alu bs config b10

Upload: rocky

Post on 03-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Alu Bs Config b10

    1/152

    Alcatel-Lucent GSM

    BSS Configuration Rules

    BSS Document

    Reference Guide

    Release B10

    3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    2/152

    Status RELEASED

    Short title Configuration Rules

    All rights reserved. Passing on and copying of this document, useand communication of its contents not permitted without writtenauthorization from Alcatel-Lucent.

    BLANK PAGE BREAK

    2 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    3/152

    Contents

    Contents

    Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    1.1 BSS Equipment Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.2 Supported Hardware Platforms, Restrictions and Retrofits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.3 Platform Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.4 Release Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.5 BSS Updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.6 New B10 Features and Impacted Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2 BSS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.2 Transmission Architecture with CS Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.3 Transmission Architecture with CS and PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.4 PLMN Interworking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3 BTS Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3.1 Introduction to the BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.1.1 BTS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.1.2 BTS Generation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    3.2 9100 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2.1 9100 BTS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.2.2 9100 BTS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.3 G2 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.4 G1 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.5 BTS Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.6 Physical Channel Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    3.6.1 GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.6.2 GPRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    3.6.3 Dual Transfer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343.6.4 Extended Dynamic Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.7 Frequency Band Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    3.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.7.2 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.7.3 Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    3.8 Speech Call Traffic Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.9 Adaptive Multi-Rate Speech Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    3.9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.9.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    3.10 TRE Packet Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.11 OML and RSL Submultiplexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.12 BTS Power Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    3.13 Cell Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.13.1 Cell Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.13.2 Frequency Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.13.3 Shared Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    4 BSC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    4.1 BSC in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.2 9120 BSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    4.2.1 9120 BSC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504.2.2 ABIS TSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.2.3 Ater TSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584.2.4 TSC Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    4.3 9130 BSC Evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    4.3.1 9130 BSC Evolution Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    3BK 17430 5000 PGZZA Ed.10 3 / 152

  • 8/11/2019 Alu Bs Config b10

    4/152

    Contents

    4.3.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.3.3 9130 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664.3.4 Rules and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    4.4 Common Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.4.1 SDCCH Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.4.2 Multiple CCCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    4.4.3 Common Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.5 Delta 9130 BSC Evolution versus 9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724.6 SBLs Mapping on Hardware Modules in 9130 BSC Evolution versus 9120 BSC . . . . . . . . . 73

    5 TC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765.2 G2 TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785.2.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    5.3 9125 Compact TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805.3.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

    6 MFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    6.1 MFS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.2 9135 MFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    6.2.1 MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.2.2 MFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876.2.3 MFS Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    6.3 9130 MFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.3.1 MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.3.2 MFS Stand Alone Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906.3.3 9130 MFS and 9130 BSC Evolution Rack Shared Configurations . . . . . . . . . . . 916.3.4 MFS Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    6.4 Common Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936.4.1 GPRS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    6.4.2 LCS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966.4.3 HSDS in BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986.4.4 Gb over IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066.4.5 Other Common Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    6.5 Delta 9130 MFS versus 9135 MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    7 Abis Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    7.1 Abis Network Topology and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157.3 Abis Channel Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    7.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167.3.2 TS0 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    7.4 Signaling Link on Abis Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    7.4.1 RSL and OML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177.4.2 Qmux Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1177.4.3 OML Autodetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    7.5 Signaling Link Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187.5.1 Signaling Link Multiplexing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187.5.2 Signaling Link Multiplexing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197.5.3 Multiplexed Channel Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    7.6 Mapping Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207.6.1 Mapping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207.6.2 Abis-TS Defragmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217.6.3 RSL Reshuffling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217.6.4 Cross-Connect Use on Abis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    7.6.5 TCU Allocation Evolution in 9130 BSC Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 1237.7 Abis Link Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    4 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    5/152

    Contents

    7.8 Abis Satellite Links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267.9 Two Abis Links per BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    7.9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277.9.2 Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    8 Ater Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    8.1 Ater Network Topology and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308.3 Numbering Scheme on 9120 BSC-Ater/Atermux/TC Ater/A Interface . . . . . . . . . . . . . . . . . . 131

    8.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318.3.2 Numbering Scheme on 9120 BSC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328.3.3 Numbering Scheme on G2 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328.3.4 Numbering Scheme on 9125 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328.3.5 SBL Mapping on Hardware Modules in 9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . 133

    8.4 Numbering Scheme on 9130 BSC Evolution-Ater/Atermux/TC Ater/A Interface . . . . . . . . . 1348.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348.4.2 Numbering Scheme on 9130 BSC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348.4.3 Numbering Scheme on G2 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1358.4.4 Numbering Scheme on 9125 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

    8.4.5 SBLs Mapping on Hardware Modules in 9130 BSC . . . . . . . . . . . . . . . . . . . . . . . 1358.5 Signaling on Ater/Atermux Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    8.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1368.5.2 SS7 Signaling Link Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1378.5.3 SS7 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    8.6 GPRS and GSM Traffic on Atermux versus 9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408.6.2 Hole Management in G2 TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418.6.3 Sharing Atermux PCM Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418.6.4 Ratio of Mixing CS and PS Traffic in Atermux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    8.7 Ater Satellite Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    9 GB Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    9.1 Gb Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1469.2 Gb Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    10 CBC Connection, SMSCB Phase 2+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15010.2 GSM Cell Broadcast Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15010.3 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    10.3.1 9120 BSC Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15110.3.2 9130 BSC Evolution Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    3BK 17430 5000 PGZZA Ed.10 5 / 152

  • 8/11/2019 Alu Bs Config b10

    6/152

    Figures

    Figures

    Figure 1: BSS with GPRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    Figure 2: Transmission Architecture with CS and PS (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Figure 3: Transmission Architecture with CS and PS (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    Figure 4: BTS in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    Figure 5: BSC in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    Figure 6: 9120 BSC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    Figure 7: 9130 BSC Evolution Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Figure 8: 1000 TRX LIU Shelf Connections Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    Figure 9: TC in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    Figure 10: MFS in the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    Figure 11: 9135 MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    Figure 12: BSC Connection for Multi-GPU per BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    Figure 13: Generic LCS Logical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    Figure 14: Chain Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    Figure 15: Ring or Loop Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    Figure 16: Example of Cross-Connect Use on Abis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    Figure 17: Gb Link Directly to SGSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    Figure 18: Gb Link through the TC and MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    Figure 19: Gb Link through the MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    Figure 20: Gb Logical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    Figure 21: CBC-BSC Interconnection via PSDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

    Figure 22: CBC-BSCs Interconnection via the MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    6 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    7/152

    Tables

    Tables

    Table 1: 9100 BTS Minimum and Maximum Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    Table 2: Typical GSM 900 and GSM 1800/1900 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    Table 3: Typical Multiband Configuration G3 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    Table 4: Frequency Band Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    Table 5: AMR Codec List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    Table 6: AMR-WB Codec List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    Table 7: Software Version versus Hardware Board/Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Table 8: Data Call Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Table 9: Maximum Supported Capacities and Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    Table 10: 9120 BSC Globally Applicable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    Table 11: BSC Configuration Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    Table 12: B10 9120 BSC Capacity per Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    Table 13: TSL / TCU Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    Table 14: Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    Table 15: DTC Configuration and SBL Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    Table 16: G2 TC/9125 Compact TC capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    Table 17: G2 TC Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    Table 18: 9125 TC Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    Table 19: MFS Capacity for DS10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    Table 20: Maximum MFS Configurations on MX Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    Table 21: GPRS General Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    Table 22: GPRS Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    Table 23: EGPRS Modulation and Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    Table 24: GMSK and 8-PSK Transmission Power Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    Table 25: Multiplexed Channel Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    Table 26: TS Mapping Table for Corresponding Abis Chain or Ring Configurations . . . . . . . . . . . . . . . . . . . . 122

    Table 27: Number of TS Available in One Abis Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    Table 28: Number of Required TS versus TRX Number and Sub-Multiplexing Type . . . . . . . . . . . . . . . . . . . 125Table 29: SS7, Atermux, DTC and Ater Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    3BK 17430 5000 PGZZA Ed.10 7 / 152

  • 8/11/2019 Alu Bs Config b10

    8/152

    Tables

    8 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    9/152

    Preface

    Preface

    Purpose This document describes the configuration rules for release B10 of theAlcatel-Lucent BSS. It describes the possible BSS configurations supportedin release B10, and the new equipment in this release, as well as thecorresponding impact on the various interfaces. Note that the OMC-R, 9159NPO and 9157 Laser products are beyond the scope of this document. Refer tothe appropriate documentation for more information about these products.

    Whats New In Edition 10

    Improve sectionBTS Power Level (Section 3.12)due to adjustment of BTSpower level.

    Improve section Rules and Dimensioning (Section 3.9.2) due to WB-AMRGMSK new recommended rules.

    In Edition 09

    ImproveGb over IP (Section 6.4.4) due to new dynamic configuration.

    ImproveMFS Stand Alone Configuration (Section 6.3.2) due to new MFSconfiguration.

    ImproveDelta 9130 BSC Evolution versus 9120 BSC (Section 4.5) concerningPS traffic for TS15/TS16 on Dedicated Atermux.

    ImproveDelta 9130 BSC Evolution versus 9120 BSC (Section 4.5) concerningPS traffic for TS15/TS16 on CS/PS Mixed Atermux.

    ImproveOther Common Functionalities (Section 6.4.5) with the new conditionfor autonomous synchronization of the MFS.

    In Edition 08

    Update with the new equipment naming.

    In Edition 07

    Improve 9130 BSC capacity with new rule in Rules and Assumptions (Section4.3.4)

    Improve the multiplexing types rules in OML and RSL Submultiplexing (Section

    3.11)

    3BK 17430 5000 PGZZA Ed.10 9 / 152

  • 8/11/2019 Alu Bs Config b10

    10/152

    Preface

    In Edition 06

    Improve chapterMFS Clock Synchronization (Section 6.3.4) with allowed E1per GP in case of centralized clock.

    Overall document quality was improved following a quality review.

    In Edition 05Improvements made inMFS Stand Alone Configuration (Section 6.3.2).

    In Edition 04The following sections were modified after a review:

    Architecture (Section 5.3.1)

    MFS Architecture (Section 6.2.1)

    GPRS Processing Unit(Section 6.2.1.1)

    MFS Configuration (Section 6.2.2)

    MFS Stand Alone Configuration (Section 6.3.2)

    GPRS General Dimensioning and Rules(Section 6.4.1.2)

    Gb over IP (Section 6.4.4)

    Other Common Functionalities (Section 6.4.5)

    Gb Topology (Section 9.1)

    Gb Configuration (Section 9.2).

    10 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    11/152

    Preface

    The following sections were modified as described:

    Information concerning AGCL9P was removed from 9100 BTS Architecture

    (Section 3.2.1)

    Information concerning SUM-X was added in9100 BTS Configuration

    (Section 3.2.2)with introduction

    Information concerning EDA was added inExtended Dynamic Allocation

    (Section 3.6.4)with introduction

    Information concerning SDCCH was added in SDCCH Allocation (Section

    4.4.1) with information

    Information concerning the Reduce 9130 BSC feature was added inDelta

    9130 BSC Evolution versus 9120 BSC(Section 4.5)

    The GSL restriction was removed from GPRS General Dimensioning

    and Rules(Section 6.4.1.2)

    Information concerning the GboIP restriction was added in Gb over IP

    (Section 6.4.4)

    Information concerning the second Abis not allowed on G3 BTS was added

    inTwo Abis Links per BTS (Section 7.9).Information concerning TC IP supervision, STM-1 introduction was added in:

    Architecture (Section 5.3.1)

    Rules and Dimensioning (Section 5.3.2)

    SS7 Links (Section 8.5.3).Information concerning AMR-WB and TFO was added in:

    Adaptive Multi-Rate Speech Codec (Section 3.9)

    Architecture (Section 5.3.1).

    In Edition 03

    Information concerning AGCL9P was removed from 9100 BTS Architecture(Section 3.2.1).

    In Edition 02

    The GSL restriction was removed from GPRS General Dimensioning andRules(Section 6.4.1.2).

    In Edition 01

    First official release of document.

    3BK 17430 5000 PGZZA Ed.10 11 / 152

  • 8/11/2019 Alu Bs Config b10

    12/152

    Preface

    Audience This document is for people requiring an in-depth understanding of theconfiguration rules of the Alcatel-Lucent BSS:

    Network decision makers who require an understanding of the underlying

    functions and rules of the system including:

    Network planners

    Technical design staff

    Trainers.

    Operations and support staff who need to know how the system operates in

    normal conditions including

    Operators

    Support engineers

    Maintenance staff

    Client Help Desk personnel.

    This document can interest also the following teams:

    Cellular Operations

    Technical Project Managers

    Validation

    Methods.

    Assumed Knowledge The document assumes that the reader has an understanding of:

    GSM

    GPRS

    Mobile telecommunications.

    12 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    13/152

    1 Introduction

    1 Introduction

    This section gives a brief mentioning of synonymous of terms and a firstapproach of the Alcatel-Lucent BSS, its equipments and features.

    3BK 17430 5000 PGZZA Ed.10 13 / 152

  • 8/11/2019 Alu Bs Config b10

    14/152

    1 Introduction

    1.1 BSS Equipment Names

    The following table lists the Alcatel-Lucent commercial product names andthe corresponding Alcatel-Lucent internal names.

    Note: The names used in this document are those defined for internal use in

    Alcatel-Lucent, and not the commercial product names.

    Alcatel-Lucent CommercialProduct Name

    Alcatel-Lucent Internal Name

    9100 BTS G3, G3.5, G3.8, G4.2 BTS

    9110 Micro BTS 9110 Micro BTS

    9110-E BTS 9110-E Micro BTS

    9135 MFS MFS AS800, DS10 RC23, DS10 RC40

    9153 OMC-R OMC-3

    9125 Compact TC 9125 TC

    9120 BSC 9120 BSC

    9130 BSC Evolution MX BSC

    9130 MFS Evolution MX MFS

    1.2 Supported Hardware Platforms, Restrictions and RetrofitsThe following table lists the Alcatel-Lucent hardware platforms supported by theBSS, and the corresponding restrictions and retrofits.

    Equipment B10 Support Retrofit Required

    BSC

    9120 BSC Yes

    9130 BSC Evolution Yes

    TC

    G2 TC Yes

    9125 Compact TC Yes

    BTS

    9110 Micro BTS, 9110-E MicroBTS

    Yes

    G3, G3.5 Yes

    14 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    15/152

    1 Introduction

    Equipment B10 Support Retrofit Required

    G4 (G3.8, G4.2) Yes

    G2 BTS

    G2 Yes *

    G1 BTS

    G1 Mark II Yes *

    MFS

    MFS / AS800 Yes

    MFS / DS10 ** Yes

    MFS / DS10 *** Yes

    MFS 9130 Yes

    * : For BTS G1 and G2, only the DRFU configuration is supported. BTS G1 is notsupported at all for the 9130 BSC Evolution.

    ** : DS10 with network mirroring disks RC23

    *** : DS10 with local disks RC40

    1.3 Platform Terminals

    The Alcatel-Lucent BSS terminals run on PCs with Windows XP and Windows2000 Operating Systems.

    1.4 Release Migration

    Migration from release B9 to release B10 infers the succession of the OMC,MFS and BSC.

    1.5 BSS Updates

    No hardware upgrades are required.

    3BK 17430 5000 PGZZA Ed.10 15 / 152

  • 8/11/2019 Alu Bs Config b10

    16/152

    1 Introduction

    1.6 New B10 Features and Impacted Sections

    The following table lists the new B10 features and provides links to impactedsections of this document.

    New B10 Features Impacted Sections

    MX Capacity Improvements Rules and Assumptions (Section 4.3.4)

    9130 Capabilities (Section 4.3.3)

    DTM Dual Transfer Mode (Section 3.6.3)

    Multiple CCCH Multiple CCCH (Section 4.4.2)

    TC IP supervision, STM-1 Architecture (Section 5.3.1)

    Rules and Dimensioning (Section 5.3.2)

    SS7 Links (Section 8.5.3)

    EDA Extended Dynamic Allocation (Section 3.6.4)

    AMR-WB, TFO Adaptive Multi-Rate Speech Codec (Section 3.9)

    Architecture (Section 5.3.1)

    GboIP Gb over IP (Section 6.4.4)

    SUM-X 9100 BTS Configuration (Section 3.2.2)

    16 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    17/152

    2 BSS Overview

    2 BSS Overview

    This section describes the Alcatel-Lucent BSS, and corresponding featuresand functions.

    3BK 17430 5000 PGZZA Ed.10 17 / 152

  • 8/11/2019 Alu Bs Config b10

    18/152

    2 BSS Overview

    2.1 Introduction

    The GSM Radio System (GRS) is a set of hardware and software equipmentprovided by Alcatel-Lucent to support the radio part of the GSM network. TheGRS comprises one OMC-R and one or more BSS. The OMC-R supervisesone or more BSS.

    The BSS provides radio access for Mobile Stations (MS) to the PLMN. Thereare one or more GRS per PLMN.

    The following figure shows a BSS with GPRS. All BSS operating over thefield are with/without data service.

    A Interface

    MS

    A Interface

    MSC

    BSCBTS

    BTS

    TC

    Atermux Interface

    MFS

    BSC

    BTS

    BTS

    BTS

    GRS

    TC

    Atermux Interface

    BSS

    MS

    SGSN

    BTS

    BSS

    Abis

    Interface

    Abis Interface

    MFS

    GPRS

    OMCR

    Um

    Um

    Gs

    MSC

    Gb Interface

    Figure 1: BSS with GPRS

    The different Network Elements (NE) within the BSS are:The Base Station Controller (BSC)

    The Transcoder (TC)

    The Base Transceiver Station (BTS)

    The Multi BSS Fast packet Server (MFS).

    18 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    19/152

    2 BSS Overview

    The BSS interfaces are:

    The Um interface (air or radio interface), between the MS and the BTS

    The Abis interface, used to connect the BTS to the BSC

    The Atermux interface used to connect:

    The BSC to the TC and/or the MFS

    The MFS to the TC

    The A interface, used to connect the TC to the MSC

    The Gb interface, used to connect the MFS to the SGSN (directly, or through

    the TC and the MSC).

    Note: This document does not describe the Gs interface, between the MSC and theSGSN, as it is not considered to be part of the BSS. For more information aboutthis interface, refer to the BSS System Description.

    For specific information about the LCS dedicated interfaces, refer to LCS inBSS(Section 6.4.2).

    Given that the transmission architecture depends on GPRS, there are twopossible transmission architectures:

    Transmission architecture with Circuit Switched (CS) only

    Transmission architecture with CS and Packet Switched (PS).

    3BK 17430 5000 PGZZA Ed.10 19 / 152

  • 8/11/2019 Alu Bs Config b10

    20/152

    2 BSS Overview

    2.2 Transmission Architecture with CS Only

    This section provides information about static Abis only.

    The following figure shows the overall transmission architecture with CS only,inside the BSS.

    BTS

    BSC TC

    MSC

    Atermux Interface

    A Interface

    The transmission interfaces are:

    The Abis interface, between the BIE BTS and the BIE BSC

    The Ater interface, between the SM and the DTC inside the BSC, and

    between the SM and the TRCU inside the TC

    The Atermux interface, between the BSC-SM and the TC-SM

    The A interface, between the TRCU and the MSC.

    The Abis, Ater, Atermux and A are E1 interfaces structured in 32 timeslots (TS).

    The TS are numbered from TS0 to TS31.

    Note: Microwave equipment is external to and independent of Alcatel-Lucenttransmission equipment, however, in some cases, the microwave can behoused in the transmission equipment rack and in the BTS.

    For 9130 BSC, the SM no longer exists.

    20 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    21/152

    2 BSS Overview

    2.3 Transmission Architecture with CS and PS

    PS is directly linked to GPRS and related MFS platforms.

    The following figures represent the MFS with its physical interfaces, whenconnected to the network.

    BTS

    BSC TC

    MSC

    Atermux Interface

    AInterface

    Atermux Interface

    MFS

    SGSN

    Frame RelayGb

    Interface

    MFSTC InterfaceMixed CS/GPRSCS TS

    GPRS TSConversionof Protocol

    Figure 2: Transmission Architecture with CS and PS (1)

    BTS

    BSC TC

    MSC

    GbInterface

    MFS

    SGSN

    MFSTC InterfaceMixed CS/GPRS

    AtermuxCS TS

    GPRS TSConversionof Protocol

    Frame Relay

    Figure 3: Transmission Architecture with CS and PS (2)

    In addition to the interfaces defined in Transmission Architecture with CS Only(Section 2.2), the MFS uses the following physical interfaces:

    The MFS-BSC interface, which is the Atermux interface (a 2Mbit/s PCM link

    carrying 32 TS at 64Kbit/s). The Atermux interface can be fully dedicated

    to GPRS (only PS conveyed), or mixed CS/GPRS. In this case, the CS

    channels (called CICs) coexist with GPRS channels (called GICs) on

    the same link.

    The MFS-TC interface, which is also a 2Mbit/s PCM link carrying CS only,

    GPRS only, or mixed CS/GPRS channels. The Gb interface can be routed

    through the TC for SGSN connection. While GSL is used between the

    BSC and MFS for signaling and not for traffic, the GCH is used between

    the BTS and MFS.

    3BK 17430 5000 PGZZA Ed.10 21 / 152

  • 8/11/2019 Alu Bs Config b10

    22/152

    2 BSS Overview

    The MFS-SGSN interface carries the Gb interface when there is a dedicated

    MFS-SGSN link and the MSC-SGSN interface carries the Gb interface if

    Gb extraction at the MSC is used. These interfaces can cross a Frame

    Relay network (or not).

    Note: The MFS can connect directly to the MSC (that is, without crossing the TC) forcabling facilities, however this still results in an MFS-SGSN interface, becausethe MSC only cross-connects the GPRS traffic.

    2.4 PLMN Interworking

    A foreign PLMN is a PLMN other than the PLMN to which OMC-R internal cellsbelong. Only cells external to the OMC-R can belong to a foreign PLMN. Allinternal cells must belong to own OMC PLMN. Both OMC-R owned cells andcells which are external to the OMC-R can belong to the primary PLMN.

    The Alcatel-Lucent BSS supports:

    Outgoing 2G to 3G handovers

    Incoming inter-PLMN 2G to 2G handovers

    Outgoing inter-PLMN 2G to 2G handovers

    Inter-PLMN 2G to 2G cell reselections

    Multi-PLMNThe Multi-PLMN feature allows operators to define several primary PLMN,in order to support network sharing. Inter-PLMN handovers and cellreselections between two different primary PLMN are supported.The Alcatel-Lucent BSS supports several primary PLMN (at least one, up tofour). An OMC-R therefore manages at least one (primary) PLMN and up

    to eight PLMN (four primary and four foreign).

    The OMC-R (and the Tool Chain) is by definition of the feature itself alwaysshared between the different primary PLMN, however:

    The MFS can be shared

    The BSC cannot be shared

    The Abis transmission part can be shared

    The transcoder part can be shared.

    It is not allowed to modify the PLMN friendly name of a cell, even if theMulti-PLMN feature is active and several PLMN are defined on the OMC-R side.

    The primary PLMN cannot be added, removed or modified online.

    Customers no longer need to ensure CI (or LAC/CI) unicity over all PLMNinvolved in their network.

    With regard to clock synchronization, the only constraint is that when the MFSis connected to different SGSN, these SGSN are not necessarily synchronized.If they are not synchronized, central clocking and cascade clocking cannotbe used on the MFS side.

    22 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    23/152

    3 BTS Configurations

    3 BTS Configurations

    This section describes the Alcatel-Lucent BTS, and corresponding featuresand functions.

    3BK 17430 5000 PGZZA Ed.10 23 / 152

  • 8/11/2019 Alu Bs Config b10

    24/152

    3 BTS Configurations

    3.1 Introduction to the BTS

    3.1.1 BTS in BSS

    The following figure shows the location of the BTS inside the BSS.

    BTS

    Abis

    Abis

    Atermux

    A

    Gb

    OMC R

    IMT

    SGSN

    BSC TC

    MFS

    (PCU)

    MSC

    Gb

    Figure 4: BTS in the BSS

    3.1.2 BTS Generation Summary

    The following table lists the successive BTS generations, along with thecorresponding commercial name.

    G1 BTS G2 BTS 9100 BTS Evolution

    G1 BTS G2 BTS G3 BTS G4 BTS (*)

    MK2 Mini Std G3 9110MicroBTS

    G3.5 G3.8 G4.2 9110-EMicroBTS

    MBS

    Note: *: G3.8 and G4.2 are the TD names used respectively for Evolution Step 1and Evolution Step 2.

    The BTS are grouped into the following families:

    The 9110 Micro BTS (which corresponds to the micro BTS 9110 Micro BTS),

    and the 9110-E (which corresponds to the 9110-E Micro BTS micro BTS)

    The 9100 BTS, which includes all 9100 BTS, but not the micro BTS.

    24 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    25/152

    3 BTS Configurations

    3.2 9100 BTS

    3.2.1 9100 BTS Architecture

    The 9100 BTS is designed with the following three levels of modules to

    cover many cell configuration possibilities, including omni or sectored cellsconfigurations:

    The antenna coupling level, which consists of ANX, ANY, ANC, AGX,

    AGY, AGC and ANB.

    The TRE modules which handle the GSM radio access

    The BCF level implemented in the SUM, which terminates the Abis interface.

    Note: The above-mentioned architecture does not include the micro BTS.

    3.2.2 9100 BTS Configuration

    The 9100 BTS family began with the G3 BTS, whose architecture is describedin9100 BTS Architecture (Section 3.2.1).

    Further evolutions were introduced, with the G3.5, G4 variants

    The G3.5 BTS, which is a G3 BTS with new power supply modules

    The G4 BTS Step 1 (also referred to within TD as the G3.8), which is a G3.5

    BTS in which the following modules are redesigned:

    SUMA, which is the new SUM board

    SUM-X, which integrates the Transmission function, the OMU function

    and the Master Clock function. SUM-X provides the BTS with the

    Ethernet interfaces

    ANC, which is a new antenna network combining a duplexer and

    a wide band combiner

    New power supply modules which are compatible with BTS subracks.

    G4 BTS Step 2 (also referred to within TD as the G4.2) introduces a new

    TRE with EDGE hardware capability, including:

    CBO, which is the compact outdoor BTS

    MBS, which provides multistandard cabinets with the following G4.2

    modules:

    MBI3, MBI5 for indoor use

    MBO1, MBO2, MBO1E, MBO2E for outdoor use.

    The 9100 BTS family also includes the following micro BTS:

    9110 Micro BTS

    9110-E Micro BTS.

    3BK 17430 5000 PGZZA Ed.10 25 / 152

  • 8/11/2019 Alu Bs Config b10

    26/152

    3 BTS Configurations

    3.2.2.1 Product Presentation

    There are different types of cabinets:

    The indoor cabinet, which exists in different sizes:

    Mini

    Medi

    MBI3

    MBI5

    The outdoor cabinet, which exists in different sizes and packaging:

    Mini

    Medi

    Micro

    CPT2

    CBOMBO1

    MBO1E

    MBO2

    MBO2E

    The different TRE types:

    G3 TRE

    EDGE TRA

    TWIN TRA with the following capabilities:

    2 TRE Support

    Tx Div Capability

    4 Rx Div Support.

    26 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    27/152

    3 BTS Configurations

    3.2.2.2 9100 BTS Dimensioning

    The following table lists the extension and reduction capacity rules for the9100 BTS.

    Extension / ReductionConfiguration

    Physical Logical

    BTS

    Minimum Maximum Minimum

    9100 BTS 1 TRE* Up to 24 TRE 1 to 6 Sectors 1 TRE 1 TRE

    9110 Micro BTSMicro-BTS

    2 TRE Up to 6 TRE 1 to 6 Sectors 2 TRE 1 TRE

    9110-E Micro BTSMicro-BTS

    2 TRE Up to 12 TRE 1 to 6 Sectors 2 TRE 1 TRE

    * : TWIN modules are required in order to attain 24 TRE. In this case, the minimum for the physical extension step is 1TWIN module (2 TRE).

    Table 1: 9100 BTS Minimum and Maximum Capacity

    The 6 or 12 TRE are configured with 3 or 6 modules.

    The following table summarizes the typical GSM 900, GSM 1800 and GSM1900 configurations.

    These configurations constitute only a subset of the possible configurations.

    Network GSM 850MHz, 900 MHz, 1800 MHz, 1900 MHz

    Indoor / Outdoor Indoor Outdoor

    Cabinet size Mini Medi Mini Medi

    Number of TRE 1 sectors 1x2 to 1x4 1x2 to 1x12 1x2 to 1x4 1x2 to 1x12

    2 sectors 2x1 to 2x2 2x2 to 2x6 2x1 to 2x2 2x2 to 2x6

    3 sectors 3x1 3x1 to 3x4 3x1 to 3x2 3x1 to 3x4

    6 sectors 6x1 to 6x4 6x1 to 6x4

    Table 2: Typical GSM 900 and GSM 1800/1900 Configurations

    3BK 17430 5000 PGZZA Ed.10 27 / 152

  • 8/11/2019 Alu Bs Config b10

    28/152

    3 BTS Configurations

    The following table shows BTS configurations based on TWIN TRA.

    BTSConfigurations

    Single TRA Based Twin TRA Based

    MBI3 3*2 TRA HP /4 RX low loss /2 G5 ANC 3*2 TRA HP / 4 RX low loss

    3*4 TRA TWIN / 2 RX

    MBI5 3*4 TRA HP / 4 RX low loss /2 G5 ANC 3*4 TRA HP / 4 RX low loss

    3*8 TRA TWIN / 2 RX w. ANY2

    MBO1, MBO1E 3*2 TRA HP / 4 RX low loss /2 G5 ANC 3*2 TRA HP / 4 RX low loss

    3*4 TRA TWIN / 2 RX

    MBO2, MBO2E 3*4 TRA HP / 4 RX low loss /2 G5 ANC 3*4 TRA HP / 4 RX low loss

    3*8 TRA TWIN / 2 RX w. ANY2

    CBO AC 2*1 TRA HP / 4 RX low loss /2 G5 ANC 2*1 TRA HP / 4 RX low loss /2 G5 ANC

    2*2 TRA TWIN / 2 RX

    CBO DC 3*1 TRA HP / 4 RX low loss /2 G5 ANC 3*1 TRA HP / 4 RX low loss /2 G5 ANC

    3*2 TRA TWIN / 2 RX

    28 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    29/152

    3 BTS Configurations

    The following table shows the TWIN operation modes supported by the differentBTS hardware generations.

    TWIN TRA 2TRX Modeboth on samesector

    2TRX Modeboth on diff.sectors

    1TRX Modewith TX Div.

    1TRX Modew/o TX Div.

    BTS- 9100G3- Mini-Indoor yes yes no 1) no 1)

    BTS- 9100G3 & G3.5 -Mini -Outdoor yes yes no 1) no 1)

    BTS- 9100G3 & G3.5 -Medi -Outdoor yes yes no 1) no 1)

    BTS- 9100G4 -Mini -Indoor yes yes no 1) no 1)

    BTS- 9100G4- Medi- Indoor yes yes no 1) no 1)

    BTS- 9100G3.8 -Mini -Outdoor yes yes no 1) no 1)

    BTS- 9100G3.8 -CPT2 -Outdoor yes yes no 1) no 1)

    BTS -9100G3.8 -Medi -Outdoor yes yes no 1) no 1)

    BTS -9100G4 -MBI-3 yes yes yes 2) yes

    BTS -9100G4 -MBI-5 yes yes yes 2) yes

    BTS -9100G4 -MBO-1 yes yes no 1) no 1)

    BTS -9100G4 -MBO-2 yes yes no 1) no 1)

    BTS -9100G4 -CBO yes yes yes 2) yes

    BTS -9100G5 -MBO-1E yes yes yes 2) yes

    BTS -9100G5 -MBO-2E yes yes yes 2) yes

    Note: 1): Given that the cell planning is done for these network elements, the TXDiv. feature is not supported.

    2): The ordered configuration for TX Div. will be delivered from the factory bydefault with the 2TRX Mode cabled in different sectors and must be configuredonsite for TX Div.

    3BK 17430 5000 PGZZA Ed.10 29 / 152

  • 8/11/2019 Alu Bs Config b10

    30/152

    3 BTS Configurations

    The following table summarizes the typical Multiband 900/1800 BTSconfigurations.

    These configurations constitute only a subset of the possible configurations.

    Network Multiband BTS or Multiband Cell

    Cabinet size Medi/ Number of TRE

    4 sectors 2x2 GSM 900 & 2x4 GSM 1800

    2x4 GSM 900 & 2x2 GSM 1800

    6 sectors 3x2 GSM 900 & 3x2 GSM 1800 (outdoor only)

    Diversity 4 sectors: Yes

    6 sectors: Yes

    Table 3: Typical Multiband Configuration G3 BTS

    3.2.2.3 9100 BTS Rules

    The same BTS supports all four types of TRA on a cell.

    SUMA is required to support TWIN.

    A second Abis is necessary for EDGE and for more then 12 TRX, exceptfor small and medium BTS.

    The BTS must not contain any G3 TREs for a configuration with more than12 TREs.

    3.2.2.4 Extended Cell ConfigurationIt is possible to have up to 12 CS+PS capable TRX, including the BCCHTRX, in each cell (inner and outer).

    M4M and M5M do not support extended cell configurations.

    Only one extended cell per BTS is possible.

    SUMP does not support the extended cell feature.

    The inner and the outer of the extended cell must have the sameACCESS_BURST_TYPE parameter value.

    30 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    31/152

    3 BTS Configurations

    3.2.2.5 Mixture of9110-E Micro BTS and 9110 Micro BTS BTS

    The following four configurations rules apply for pure 9110-E Micro BTS and9110 Micro BTS/9110-E Micro BTS mixed configurations:

    A maximum of three hierarchic levels (master, upper and lower slave)

    are allowed

    Each 9110 Micro BTS upper slave terminates the master-slave link, which is

    the Inter Entity Bus (IEB)

    9110 Micro BTS is not allowed in the lower slave position

    9110-E Micro BTS must be set as the master in 9110 Micro BTS/9110-E

    Micro BTS mixed configurations.

    The following figure shows a mixed 9110 Micro BTS/9110-E Micro BTSstandard configuration.

    Master

    M5M

    Upper Slave 1M5M

    Lower Slave 11M5M

    Lower Slave 12M5M

    Upper Slave 2M4M

    3.2.2.6 Mixed configuration G3 and G4

    In the case of a mixed hardware configuration in a cell with both G3 andG4 TREs in the same cell, the E-GSM TRX is associated to G4 TRE andP-GSM TRX to G3 TRE.

    3BK 17430 5000 PGZZA Ed.10 31 / 152

  • 8/11/2019 Alu Bs Config b10

    32/152

    3 BTS Configurations

    3.3 G2 BTS

    The following rules apply:

    Only G2 BTS with DRFU are supported

    G2 BTS functions are unchanged.

    The following table lists the maximum and minimum capacity for G2 BTS.

    Configuration Extension / Reduction

    Physical LogicalMinimum Maximum

    Minimum

    BTS G2 1 TRE 1 Sector: 8 TRE 1 TRE 1 TRE

    3.4 G1 BTS

    The following rules apply:

    Only MKII G1 BTS with DRFU are supported

    MKII G1 BTS functions are unchanged.

    3.5 BTS Synchronization

    In terms of dimensioning, from a software point of view, there can be upto three BTS slaves.

    Depending on the hardware configuration, the number of BTS slaves can bereduced to two or one BTS.

    The following table lists the type of slave BTS which can be synchronized to themaster and the number of BTS slaves, for each BTS master.

    Master Slaves HardwareLimitation

    SoftwareLimitation

    G2 standard G2 5 3

    G2 standard 9100 5 3

    G2 mini G2 2 3

    G2 mini 9100 2 3

    9100 medi/mini G2 1 3

    9100 medi/mini 9100 3 3

    32 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    33/152

    3 BTS Configurations

    3.6 Physical Channel Types

    3.6.1 GSM

    In terms of TS content, there are several possible configurations, the most

    relevant of which are:

    Traffic channels (TCH)

    Signaling channels:

    BCC = FCCH + SCH + BCCH + CCCH

    CBC = FCCH + SCH + BCCH + CCCH + SDCCH/4 + SACCH/4

    SDC = SDCCH/8 + SACCH/8.

    where

    BCCH transports broadcast system information

    SDCCH transports signalling outside a call. It can be static (fixed positionon the TS), or dynamic (variable existence in time).

    Note: It is possible to define two CBCH channels for cells used for SMS-CB:

    The basic CBCH channel

    The extended CBCH channel.

    If the basic CBCH channel is configured, the extended CBCH channel can beoptionally configured. The extended CBCH channel is managed in the samemanner as the basic CBCH channel. When the initial SDCCH number in a cellis small, a reduction in the number of SDCCH due to the configuration of theCBCH can increase the SDCCH average load. In such a case, the operatormay need to add one SDCCH TS.

    3.6.2 GPRS

    GPRS radio timeslots (PDCH) are dynamically allocated according to thefollowing, customer-defined parameters:

    MIN_PDCHdefines the minimum number of PDCH TS per cell

    MAX_PDCHdefines the maximum number of PDCH TS per cell

    MAX_PDCH_HIGH_LOADdefines the maximum number of PDCH TS per cell

    in the case of CS traffic overload.

    Those parameters allow the operator to prioritize CS traffic versus GPRS trafficin order, for example, to avoid a QoS drop while introducing GPRS.

    The following quality parameters can also be used:

    N_TBF_PER_SPDCHdefines the number of mobile stations that can share the

    same PDCH

    MAX_PDCH_PER_TBFdefines the maximum number of PDCHs allocated

    to a single (E)GPRS connection.

    3BK 17430 5000 PGZZA Ed.10 33 / 152

  • 8/11/2019 Alu Bs Config b10

    34/152

    3 BTS Configurations

    3.6.3 Dual Transfer Mode

    A dual transfer mode capable mobile station can use a radio resource for CStraffic and simultaneously one or several radio resources for PS traffic.

    Requirements:

    The Gs interface is a prerequisite to fully support the DTM feature. However,

    the BSS does not forbid the activation of the DTM feature if the Gs interface

    is not supported (i.e. when the network mode of operation is set to NMO

    II or NMO III)

    Cells where MAX_PDCH_HIGH_LOAD < 2((E)GPRS) is mandatory for DTM

    operation, and at least two PDCHs are required in the PS zone for allocation

    of DTM resources to (at least) one DTM call)

    Handover causes with low priority are disabled with a mobile station in DTM.

    DTM is supported:

    For both GPRS and EGPRS

    As (E)GPRS is preferentially offered in macro cells, the BSS ensures

    that at least one PDCH can be used in micro cells to re-direct the mobile

    station towards the macro cells. This means that the BSS allows a PDCH

    used by an mobile station operating in DTM mode to be shared by other

    (E)GPRS mobile station

    Only multislot operation DTM MSs are supported.

    DTM is not supported in the following cases:

    Single slot operation DTM MSs are not supported in the Alcatel-Lucent BSS

    DTM is not supported in following types of cells:

    Non-9100 BTS

    Extended cells.

    DTM is not supported in half rate configurations.

    34 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    35/152

    3 BTS Configurations

    Concerning power control management:

    In the uplink direction:

    On the mobile stations side, the power control in different timeslots isindependent and with no restriction on the difference of power transmittedin adjacent timeslots. Therefore, there are no specific requirements in

    the uplink direction:

    On the TCH, the mobile stations transmits with the output power

    computed based on the BSS power command (if UL power control

    is activated in the CS domain)

    On the PDCH, the mobile stations transmits with the output power as

    a function of the GPRS power control parameters GAMMA_TNx and

    ALPHA and the signal level received in the DL.

    In the downlink direction:The BTS output power variation between all blocks addressed to a particular

    mobile stations within a TDMA frame does not exceed 10 dB for mobilestations operating in DTM. Moreover, the power difference betweencontiguous CS and PS timeslots must be in the same range of 10 dB.

    3.6.4 Extended Dynamic Allocation

    Extended Dynamic Allocation (EDA) is an extension of the basic DynamicAllocation (E)GPRS MAC mode to allow higher throughput in uplink for type 1mobile stations (supporting the feature) through the support of more than tworadio transmission timeslots.

    With the EDA mode, the mobile station detects an assigned USF value for anyassigned uplink PDCH and allows the mobile station to transmit on that PDCH

    and all higher numbered assigned PDCHs.

    The mobile station does not need to monitor all the downlink PDCHcorresponding to its allocated uplink PDCH, which allows the type 1 mobilestation to support configurations with more uplink timeslots (and thus with lessdownlink timeslots).

    The radio configurations is only used if the uplink TBF (in EDA mode) can bealone on its assigned uplink timeslots and not in front of downlink timeslotssupporting the PACCH channel of at least one downlink TBF not belongingto the same mobile station.

    Rules:

    Only multislot classes 1-12 are supported

    EDA operations in DTM mode are not supported

    EDA operations are not supported in the case of RT TBF and RT PFC

    EDA is only used in UL in TS configurations for which (Dynamic Allocation)

    DA is not possible (if both EDA and DA are possible in UL for a given

    TS configuration, then DA is used)

    As the shifted-USF operation is not supported, EDA will not be handled for

    mobile stations whose multislot class is 7 (1+3 configuration).

    3BK 17430 5000 PGZZA Ed.10 35 / 152

  • 8/11/2019 Alu Bs Config b10

    36/152

    3 BTS Configurations

    EDA is supported for mobile stations whose multislot class is 3, 11 or 12:

    For multislot class 3: EDA is used in UL for the 1+2 configuration (i.e. 1

    TS in DL, 2 TSs in UL), and DA is used for all the other configurations

    (2+1 and 1+1)

    For multislot class 11: EDA is used in UL for the 2+3 and 1+3 configurations,and DA is used for all the other configurations (4+1, 3+2, 3+1, 2+2, 2+1,

    1+2 and 1+1)

    For multislot class 12: EDA is used in UL for the 1+4, 2+3 and 1+3

    configurations, and DA is used for all the other configurations (4+1, 3+2,

    3+1, 2+2, 2+1, 1+2 and 1+1).

    In the TS configuration for which EDA is used in UL, a PDCH on a given TRXmust verify the following conditions in order to be included in a candidatetimeslot allocation:

    The PDCH does not support any (GPRS or EGPRS) Best-Effort UL TBFs

    of other mobile stations

    The PDCH does not support any resources allocated to (GPRS or EGPRS)

    RT PFCs in the UL direction for other mobile stations

    The PDCH does not support any PACCH TS of (GPRS or EGPRS)

    Best-Effort DL TBFs of other mobile stations

    The PDCH does not support any PACCH TS of (GPRS or EGPRS) RT

    PFCs in the DL direction for other mobile stations.

    3.7 Frequency Band Configuration

    3.7.1 Overview

    E-GSM is used for the whole GSM-900 frequency band, i.e. the primary band(890-915 MHz / 935-960MHz) plus the extension band, G1 band (880-890MHz/925-935 MHz). This corresponds to 174 addressable carrier frequenciesand leads to an increase of 40% against the 124 frequencies in the primaryband.

    Frequency span (U)ARFCNs Uplink frequencies Downlink frequencies

    P-GSM band 1.. 124 890.2 to 915.0 MHz 935.2 to 960.0 MHz

    G1 band 975.. 1023, 0 880.2 to 890.0 MHz 925.2 to 935.0 MHz

    GSM850 band 128... 251 824.2 MHz to 848.8 MHz 869.2 MHz to 893.8 MHz

    DCS1800 band 512.. 885 1710.2 to 1784.8 MHz 1805.2 to 1879.8 MHz

    DCS1900 band 512.. 810 1850.2 to 1909.8 MHz 1930.2 to 1989.8 MHz

    36 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    37/152

    3 BTS Configurations

    3.7.2 Compatibility

    The following table shows TRE generation equipment and the correspondingradio bands.

    Multiband (BTS or Cell)

    GSM 850 GSM 900 GSM1800

    GSM1900

    850 /1800

    850 /1900

    900 /1800

    900 /1900

    G3/G4 Yes (*) E-GSM Yes Yes Yes Yes Yes Yes

    9110-EMicro BTS

    Yes E-GSM Yes Yes Yes Yes Yes Yes

    9110Micro BTS

    N.A P-GSM Yes N.A N.A N.A Yes N.A

    G2 N.A E-GSM Yes Yes N.A N.A N.A N.A

    G1 MKII N.A Yes N.A N.A N.A N.A N.A N.A

    * : The BTS can be a G3 BTS, but the TRE is a G4.2 TRE.

    Table 4: Frequency Band Configuration

    3.7.3 Rules

    From functional point of view, there are two types of multiband behavior:

    Multiband BTSThe frequency bands (850/1800, or 850/1900, or 900/1800) are used indifferent sectors of the BTS. There are two BCCH carriers, one in the sectorwith frequency band 1, and another one in the sector with frequency band 2.

    Multiband cellThe sector (cell) is configured with TRX in band 1, and TRX in band 2. Onlyone BCCH carrier is configured for the sector.

    Only CS is supported by the G1 band TRX and by the inner zone TRXs of aconcentric or a multiband cell

    3BK 17430 5000 PGZZA Ed.10 37 / 152

  • 8/11/2019 Alu Bs Config b10

    38/152

    3 BTS Configurations

    3.8 Speech Call Traffic Rates

    There are no compatibility limitations between BTS and TC generations.

    The following table shows the hardware transmission compatibility.

    9125 TC (MT120) G2 TC(DT16/MT120)

    9100, 9110 Micro BTS,9110-E Micro BTS

    Yes Yes

    G2 + DRFU Yes Yes

    G1 MKII + DRFU Yes Yes

    The following table shows the different rates available over different generationsof equipment.

    BTS Traffic Rate

    9100, 9110 Micro BTS,9110-E Micro BTS

    G2 + DRFU

    G1 MKII + DRFU

    Dual Rate (DR) (HR+FR)

    Full Rate (FR)

    Enhanced Full Rate (EFR)

    Adaptive Multi-Rate speech codec (AMR).

    3.9 Adaptive Multi-Rate Speech Codec

    3.9.1 Overview

    Adaptive Multi-Rate (AMR) is a set of codecs, of which the one with the bestspeech quality is used, depending on radio conditions.

    Under good radio conditions, a codec with a high bit-rate is used. Speech isencoded with more information so the quality is better. In the channel coding,only a small space is left for redundancy.

    Under poor radio conditions, a codec with a low bit-rate is chosen. Speech isencoded with less information, but this information can be well protected due to

    redundancy in the channel coding.The BSS dynamically adapts the codec in the uplink and downlink directions,taking into account the C/I measured by the BTS (for uplink adaptation) and bythe mobile station (for downlink adaptation).

    The codec used in the uplink and downlink directions can be different, as theadaptation is independent in each direction.

    The AMR Wideband (AMR-WB) codec is developed as a multi-rate codec withseveral codec modes such as the AMR codec. As in AMR, the codec mode ischosen based on the radio conditions.

    The Tandem Free Operation (TFO) avoids double transcoding in mobile tomobile speech calls.

    38 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    39/152

    3 BTS Configurations

    3.9.2 Rules and Dimensioning

    The following table provides a list of AMR codecs.

    Codec Bit Rate Full Rate Half Rate

    12.2 Kbit/s X

    10.2 Kbit/s X

    7.95 Kbit/s X X (*)

    7.40 Kbit/s X X

    6.70 Kbit/s X X

    5.90 Kbit/s X X

    5.15 Kbit/s X X

    4.75 Kbit/s X X

    * : Not supported by the Alcatel-Lucent BSS.

    Table 5: AMR Codec List

    During a call, a subset of 1 to 4 codecs is used, configured by O&M on aper BSS basis.

    A different number of codecs and different subsets can be defined for FR (oneto four codecs out of the eight codecs available), and for HR (one to four

    codecs out of the five codecs available).The codec subset is the same in uplink and downlink.

    3BK 17430 5000 PGZZA Ed.10 39 / 152

  • 8/11/2019 Alu Bs Config b10

    40/152

    3 BTS Configurations

    The following table provides a list of AMR-WB codecs. Only codec bit-rates inbold are available.

    Codec Bit RateAMR WB

    Full Rate Half Rate GMSK 8-PSK

    23.85 kbit/s x x

    15.85 kbit/s x x

    x x

    x x

    12.65 kbit/s

    x x

    x x

    x x

    8.85 kbit/s

    x x

    x x

    x x

    6.60 kbit/s

    x x

    Table 6: AMR-WB Codec List

    The lowest bit rate providing excellent speech quality in a clean environment is12.65 kbit/s. Higher bit rates are useful in background noise conditions and inthe case of music. Also, lower bit rates of 6.60 and 8.85 provide reasonablequality, especially if compared to narrow band codecs.

    On the AMR-WB Air interface, only GMSK is used for FR TCH.

    The AMR-WB GMSK mandatory rules are:

    AMR_WB_GMSK_THR_1+AMR_WB_GMSK_HYST_1

  • 8/11/2019 Alu Bs Config b10

    41/152

    3 BTS Configurations

    Intracell handovers for resolution of codec mismatches in TFO are forbidden.Only the critical HO causes are offered to DTM calls.

    The following table refers to supported software versions versus hardwareboards and features.

    HardwareBoard/Feature

    AMR NBwithoutTFO NB

    TFO NB TFO FR,HR, EFR

    AMR WBincludingTFO WB

    Legacy MT120 yes no yes no

    MT120-NB yes no yes no

    MT120-WB yes no yes yes

    Table 7: Software Version versus Hardware Board/Feature

    3.10 TRE Packet Capability

    The value "0" of TRX Preference Mark (TPM) means that the concernedTRX is PS capable.

    The following table shows the data service rate available over differentgenerations of equipment.

    Up to 9.6Kbit/s

    GPRSCS-1and CS-2

    GPRSCS-3and CS-4

    EGPRSMCS-1to MCS-9

    G4 TRE and9110-E Micro BTS

    Yes Yes Yes Yes

    TWIN TRE Yes Yes Yes Yes

    G3 TRE and 9110Micro BTS

    Yes Yes Yes

    G2 + DRFU Yes Yes

    G1 MKII + DRFU Yes Yes

    Table 8: Data Call Traffic

    3BK 17430 5000 PGZZA Ed.10 41 / 152

  • 8/11/2019 Alu Bs Config b10

    42/152

    3 BTS Configurations

    3.11 OML and RSL Submultiplexing

    The following table shows the submultiplexing OML with RSL over differentgenerations of equipment.

    RSL&OML StatisticalMultiplex

    RSL & OMLTS64Kbit/s

    RSL 16KbitsStaticMultiplex

    64 Kbit/s 16 Kbit/s

    9100 Yes Yes Yes Yes

    G2 + DRFU Yes Yes

    G1 MKII +DRFU

    Yes

    Where:

    16 K Static multiplexing means up to four RSLs of a BTS are multiplexed on

    the same Abis TS

    64 K Statistical multiplexing means up to four RSL and optionally the OML

    of a BTS are multiplexed on the same Abis TS

    16 K Statistical multiplexing means the RSL and optionally the OML of a

    BTS are multiplexed in the first 2 bit of the TS reserved for TCH handling

    (the first one of the two TS dedicated to handle the traffic of the TRX).

    Note: Three RSLs can not be multiplexed on one Abis timeslot.

    The number of RSL or OML that can be mapped to one HDLC channel is:

    no multiplexing: 1 OML or 1 RSL, whatever the BSC generation

    static multiplexing: 1 OML or 1 RSL, whatever the BSC generation

    64kb/s statistical multiplexing:

    9120 BSC: 1 OML or 1 RSL

    9130 BSC: 1 HDLC embeds all OML/RSL multiplexed on a given Abis

    timeslot. The number of OML/RSL depends then on Abis multiplexing

    rule.

    16kb/s statistical multiplexing:

    9120 BSC: 1 OML or 1 RSL

    9130 BSC: 1 HDLC embeds all OML/RSL multiplexed on a given Abis

    timeslot. The number of OML/RSL depends then on Abis multiplexing

    rule.

    42 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    43/152

    3 BTS Configurations

    3.12 BTS Power Level

    The BTS power can be adjusted further than Unbalanced Output Power orCell Shared.

    The BTS power can be reduced by the operator due to the following parameters:

    BS_TXPWR_MAX

    T3106-D

    T3106-F

    PWR_ADJUSTMENT.

    The first 3 parameters on one side and the last one on other side are computedseparately. If one or the other is changed by the operator, the left one ischanged by the OMC.

    At migration time, the following values must be respected:

    T3106-DMax (( old value T3106-D AND 11111111000), (1104))

    T3106-Fold value T3106-F AND 1111111100.

    These settings are per step of 2db.

    The computations precision is 0.1db.

    3.13 Cell Configurations

    3.13.1 Cell TypesThe BSS supports a set of cell configurations designed to optimize the reuseof frequencies.

    The following profile types characterize the cells:

    Cell dimensionMacro up to 35 Km but up to 70 km with extended cells. Micro up to 300meters.

    Cell CoverageThere are four types of coverage: single, lower (overlaid), upper (umbrella),and indoor.

    Cell PartitionThere are two types of frequency partition: normal or concentric.

    Cell RangeThe cell range can be either normal or extended.

    Cell Band TypeA cell belongs to 850, 900, 1800 or 1900 bands, or to two frequency bandsin the case of a multiband cell.

    The following table describes the cell types.

    3BK 17430 5000 PGZZA Ed.10 43 / 152

  • 8/11/2019 Alu Bs Config b10

    44/152

  • 8/11/2019 Alu Bs Config b10

    45/152

    3 BTS Configurations

    The following table lists the Alcatel-Lucent BSS cell types for multiband cells.

    Cell Type Dimension Coverage Partition Range

    Micro Micro Overlaid Concentric Normal

    Single Macro Single Concentric Normal

    Mini Macro Overlaid Concentric Normal

    Umbrella Macro Umbrella Concentric Normal

    Non extended, non concentric mono-band cells of any type can be converted tomultiband cells by adding TRXs of a different band.

    The micro concentric, mini concentric, indoor concentric cells must bemultiband (the allowed FREQUENCY_RANGE is PGSM-DCS1800 or

    EGSM-DCS1800). This restriction does not apply to external cells.The Unbalancing TRX Output Power per BTS sector allows unbalancedconfigurations. The level of the output power is no more adapted to the lowerTRE output in the sector. One group of transceivers is configured to transmitwith high output power, the other group is configured to transmit with low outputpower. This configuration is available in concentric cell, where the output powerbalancing is performed on a zone basis instead of on the sector basis.

    When is activated, it is recommended to the operator to set the TRX PreferenceMark parameter to 0 for all TRX of the outer zone.

    For the extended cell, the following rules apply:

    (E)GPRS is supported

    NC2 mode is not offered

    The Network Assisted Cell Change is not allowed

    The (Packet) PSI status procedure is not allowed

    The extended inner cell is not declared in the neighbor cells reselection

    adjacencies, because it is barred

    Up to 12 TRX CS+PS capable, including the BCCH TRX can be offered in

    each cell (inner + outer)

    The extended inner and outer cells are in the same Routing Area

    No frequency hopping is allowed neither in the extended inner cell nor in the

    extended outer cell for (E)GPRS TRX

    In extended cell, the allowed coding schemes are:

    CS1... CS4, MCS1...MCS9 in the inner cell for the both directions

    CS1... CS4, MCS1...MCS4 in the outer cell for the both directions.

    3BK 17430 5000 PGZZA Ed.10 45 / 152

  • 8/11/2019 Alu Bs Config b10

    46/152

    3 BTS Configurations

    3.13.2 Frequency Hopping

    The frequency hopping types do not reflect the technology used, but ratherthe structure of the hopping laws.

    The following table shows the hopping types supported in release B10.

    Hopping Type Supported in B10

    Non Hopping (NH) X

    Base Band Hopping (BBH) X

    Radio Hopping (RH) * -

    Non Hopping / Radio Hopping (NH/RH) X

    NH/RH with Pseudo Non Hopping TRX X

    BBH with Pseudo Non Hopping TRX X

    * : This hopping mode works only with M1M, M2M that are obsolete.

    Baseband hopping (BBH) refers to the number of ARFCN = number of usedTRX. In a structure with two hopping systems, the first one includes all ARFCN,FHS1, the second, all without the BCCH ARFCN, FHS2. The TS1-7 from allTRX get the FHS2. The TS0 from the BCCH TRX is configured with the BCCHARFCN (non hopping) and the other TS0 from the Non BCCH TRX gets FHS1.This is the basic BBH configuration.

    Radio hopping or synthesizer frequency hopping (RH) is when the TRX donot get fixed frequency assignments, but can change their frequency fromTS to TS according to a predefined hopping sequence. The number ofapplicable hopping frequencies can be larger then the number of equippedTRX: N(hop) >= N(TRX).

    Inside an FHS, it is possible to mix frequencies belonging to the P-GSMband and the G1 band, depending on the RR_EGSM_Alloc_strategy; othermixes are not allowed.

    If there are several FHS, all PS TRX have the same FHS.

    46 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    47/152

    3 BTS Configurations

    3.13.3 Shared Cell

    3.13.3.1 Overview

    Each BTS can manage one (all BTS generations) or several cells (from G3BTS). In the case of a cell shared by several BTS, is possible to support

    up to 16 TRX.Only the 9100 9100 BTS supports shared cells. In the case of a monobandshared sector, every type of cell is supported except for extended cells.

    In general, a BTS comprises several physical sectors. Until release B7, a cellwas mapped on a physical sector. The operator can associate two physicalsectors pertaining to different BTS with one shared sector. This shared sectorcan be mono or bi-band and it can support one cell as a normal sector. It takesthe identity of one of the physical sectors. Between the two sectors, one is themain sector, and the other is the secondary sector.

    This allows:

    Existing cells to be combined into one (for example, one 900 cell and one

    1800 cell in order to get a multi band cell)

    Existing cells can be extended only by adding new hardware in a new

    cabinet, not touching the arrangement of the existing BTSs

    Support for 3x8 in two racks.

    The linked BTS can still be connected on the Abis side, by the same or adifferent Abis link, the same or different Abis TSU, or by same or differentmultiplexing schemes.

    The shared cell requires a specific attribute that must be defined by theoperator (either primary or secondary) at the TRX level.

    3.13.3.2 Rules

    The following rules apply:

    Clock synchronizationThe BTS in a shared cell must be synchronized.

    Hardware coverageFor G3 BTS and beyond, generations can be mixed as long as master/slaveconfigurations are possible. Cell sharing is not supported on M5M andM4M, because they cannot be clock synchronized.

    Output Power.

    When a certain sector is extended with another sector, transmission outputpowers can be different. In this case, a software adjustment of the outputpower is performed. There is a separate power adjustment for 900MHz and1800 MHz. In all cases, if there is a power discrepancy, only an alarm issent, without any further consequences, and sectors continue to transmittraffic. In a cell shared over two BTS, only one sector (main or secondary)can support GPRS traffic (not both).The unbalancing TRX output power also applies on shared cells.

    3BK 17430 5000 PGZZA Ed.10 47 / 152

  • 8/11/2019 Alu Bs Config b10

    48/152

    3 BTS Configurations

    48 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    49/152

    4 BSC Configuration

    4 BSC Configuration

    This section describes the 9120 and 9130 BSC Evolution, and correspondingfeatures and configurations.

    3BK 17430 5000 PGZZA Ed.10 49 / 152

  • 8/11/2019 Alu Bs Config b10

    50/152

    4 BSC Configuration

    4.1 BSC in the BSS

    The following figure shows the location of the BSC inside the BSS.

    BTS

    Abis

    Abis

    Atermux

    A

    Gb

    OMC R

    IMT

    SGSN

    BSC TC

    MFS

    (PCU)

    MSC

    Gb

    Figure 5: BSC in the BSS

    4.2 9120 BSC

    4.2.1 9120 BSC Architecture

    The 9120 BSC consists in one switch and three main sub-units types (TSU):

    The Abis TSU, which determines the connectivity with BTS

    The Ater TSU, which sets the capacity the BSC can handle

    The common TSU.

    This is shown in the following figure.

    BIUA

    TCUC

    TCUC

    TCUC

    TCUC

    TCUC

    TCUC

    TCUC

    TCUC

    AS

    DTCC

    DTCC

    DTCC

    DTCC

    DTCC

    DTCC

    DTCC

    AS

    DTCC

    CPRCCPRCCPRC CPRCCPRCCPRCCPRCCPRC

    AS

    6 x

    G.703AbisI/F

    2 xG.703 Ater muxed

    I/F

    Abis TSU Ater TSU

    Common Functions TSU

    Group Switch

    8 Planes

    2 Stages

    TSC

    TSL

    ASMB

    ASMB

    Q1 bus

    Broadcast bus

    Figure 6: 9120 BSC Architecture

    50 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    51/152

    4 BSC Configuration

    4.2.1.1 Capabilities

    The following table lists the maximum theoretical capacities versusconfigurations supported by the Mobile Networks Division. Capacities greaterthan this cannot be guaranteed and must not be offered to customers.

    Configuration Maximum TrafficMax

    Release1 2 3 4 5 6 FRTRX

    DRTRX

    Cells BTS Erlang

    B7 X X X X X X 448 218 264 255 1900

    B8 X X X X X X 448 218 264 255 1900

    B9 X X X X X X 448 218 264 255 1900

    B10 X X X X X X 448 218 264 255 1900

    Table 9: Maximum Supported Capacities and Configurations

    3BK 17430 5000 PGZZA Ed.10 51 / 152

  • 8/11/2019 Alu Bs Config b10

    52/152

    4 BSC Configuration

    The following table below lists the parameters that are applicable to allconfigurations across all releases.

    B7 B8 B9 B10

    CPRC-SYS 2 2 2 2

    CPRC-OSI 2 2 2 2

    CPRC-BC 2 2 2 2

    TRE (FR FU)/ TCU or RSL / TCU 4 4 4 4

    TRE (DR FU) / TCU 2 2 2 2

    TRE / BTS (9100 BTS) 12 12 24 24

    LAPD / TCU 6 6 6 6

    Cells or Sectors /BTS 6 6 6 6

    TRX / Cell 16 16 16 16

    TRX / Cell for GPRS support 16 16 16 16

    Max Nb SCCP cnx / BSSAP proc. 128 128 128 128

    Frequency Hopping Identifiers 1056 1056 1056 1056

    Neighbor Cells 3500 3500 3500 3500

    Adjacencies 5400 5400 5400 5400

    Table 10: 9120 BSC Globally Applicable Parameters

    4.2.1.2 9120 BSC versus G2 TC Configurations

    The BSC configuration always has to handle the complete configuration forthe TC, however the TC racks can be under-equipped compared with theBSC configuration.

    52 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    53/152

    4 BSC Configuration

    4.2.1.3 Rack Rules

    The following rules apply.

    Extension / Reduction

    Configuration Racks Physical Logical

    Minimum Maximum Minimum

    9120 BSC

    Lower Half 1 3 Racks Half Rack Half Rack

    The following data shows the different steps required to go from a minimum9120 BSC configuration to the maximum configuration. The granularity ofextension/reduction is provided by a Terminal Unit (TU). A TU is a set of fourTSU sharing an access switch through stage 1.

    There are six TU: Maximum Configuration (6):

    TU 0 = 1 COMMON TSU + 1 Abis TSU + 2 Ater TSU = Lower Rack 1.

    TU 1 = 3 Abis TSU + 1 Ater TSU = Upper Rack 1.

    TU 2 = 2 Abis TSU + 2 Ater TSU = Lower Rack 2.

    TU 3 = 3 Abis TSU + 1 Ater TSU = Upper Rack 2.

    TU 4 = 2 Abis TSU + 2 Ater TSU = Lower Rack 3.

    TU 5 = 3 Abis TSU + 1 Ater TSU = Upper Rack 3.

    The following table describes the BSC configuration.

    Step AbisTSU

    AterTSU

    Stage1

    Stage2

    Racks FRTRX

    Abis/AterMux

    1 1 2 1 4 1 32 6/4

    2 4 3 2 4 1 128 24/6

    3 6 5 3 8 2 192 36/10

    4 9 6 4 8 2 288 54/12

    5 11 8 5 8 3 352 66/16

    6 14 9 6 8 3 448 84/18

    Table 11: BSC Configuration Description

    3BK 17430 5000 PGZZA Ed.10 53 / 152

  • 8/11/2019 Alu Bs Config b10

    54/152

    4 BSC Configuration

    The following table describes the 9120 BSC capacity for each configuration.

    Configuration 1 2 3 4 5 6

    Racks Lower 1 Upper 1 Lower 2 Upper 2 Lower 3 Upper 3

    Clock Boards BCLA 4 4 6 6 8 8

    Transmission Controller TSCA 1 1 2 2 3 3

    Access Switch 8 16 24 32 40 48

    Group Switch Stage 1 8 16 24 32 40 48

    Group Switch Stage 2 32 32 64 64 64 64

    DC-DC Converters 13 17 30 34 42 47

    Abis TSU 1 4 6 9 11 14

    Abis sub-multiplexers BIUA 1 4 6 9 11 14

    Terminal Control Units TCUC 8 32 48 72 88 112

    Abis interfaces 6 24 36 54 66 84

    LAPD channels 48 192 288 432 528 672

    ATER TSU 2 3 5 6 8 9

    Ater sub-multiplexers ASMB 4 6 10 12 16 18

    Digital Trunk Controllers DTCC 16 24 40 48 64 72

    Ater interf access maxi carrying traffic 16 24 40 48 64 72

    No.7 DTCC 4 6 10 12 16 16

    TCH Resource Management DTCCpairs

    2 2 4 4 6 6

    BSSAP DTCCs 8 14 22 28 36 44

    Full/ Dual Rate TRX or RSLs 32/14(1) 128/62(1) 192/92(2) 288/140(2)352/170(3)448/218(3)

    Radio TCH 256(*) 1024(*) 1536(*) 2304(*) 2816(*) 3584(*)

    Cells or sectors 32 120 192 240 264 264

    BTS equipment or OMLs (**) 23 95 142 214 255 255

    Ater Qmux circuits 2 2 4 4 6 6

    Ater X.25 circuits 2 2 2 2 2 2

    Ater Alarm Octets 4 6 10 12 16 18

    54 / 152 3BK 17430 5000 PGZZA Ed.10

  • 8/11/2019 Alu Bs Config b10

    55/152

  • 8/11/2019 Alu Bs Config