ama1007 (calculus and linear algebra) …...the hong kong polytechnic university department of...

12
The Hong Kong Polytechnic University Department of Applied Mathematics AMA1007 (Calculus and Linear Algebra) Assignment 04 (Solution) Question 1 ( a ) 1 1 1 1 1 1 2 2 2 n n n n n n n n n 1 1 2 n n n converges by the comparison test: 1 1 2 2 n n n and 1 1 2 n n is a convergent geometric series. 1 1 2 n n n n converges. ( b ) Diverges by the comparison test: 1 1 1 ln ln(ln ) n n n and 3 1 n n diverges. ( c ) Converges by the ratio test: 1 1 1 13 5 (2 1) (2 1) 42 ! lim lim 4 2 ( 1)! 13 5 (2 1) n n n n n n n n a n n n a n n 2 1 1 lim 1 8( 1) 4 n n n ( d ) Diverges by the ratio test: 1 3 3 1 3 1 3 3 2 3 3 lim lim lim 1 ( 1) 2 3 2( 1) 2 n n n n n n n n n a n n a n n ( e ) Converges by the integral test: 1 1 ln 3 2 2 3 ln 3 1/ limsec sec (3) 2 (ln ) ln 1 1 t t n du dx u n n u u

Upload: others

Post on 08-Jul-2020

42 views

Category:

Documents


7 download

TRANSCRIPT

The Hong Kong Polytechnic University

Department of Applied Mathematics

AMA1007 (Calculus and Linear Algebra)

Assignment 04 (Solution)

Question 1

( a ) 1 1 1

1 1 1

2 2 2n n nn n n

n

n n

1

1

2nn n

converges by the comparison test: 1 1

2 2n nn and

1

1

2nn

is a

convergent geometric series. 1

1

2nn

n

n

converges.

( b ) Diverges by the comparison test: 1 1 1

ln ln(ln )n n n and

3

1

n n

diverges.

( c ) Converges by the ratio test:

1

1 1

1 3 5 (2 1) (2 1) 4 2 !lim lim

4 2 ( 1)! 1 3 5 (2 1)

n n

n

n nn nn

a n n n

a n n

2 1 1lim 1

8( 1) 4n

n

n

( d ) Diverges by the ratio test:

1 3 3

1

3 1 3

3 2 3 3lim lim lim 1

( 1) 2 3 2( 1) 2

n n

n

n nn n nn

a n n

a n n

( e ) Converges by the integral test:

1 1

ln32 23 ln3

1/limsec sec (3)

2(ln ) ln 1 1

t

t

n dudx u

n n u u

( f ) Converges by the alternating series test:

Since ( 1 ) 2

1 1 2( ) '( ) 0

1 2 ( 1)

x x xf x f x

x x x

( )f x is decreasing.

and ( 2 ) 1

lim lim 01

nn n

na

n

.

( g ) Converges absolutely by the ratio test:

1

1 (100) ! 100lim lim lim 0 1

( 1)! (100) 1

n

n

nn n nn

a n

a n n

( h ) Converges by the integral test:

1

2 2 2 01 1 0

1 1/lim tan

(1 ln ) 1 ln 1 2

t

t

n dudx dx u

n n n u

( i ) Converges by the alternating series test:

Since ( 1 ) 1 1

( ) ln 1 '( ) 0( 1)

f x f xx x x

for 0x .

( )f x is decreasing for 0x

and ( 2 ) 1 1

lim limln 1 ln lim 1 ln1 0nn n n

an n

.

Question 2

( a ) ( ) 2xf x (1) 2f

'( ) ln 2 2xf x '(1) ln 2 2f 2''( ) (ln 2) 2xf x 2''(1) (ln 2) 2f 3'''( ) (ln 2) 2xf x 3'''(1) (ln 2) 2f

( ) ( ) (ln 2) 2n n xf x ( ) (1) (ln 2) 2n nf

Taylor series at 1x : 2 3

2 3

0

2(ln 2) 2(ln 2) 2(ln 2) ( 1)2 (2ln 2)( 1) ( 1) ( 1)

2! 3! !

n n

n

xx x x

n

( b ) 3 2( ) 2 3 8f x x x x (1) 2f 2'( ) 6 2 3f x x x '(1) 11f

''( ) 12 2f x x ''(1) 14f

'''( ) 12f x '''(1) 12f

( ) ( ) 0nf x for 4n ( ) (1) 0nf for 4n

Taylor series at 1x :

2 3 2 314 122 11( 1) ( 1) ( 1) 2 11( 1) 7( 1) 2( 1)

2! 3!x x x x x x

Question 3

( a ) 2( ) (1 ) xf x x e (0) 1f 2'( ) (3 2 ) xf x x e '(0) 3f 2''( ) (8 4 ) xf x x e ''(0) 8f

2'''( ) (20 8 ) xf x x e '''(0) 20f

Maclaurin’s polynomial (up to degree 3):

2 3 2 3''(0) '''(0) 10(0) '(0) 1 3 4

2 6 3

f ff f x x x x x x

( b ) ( ) ln(3 )xf x e (0) ln 4f

'( )3

x

x

ef x

e

1'(0)

4f

2

3''( )

(3 )

x

x

ef x

e

3''(0)

16f

2

3

9 3'''( )

(3 )

x x

x

e ef x

e

3'''(0)

32f

Maclaurin’s polynomial (up to degree 3):

2 3 2 3''(0) '''(0) 1 3 1(0) '(0) ln 4

2 6 4 32 64

f ff f x x x x x x

Question 4

( a ) By Sarrus’ Rule:

2 1 4

3 5 7 ( 20 7 72) (20 84 6) 65

1 6 2

( b ) Expand along the second row:

1 3 2 51 3 5 1 3 2

0 0 3 2( 3) 1 5 0 (2) 1 5 4

1 5 4 01 2 1 1 2 1

1 2 1 1

By Sarrus’ Rule:

( 3) (5 0 10) (25 0 3) (2) (10 8 3) (5 12 4) 39

( c ) Expand along the third row:

0 1 2 11 2 1 0 1 2

4 3 3 5(1) 3 3 5 ( 1) 4 3 3

1 0 0 11 0 1 1 1 0

1 1 0 1

By Sarrus’ Rule:

(1) (3 10 0) ( 3 0 6) (1) (0 3 8) ( 6 0 0) 5

Question 5

4 1 01 0 4 0 4 1

det( 4 ) 0 4 1 (0) ( 4) (1) 017 4 4 4 4 17

4 17 4

A I .

4 is a root of det( ) 0x A I .

1 01 0 0 1

0 1 (0) ( ) (1)17 8 4 8 4 17

4 17 8

xx x

x xx x

x

3 2 2( )( )(8 ) (1)(17 4) 8 17 4 ( 4)( 4 1)x x x x x x x x x x

2det( ) ( 4)( 4 1) 0 4, 2 3x x x x x A I .

Question 6

( a )

1

2

3

2 4 6 1

4 6 2 3

6 2 4 5

x

x

x

.

2 4 6

4 6 2 144

6 2 4

( 0) .

1

1 4 6

3 6 2 132

5 2 4

, 2

2 1 6

4 3 2 12

6 5 4

, and 3

2 4 1

4 6 3 12

6 2 5

.

By Cramer’s rule, we have 11

132 11

144 12x

, 22

12 1

144 12x

, and

33

12 1

144 12x

.

( b )

1 2 3

1 2 3

1 2 3

2 2 3

3 4 2 1

8 3 4

x x x

x x x

x x x

11

491

49x

, 22

491

49x

, and 33

491

49x

.

Question 7

( a ) 3 3 3 2 2 2( )( ) ( )( ) I I I A I A I A A I A I A A 1 2( ) I A I A A

( b ) 3 3 2 1 2( ) A A I 0 I A A A I A A I A

Question 8

1 2

1 2

( ) ( )

( ) ( )

f x f xdW d

g x g xdx dx

1 2 2 1( ) ( ) ( ) ( )d

f x g x f x g xdx

1 2 1 2 2 1 2 1'( ) ( ) ( ) '( ) '( ) ( ) ( ) '( )f x g x f x g x f x g x f x g x

1 2 2 1 1 2 2 1'( ) ( ) '( ) ( ) ( ) '( ) ( ) '( )f x g x f x g x f x g x f x g x

1 2 1 2

1 2 1 2

'( ) '( ) ( ) ( )

( ) ( ) '( ) '( )

f x f x f x f x

g x g x g x g x

2013-2014 Sem 1 Final Exam Q6

2013-2014 Sem 1 Final Exam Q7

2013-2014 Sem 1 Final Exam Q9

2013/14 Sem2 Final Exam Q3

2013/14 Sem2 Final Exam Q5