alkyl halides

36
1 Alkyl Halides Organo halogen Alkyl halide Aryl halide Halide vynilik C CCl 3 H Cl Cl O H 2 C HO I I I I H C NH 2 C O OH C Cl H H Cl C Cl Cl Cl Cl C Cl Cl H Cl C C H H Cl H Alkyl halide Reactions : Substitution : SN1 dan SN2 Elimination : E1 dan E2

Upload: huey

Post on 24-Feb-2016

53 views

Category:

Documents


0 download

DESCRIPTION

Alkyl Halides. Organo halogen. Alkyl halide Aryl halide Halide vynilik. Alkyl halide Reactions : . Substitution : SN1 dan SN2 . Elimination : E1 dan E2 . NUCLEOPHILIC SUBSTITUTION. 1. Leaving groups. weaker base = better leaving group - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Alkyl Halides

1

Alkyl HalidesOrgano halogen

Alkyl halide

Aryl halide

Halide vynilik C

CCl3

H

ClCl

OH2CHO

I

I

I

I

HC

NH2

C

O

OH

C Cl

H

H

Cl

C Cl

Cl

Cl

Cl

C Cl

Cl

H

Cl

C C

H

H Cl

H

Alkyl halide Reactions : Substitution : SN1 dan SN2 Elimination : E1 dan E2

Page 2: Alkyl Halides

NUCLEOPHILIC SUBSTITUTION R X Y- R Y X-

1. Leaving groups

++ XR YYR Xstronger

baseweaker

base

K > 1

Br F+ NaF + NaBrSB WB

Br I+ NaI + NaBr (s)

WB SB

acetone

weaker base = better leaving group

reactivity: R-I > R-Br > R-Cl >> R-Fbest L.G.

most reactiveworst L.G.

least reactive

precipitatedrives rxn(Le Châtelier)

Page 3: Alkyl Halides

2. Mechanisms SN

general: Rate = k1[RX] + k2[RX][Y–]

RX = CH3X 1º 2º 3ºk1 increases

k2 increases

k1 ~ 0

Rate = k2[RX][Y–](bimolecular)

SN2

k2 ~ 0

Rate = k1[RX](unimolecular)

SN1

Page 4: Alkyl Halides

SN2 MechanismA. Kinetics

e.g., CH3I + OH– CH3OH + I–

find: Rate = k[CH3I][OH–], i.e., bimolecular

both CH3I and OH– involved in RLS

and recall, reactivity: R-I > R-Br > R-Cl >> R-F

C-X bond breaking involved in RLS

concerted, single-step mechanism:

CH3I + OH–

CH3OH + I–

[HO---CH3---I]–

Page 5: Alkyl Halides

B. Stereochemistry: inversion of configuration

H Br HO HNaOH

(R)-(–)-2-bromooctane (S)-(+)-2-octanol

Stereospecific reaction:Reaction proceeds withinversion of configuration.

Back-side attack:

HO C IH

HH

C

H

IHO

H H

CH

HOH

HI+

+ -

HO C I HO C I HO C I

inversion of configuration

C. Mechanism

Page 6: Alkyl Halides

D. Steric effects

e.g., R–Br + I– R–I + Br–

1. branching at the a carbon ( X–C–C–C.... )

a b g

Compound Rel. Rate

methyl CH3Br 150

1º RX CH3CH2Br 1

2º RX (CH3)2CHBr 0.008

3º RX (CH3)3CBr ~0

increasingsteric hindrance

C BrH

HH

I

H CH

C BrCH

H

H

H

H

HCH

I

minimal steric hindrance

maximum steric hindrance

Reactivity toward SN2: CH3X > 1º RX > 2º RX >> 3º RX

reactreadilyby SN2

(k2 large)

moredifficult

does notreact by

SN2(k2 ~ 0)

Page 7: Alkyl Halides

E. Nucleophiles and nucleophilicity

1. anions R X OH R OH X+ +

++ XR CNCNR X

R X R O H

H

+ +

++ R O R'

H

R X

H2O

R'OH

X

X

ROH + HX

ROR' + HX

hydrolysis

alcoholysis

2. neutral species

Summary:very good Nu: I–, HS–, RS–, H2N–

good Nu: Br–, HO–, RO–, CN–, N3–

fair Nu: NH3, Cl–, F–, RCO2–

poor Nu: H2O, ROHvery poor Nu: RCO2H

Page 8: Alkyl Halides

SN1 MechanismA. Kinetics

C

CH3

H3C

CH3

Br CH3OH CH3C

CH3

CH3

O CH3 HBr+ +e.g.,

3º, no SN2Find: Rate = k[(CH3)3CBr] unimolecular

RLS depends only on (CH3)3CBr

Page 9: Alkyl Halides

A. Kinetics

C

CH3

H3C

CH3

Br

CH3C

CH3

CH3

O CH3 HBr+

RLS: C

CH3

H3C

CH3

+ Br

C

CH3

H3C

CH3

HOCH3 C

CH3

H3C

CH3

OH

CH3

C

CH3

H3C

CH3

OH

CH3

-H+

Page 10: Alkyl Halides

A. Kinetics

Two-step mechanism:

RBr + CH3OH

R+

ROCH3 + HBr

Page 11: Alkyl Halides

B. Stereochemistry: stereorandom

CH3CH2

Br

H

CH3 CH3CH2

OH

H

CH3 CH3CH2

H

OH

CH3+H2O

racemic

CH3CH2 CH

CH3

+OH2

OH2

sp2, trigonal planar

Page 12: Alkyl Halides

C. Carbocation stability

R+ stability: 3º > 2º >> 1º > CH3+

R-X reactivity toward SN1: 3º > 2º >> 1º > CH3X

CH3+

1º R+

2º R+

3º R+

rearrangements possible

Page 13: Alkyl Halides

SN1 vs SN2A. Solvent effects

nonpolar: hexane, benzenemoderately polar: ether, acetone, ethyl acetate

polar protic: H2O, ROH, RCO2Hpolar aprotic: DMSO DMF acetonitrile

CH

O

N(CH3)2

CH3 C NCH3

S

O

CH3

SN1 mechanism promoted by polar protic solvents

stabilize R+, X– relative to RX

RX

R+X–

in less polar solventsin more polar solvents

Page 14: Alkyl Halides

A. Solvent effects

SN2 mechanism promoted by moderately polar & polar aprotic solvents

destabilize Nu–, makethem more nucleophilic

e.g., OH– in H2O: strong H-bonding to water makes OH– less reactive

OH– in DMSO: weaker solvation makes OH– more reactive (nucleophilic)

RX + OH–

ROH + X–

in DMSO

in H2O

Page 15: Alkyl Halides

B. Summary

RX = CH3X 1º 2º 3º

rate of SN1 increases (carbocation stability)

rate of SN2 increases (steric hindrance)

reactprimarilyby SN2

(k1 ~ 0, k2 large)

reactsprimarilyby SN1

(k2 ~ 0, k1 large)

may goby either

mechanism

SN2 promoted good nucleophile (Rate = k2[RX][Nu])-usually in polar aprotic solvent

SN1 occurs in absence of good nucleophile (Rate = k1[RX])-usually in polar protic solvent (solvolysis)

Page 16: Alkyl Halides

ELIMINATION REACTIONS

Dehydrohalogenation of alkyl halides

C

H

C

X

C C+ + BH +B X

strong base: KOH/ethanolCH3CH2ONa/CH3CH2OHtBuOK/tBuOH

Elimination

Follows Zaitsev orientation:

Br

+ +EtONaEtOH

61% 20% 19%

Br+EtONa

EtOH71% 29%

Page 17: Alkyl Halides

The E2 mechanism

• reaction is bimolecular, depends on concentrations of both RX and B–

Rate = k[RX][B–]

RLS must involve B–

• reactivity: RI > RBr > RCl > RF

RLS must also involve breaking the R—X bond

(and reaction doesn’t depend on whether RX is 1º, 2º, or 3º)

increasing R—X bond strength

elimination, bimolecular

Page 18: Alkyl Halides

1. Single step, concerted mechanism:

C C

X

H

C C

X

HB

C C

B H

X

B

Br

+ OH-

Zaitsev

Page 19: Alkyl Halides

2. stereoelectronic effects: anti elimination

spatial arrangement of electrons (orbitals)

In the E2 mechanism, H and X must be coplanar:(in order for orbitals to overlap in TS)

HC C

X

HC C

X

anti periplanar-most moleculescan adopt thisconformation more easilyE2 eliminations usually occur when H and X are anti

syn periplanar-but eclipsed!

Page 20: Alkyl Halides

2. stereoelectronic effects: anti elimination

CH3

Br

Br

CH3

+EtONaEtOH

""

major minor

major

but

Page 21: Alkyl Halides

2. stereoelectronic effects: anti elimination

CH3

Br

HH

CH3

Br

HH

but

Br must be axial to be anti to any b-H’s:

Br is anti to both H’s normal Zaitsev orientation

Br is anti only to H that givesnon-Zaitsev orientation

Page 22: Alkyl Halides

Recall:

Rate = k[RBr][B–] E2Reactivity: RI > RBr > RCl > RF (and no effect of 1º, 2º, 3º)

However:

Rate = k[RBr]E1 (no involvement from B–)Reactivity: RI > RBr > RCl > RF (RLS involves R–X breaking)

and: 3º > 2º > 1º (RLS invloves R+)

3. the E1 mechanism

minormajor

EtONaEtOH +

Br

minormajor

EtOH

+Br

Page 23: Alkyl Halides

3. the E1 mechanism

Step 1:(RLS)

Step 2:

Br

H

+ Br

EtOH

+ EtOH2

EtOH + HBr

- and R+ can rearrange eliminations usually carried out with strong base

Page 24: Alkyl Halides

Substitution vs Elimination

A. Unimolecular or bimolecular reaction?(SN2, E2)(SN1, E1)

Rate = k1[RX] + k2[RX][Nu or B]

• this term gets larger as [Nu or B] increases

bimolecular reaction (SN2, E2) favored by high concentration of good Nu or strong B

• this term is zero when [Nu or B] is zero

unimolecular reaction (SN1, E1) occurs in absence of good Nu or strong B

Page 25: Alkyl Halides

B. Bimolecular: SN2 or E2?

1. substrate structure: steric hindrance

decreases rate of SN2, has no effect on rate of E2 E2 predominates

Br

Br

Br

Br

NaOEt O

O

O

+

+

+tBuOK

91% 9%

13% 87%

100%

15% 85%

"

"

sterichindranceincreases

sterically hindered nucleophile

Rate = kSN2[RX][Nu] + kE2[RX][B]

Page 26: Alkyl Halides

B. Bimolecular: SN2 or E2?

2. base vs nucleophile

• stronger base favors E2• better nucleophile favors SN2

tBuOK

Br I

OCH3

OtBu

+

+

NaI

NaOCH3

100%

40% 60%

5% 95%

good Nuweak B

good Nustrong B

poor Nustrong B

Page 27: Alkyl Halides

C. Unimolecular: SN1 or E1?

Br H2O

(weak B,poor Nu)

H

OH2

OH2

OH

for both, Rate = k[R+][H2O]

no control over ratio of SN1 and E1

Page 28: Alkyl Halides

D. Summary

1. bimolecular: SN2 & E2

Favored by high concentration of good Nu or strong B

good Nu, weak B: I–, Br–, HS–, RS–, NH3, PH3 favor SN2

good Nu, strong B: HO–, RO–, H2N– SN2 & E2

poor Nu, strong B: tBuO– (sterically hindered) favors E2

Substrate:

1º RX mostly SN2 (except with tBuO–)2º RX both SN2 and E2 (but mostly E2)3º RX E2 only

b-branchinghinders SN2

Page 29: Alkyl Halides

2. unimolecular: SN1 & E1

Occurs in absence of good Nu or strong B

poor Nu, weak B: H2O, ROH, RCO2H

Substrate:

1º RX SN1 and E1 (only with rearrangement)2º RX3º RX

SN1 and E1 (may rearrange)

can’t controlratio of

SN1 to E1

Page 30: Alkyl Halides

1. Halogenation of Alkanes

R–H + X2 — R–X + HX a substitution reactionheat orlight

Reactivity: F2 > Cl2 > Br2 > I2

commontooreactive

toounreactive

(endothermic)

CH4 CH3Cl CH2Cl2 CHCl3 CCl4

+ HCl + HCl + HCl + HCl

Cl2

hnCl2

hnCl2

hnCl2

hn

Problem: mixture of productsSolution: use large excess of CH4 (and recycle it)

Page 31: Alkyl Halides

A. Free-radical chain mechanism

Step 1: Cl2 2Cl• (homolytic cleavage) Initiation

Step 2: Cl• + CH4 HCl + CH3•Step 3: CH3• + Cl2 CH3Cl + Cl•

net: CH4 + Cl2 CH3Cl + HCl

Sometimes: Cl• + Cl• Cl2 TerminationCH3• + CH3• CH3–CH3 (infrequent dueCH3• + Cl• CH3Cl to low [rad•])

Propagation-determines net reaction1000’s of cycles = “chain” reaction

Page 32: Alkyl Halides

B. Stability of free radicals: bond dissociation energies

BDECH3—H 104 kcalCH3CH2—H 98 kcalCH3CH2CH2—H 98 kcal (any 1º)(CH3)2CH—H 95 kcal (any 2º)(CH3)3C—H 91 kcal (any 3º)

easier to break bonds free radical more stable

R–H R• + H• H = BDE

CH3–CH2–CH3

CH3CH2CH2• CH3CHCH3• lower energy, more stable,

easier to form

98 kcal 95 kcalReactivity of C–H:

3º > 2º > 1º > CH3–H

Page 33: Alkyl Halides

C. Higher alkanes: regioselectivitySome alkanes give only one monohalo product:

CH3 CH3 CH3 CH2 ClCl2hn

Cl2hn

Cl2hn Cl

Cl

But:Cl2hn CH3CH2CH2Cl +CH3CH2CH3 CH3CHCH3

Cl

find: 43% 57%even though statistically: 75% 25%

(6 H) (2 H)

Syntheticallyuseful.

Not asuseful.

Page 34: Alkyl Halides

C. Higher alkanes: regioselectivity

Reactivity of C–H: 3º > 2º > 1º-for Cl2, relative reactivity is 5.2 : 3.9 : 1

Cl2hn CH3CH2CH2Cl +CH3CH2CH3 CH3CHCH3

ClPredicting relative amounts of monochloro product:

= x2º product1º product

reactivity of 2º Hreactivity of 1º H

number of 2º H’snumber of 1º H’s

= = =3.9 x 21 x 6

7.86

57%43%

Page 35: Alkyl Halides

C

CH3

CH3

H

C

H

H

C

CH3

CH3

H

Cl2

hvC

CH3

CH3

H

C

H

H

C

CH3

CH2

H

Cl C

CH3

CH3

H

C

H

H

C

CH3

CH3

Cl

C

CH3

CH3

H

C

H

Cl

C

CH3

CH3

H

1-chloro-2,4-dimethylpentane 2-chloro-2,4-dimethylpentane 3-chloro-2,4-dimethylpentane

# H 12 2 2reactivity factor x 1 x 5.2 x 3.9 12 10.4 7.8 sum = 12+10.4+7.8 = 30.2

percent 12/30.2 x 100 = 39.7% 10.4/30.2 = 34.4% 7.8/30.2 = 25.8

12 H, primary 2H, tertiary 2H, secondary

Cl2hn

Page 36: Alkyl Halides

Bromine is much more selective:

Cl2hn

Br2hn

Cl

Cl

+43% 57%

3% 97%

Relative reactivities for Br2: 3º 2º 1º1640 82 1

Syntheticallymore useful.

Br2hn