alternative supernova energy sources

14
Alternative Supernova Energy Sources Jason Dexter (with Dan Kasen) UC Berkeley & LBNL

Upload: afram

Post on 23-Feb-2016

66 views

Category:

Documents


0 download

DESCRIPTION

Alternative Supernova Energy Sources. Jason Dexter (with Dan Kasen ) UC Berkeley & LBNL. Weird Supernovae. scp06f6. 2005ap. ptf09cnd. 2008es. 2006gy. 2007bi. Type Ia. core collapse supernovae. 2002bj. ptf10bhp. 2008ha. a fter Dan Kasen. Supernova Explosions. Diffusion: - PowerPoint PPT Presentation

TRANSCRIPT

Alternative Supernova Energy Sources

Jason Dexter (with Dan Kasen)UC Berkeley & LBNL

Physics of Astronomical Transients 2

Weird Supernovae

core collapse supernovae

after Dan Kasen

Type

Ia2002bjptf10bhp

2008ha

2008es

2007bi

2005apptf09cnd

scp06f6

2006gy

Physics of Astronomical Transients 3

Supernova Explosions

• Diffusion:

• Peak luminosity (Lp) from energy deposition at peak time (tp)

Physics of Astronomical Transients 4

Powering Supernova Light Curves• Thermal

• Radioactive (56Ni)Branch & Tammann (1992)

Kasen & Woosley (2009)Efficiency

Physics of Astronomical Transients 5

Interactions

• Interaction of ejecta with material at large radius resets internal energy

• Large if Rsh >> R0

Woosley+07

Efficiency

Physics of Astronomical Transients 6

Magnetar Spindown Power

Physics of Astronomical Transients 7

Magnetar Spindown Power

Kasen & Bildsten (2010)

Physics of Astronomical Transients 8

Accretion Energy

• Powers brightest sources in the Universe (AGN, GRBs)

• Need: disk, Mfb, outflow Alexander Tchekhovskoy

Physics of Astronomical Transients 9

Accretion in core-collapse SNe

• Collapsars (“failed”)– Type I (long GRBs, Woosley 1993)– Type II/III (long gamma-ray

transients, Quataert & Kasen 2012,

Woosley 2012)• Fallback (successful)

– Early: nucleosynthesis & neutrinos (Fryer et al.), type Ibc? (Lindner et al.)

– Late: still significant energy?

Zhang et al. (2008)

Physics of Astronomical Transients 10

Semi-analytic Fallback Model

• “Explosion”– Matzner & McKee (1999)

shock velocity evolution• Free-fall: t6/n-3 for power

law density profile• Asymptotic: t-5/3

• Reverse shock at H/He– Analogous to SNR

Physics of Astronomical Transients 11

Possible Outcomes• Stellar progenitors from Woosley et al. (2002)• Range of explosion energies

Solar Ultra Zero

Physics of Astronomical Transients 12

Possible Outcomes

Physics of Astronomical Transients 13

Possible Outcomes

No H and/or He

“Collapsars”Reverse Shocks

“Standard”

Physics of Astronomical Transients 14

Caveats• Pressure effects?• Angular momentum

– Outflow turns on when J > Jc?

• Outflow disrupts remaining material?– Collimation? Accretion turns off after disk forms?

• Energy deposition in ejecta?– Similar to magnetar case