0)1-

Positive APsNegative APs

Atom Pairs 2 (AP2) : X1(n, p, r)-2(BO)-X2(n, p, r)

Atom Pairs 3 (AP3): X1(n, p, r)-3-X2(n, p, r)

X element type

n number of bonds to heavy atoms

p number of π bonds

r number of ring memberships

BO bond order

Page 18: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Applying a RV to a reactant to generate a Product

17

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

O(1,1,0)-3-C(1,0,0)f+N(2,1,0)-3-C(1,0,0)f-

N(2,0,0)-3-O(1,1,0)e+C(3,1,0)-3-O(1,0,0)e-

N(2,0,0)-3-C(1,0,0)d+C(3,1,0)-3-C(2,2,1)d-

C(2,2,1)-3-N(2,0,0)c+C(3,1,0)-3-C(2,2,1)c-

C(2,2,1)-3-N(2,0,0)b+C(3,2,1)-3-C(1,0,0)b-

C(2,2,1)-3-N(2,0,0)a+C(3,2,1)-3-N(2,1,0)a-

C(3,1,0)-2(2)-O(1,1,0)3+N(2,1,0)-2(1)-O(1,0,0)3-

C(3,1,0)-2(1)-N(2,0,0)2+C(3,1,0)-2(2)-N(2,1,0)2-

C(3,2,1)-2(1)-N(2,0,0)1+C(3,2,1)-2(1)-C(3,1,0)1-

Positive APsNegative APs

O(1,1,0)-3-C(1,0,0)f+N(2,1,0)-3-C(1,0,0)f-

N(2,0,0)-3-O(1,1,0)e+C(3,1,0)-3-O(1,0,0)e-

N(2,0,0)-3-C(1,0,0)d+C(3,1,0)-3-C(2,2,1)d-

C(2,2,1)-3-N(2,0,0)c+C(3,1,0)-3-C(2,2,1)c-

C(2,2,1)-3-N(2,0,0)b+C(3,2,1)-3-C(1,0,0)b-

C(2,2,1)-3-N(2,0,0)a+C(3,2,1)-3-N(2,1,0)a-

C(3,1,0)-2(2)-O(1,1,0)3+N(2,1,0)-2(1)-O(1,0,0)3-

C(3,1,0)-2(1)-N(2,0,0)2+C(3,1,0)-2(2)-N(2,1,0)2-

C(3,2,1)-2(1)-N(2,0,0)1+C(3,2,1)-2(1)-C(3,1,0)1-

Positive APsNegative APs

Cl

N

OH Cl

NH

O

1. Removing the negative atom pairs from the reactant

1- 2-

3-

Page 19: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Applying a RV to a reactant to generate a Product

18

No AP2s left in the reaction

vector that match atom 11

CH3

5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

CH3

5

CH

1

CH2

6CH

4

Cl7

C8

CH3

9

NH10

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

O10

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

NH

10

C11

CH3

5

CH

1

CH2

6

CH

4

Cl7

NH

10 C8

CH3

9

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

O10

NH11

CH3

5

CH

1

CH2

6

CH

4

Cl7

NH

10C 8

CH3

9

O11

CH3

C5

CH

1

CH2

C 6

CH

4

Cl7

C8

CH3

9

O10

NH

11

Duplicate solutionFinal Solution

2+ (d+) 3+ (f+)

1+ (a+)1+ (a+,b+,c+) 2+ (d+,e+)

3+ (e+,f+) 1+ (a+,b+,c+)

A

B C

D E F

G H

No AP2s left in the reaction

vector that match atom 11

CH3

5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

CH3

5

CH

1

CH2

6CH

4

Cl7

C8

CH3

9

NH10

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

O10

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

NH

10

C11

CH3

5

CH

1

CH2

6

CH

4

Cl7

NH

10 C8

CH3

9

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

O10

NH11

CH3

5

CH

1

CH2

6

CH

4

Cl7

NH

10C 8

CH3

9

O11

CH3

C5

CH

1

CH2

C 6

CH

4

Cl7

C8

CH3

9

O10

NH

11

Duplicate solutionFinal Solution

2+ (d+) 3+ (f+)

1+ (a+)1+ (a+,b+,c+) 2+ (d+,e+)

3+ (e+,f+) 1+ (a+,b+,c+)

A

B C

D E F

G H

CH3

5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

CH3

5

CH

1

CH2

6CH

4

Cl7

C8

CH3

9

NH10

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

O10

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

NH

10

C11

CH3

5

CH

1

CH2

6

CH

4

Cl7

NH

10 C8

CH3

9

CH3

C5

CH

1

CH2

C6

CH

4

Cl7

C8

CH3

9

O10

NH11

CH3

5

CH

1

CH2

6

CH

4

Cl7

NH

10C 8

CH3

9

O11

CH3

C5

CH

1

CH2

C 6

CH

4

Cl7

C8

CH3

9

O10

NH

11

Duplicate solutionFinal Solution

2+ (d+) 3+ (f+)

1+ (a+)1+ (a+,b+,c+) 2+ (d+,e+)

3+ (e+,f+) 1+ (a+,b+,c+)

A

B C

D E F

G H

O(1,1,0)-3-C(1,0,0)f+N(2,1,0)-3-C(1,0,0)f-

N(2,0,0)-3-O(1,1,0)e+C(3,1,0)-3-O(1,0,0)e-

N(2,0,0)-3-C(1,0,0)d+C(3,1,0)-3-C(2,2,1)d-

C(2,2,1)-3-N(2,0,0)c+C(3,1,0)-3-C(2,2,1)c-

C(2,2,1)-3-N(2,0,0)b+C(3,2,1)-3-C(1,0,0)b-

C(2,2,1)-3-N(2,0,0)a+C(3,2,1)-3-N(2,1,0)a-

C(3,1,0)-2(2)-O(1,1,0)3+N(2,1,0)-2(1)-O(1,0,0)3-

C(3,1,0)-2(1)-N(2,0,0)2+C(3,1,0)-2(2)-N(2,1,0)2-

C(3,2,1)-2(1)-N(2,0,0)1+C(3,2,1)-2(1)-C(3,1,0)1-

Positive APsNegative APs

O(1,1,0)-3-C(1,0,0)f+N(2,1,0)-3-C(1,0,0)f-

N(2,0,0)-3-O(1,1,0)e+C(3,1,0)-3-O(1,0,0)e-

N(2,0,0)-3-C(1,0,0)d+C(3,1,0)-3-C(2,2,1)d-

C(2,2,1)-3-N(2,0,0)c+C(3,1,0)-3-C(2,2,1)c-

C(2,2,1)-3-N(2,0,0)b+C(3,2,1)-3-C(1,0,0)b-

C(2,2,1)-3-N(2,0,0)a+C(3,2,1)-3-N(2,1,0)a-

C(3,1,0)-2(2)-O(1,1,0)3+N(2,1,0)-2(1)-O(1,0,0)3-

C(3,1,0)-2(1)-N(2,0,0)2+C(3,1,0)-2(2)-N(2,1,0)2-

C(3,2,1)-2(1)-N(2,0,0)1+C(3,2,1)-2(1)-C(3,1,0)1-

Positive APsNegative APs

2. Adding positive atom pairs to the fragment

X element type

n number of bonds to heavy atoms

p number of π bonds

r number of ring memberships

BO bond order

Atom Pairs 2 (AP2) : X1(n, p, r)-2(BO)-X2(n, p, r)

Page 20: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

How well does it work?

19

Organic Chemistry Database

Hristozov, D., Bodkin, M., Chen, B., Patel, H. & Gillet, V. J. 2011. Validation of Reaction Vectors for De Novo Design. Library Design, Search Methods, and Applications

of Fragment-Based Drug Design. American Chemical Society.

Reaction Type Number of

Reactions

Correctly Reproduced

Number Per cent

Epoxide reduction 450 449 99.8

Epoxide formation 450 444 98.7

Ester to amide 172 172 100.0

Alcohol dehydration 171 169 98.8

Claisen rearrangement 61 54 88.5

Beckmann rearrangement 123 123 100.0

Friedyl Crafts acylation 113 113 100.0

Olefin metathesis 9 7 77.8

Dieckmann condensation 98 91 92.9

Nitro reduction 231 230 99.6

Alkene oxidation 272 272 100.0

Cope rearrangement 453 306 67.5

Aldol condensation 134 134 100.0

Alcohol amination 97 97 100.0

Amide reduction 51 51 100.0

Diels-Alder hetero 441 320 72.6

Ether halogenation 58 58 100.0

Ozonolysis 132 125 94.7

Claisen condensation 98 77 78.6

Carboxylic acids to aldehydes 194 194 100.0

Nitrile reduction 102 102 100.0

Diels-Alder cycloaddition 106 65 61.3

Fischer indole 230 94 40.9

Alkene halogenation 310 281 90.6

Nitrile hyrdrolysis 460 460 100.0

Olefination 455 427 93.8

Wittig-Horner 211 190 90.0

Robinson annulation 13 10 76.9

Total 5,695 5,115 89.8

• ~3 seconds per reaction average,

0.015 seconds median run time

• Products generated for 5,115

reactions (~90% of the 5,695)

Page 21: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Evolutionary Design

20

Input Mutate Score Rank

Load Molecule

Output

Cream off top ranking population

Multi-objective Generate new molecules Any scoring tool

Loop back round

Best new molecules

Page 23: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Multi-Objective Optimisation

22

Haloperidol

Ziprasidone

“Score” = Similarity + D2predAct + a1BApredAct + H1predAct

Q2 = 0.76

Pre

dic

ted

Actual Actual P

redic

ted

Q2 = 0.68

Actual

Q2 = 0.40

Pre

dic

ted

Union of Descriptor

+

Page 24: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Results: Piperidine

23

26K Reactions, 93K Reagents

Starting Material

Fluphenazine

Chlorpromazine

Page 25: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

It looks great but ...

24

1. The algorithm only knows about transformation types that are in the Db!

2. The AP2/3’s cover 1 and 2 bonds. Remote functionality isn’t considered.

3. A reaction path is not a drug “optimisation”!

a b c d e

i ii iii iv

But how do we get from

here to here?

Page 26: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Reaction Sequence Vectors

Tools for molecular design

x b

a b c d e

i ii iii iv

e a

a b

c a

d a

Sequence Vectors

Molecules Nodes // RVs Edges

Page 27: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Validating Sequence vectors

26

J. MedChem 2009-2011: 26K reactions

James Wallace ukQSAR Spring 2014

26K => 266K Sequences

Reproducing a => x

Page 28: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

SAR Exploration

27

Succinyl Hydroxamates

Bailey, S., et al., 2008. Bioorganic & Medicinal Chemistry Letters, 18, 6562-6567

Page 29: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Novel SAR

28

Succinyl Hydroxamates

James Wallace ukQSAR 2014

Page 30: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Principle Components Analysis of Property Space

29

Succinyl Hydroxamates

James Wallace ukQSAR 2014.

Page 32: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

The PGC GWAS

31

Genome Wide Association Studies

Page 33: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

GPCRs associated with Schizophrenia GWAS genes

32

2 step shortest paths network

Suzanne Brewerton – UKQSAR Lilly 2014

Adenosine receptor network

Histamine receptor network

Adrenergic receptor network

Dopamine receptor network

Opioid receptor network Metabotropic glutamate receptor network

5HT receptor network

Schizophrenia GWAS genes

GPCR receptor subtypes

Eg, From: Dopamine receptor subtypes To: Proteins defined by PGC2 schizophrenia GWAS genes

Page 34: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Hubs in the GPCR schizophrenia network

33 Suzanne Brewerton – UKQSAR Lilly 2014

GPCRs and GPCR signalling proteins Proteins identified by schizophrenia GWAS Hubs involved in GPCR

signalling in schizophrenia

Remove proteins degree <10

Page 35: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Alzheimer’s Disease Neuropathology

34 http://www.tuepedia.de/index.php/Mensa_Prinz_Karl

b-Amyloid plaques • Ab peptide • Extracellular deposits

Neurofibrillary tangles • Tau protein • Intraneuronal filamentous inclusions

Brain Atrophy

Page 36: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Alzheimer’s Disease Network

35

Canonical network

Page 37: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

Network Based Design

36

2. Identify cmpds with

known/predicted selectivity

3. Screen reference set &

generate gene signatures.

1. Disease Hypothesis

4. Relate chemistry to gene Bioprint.

6. Off-Target

Hypothesis 5. Network

Enrichment.

Novel target

identification

Page 38: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

In-Silico Network Based Design

37

Protein Target

Deconvolution

Connecting Gene Expression Data from Connectivity Map and In Silico Target Predictions For Small Molecule Mechanism-of-Action Analysis

Bender et al., Molecular BioSystems 2014 – accepted

Page 39: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

PAGE

The Drug Discovery Challenge

38

Summary

Given a disease signature how do we best sample appropriate chemistry space?

Page 41: Algorithms, Evolution and Network-Based Approaches in ...ecmlpkdd2014.loria.fr/wp-content/uploads/2014/09/MBodkin_ecml_pkdd2014.pdf · Dieckmann condensation 98 91 92.9 Nitro reduction

Your contact:

Building innovative

drug discovery alliances

Mike Bodkin VP Computational Chemistry & Cheminformatics 114 Innovation Drive, Milton Park, Abingdon Oxfordshire OX14 4RZ, UK T: +44 (0)1235 44 1207

[email protected]