ambikairajah part a: signal processing professor e...

86
Part A: Signal Processing Professor E. Ambikairajah UNSW, Australia

Upload: trinhdat

Post on 19-Mar-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Part A: Signal Processing

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Chapter 4: Analogue Filter Design

4.1 Butterworth Filters4.2 Design of Low-pass Butterworth Filters4.3 Low-pass to High-pass transformation4.4 Low-pass to Band-pass Transformation4.5 Chebyshev Filters

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

4.0 Analogue Filter DesignA very important approach to the design of digital filters is to apply a transformation to an existing analogue filter,

The commonly required types of frequency filter fall into four main groups:

Low-pass (LP)High-pass (HP)Band-pass (BP)Band-stop (BS)Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

The frequency responses of these filters are shown in

Figure 4.1 (a to d). Also shown are the frequency responses for the ideal LP, HP, BP and BS filters.

|H(ω)|

ω

LPHP

ω

BP

ω

BS

ω

|H(ω)|

|H(ω)| |H(ω)|

(a) (b)

(c) (d)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

ω

|H(ω)| Ideal LP |H(ω)| Ideal HP

ω

|H(ω)| Ideal BP

ω

|H(ω)| Ideal BS

(e) (f)

(g) (h)

ω

Figure 4.1. Basic types of frequency Responses. (a)-(d) show examples of practical frequency response of lowpass, highpass, bandpass and bandstop filters, respetively. (e)-(h) show the ideal frequency responses of the above filters.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The analogue filter design procedure normally begins with a specification of the frequency response for the filter describing how the filter reacts to sinusoid inputs.

If an input sinusoid is not attenuated or attenuated less than a specific tolerance as it goes through the system, it is said to be in a pass band of the filter.

If it is attenuated more than a specified value it is said to be stopped and within the stop band of the filter.

Output

Pass band

Stop band

Filter

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Input sinusoids with neither a little nor a large amount of attenuation are said to be in the transition band. A typical frequency response is shown in Figure 4.2, showing the pass band, transition band and stop band.

|H(ω)|

bandPass band Transition

band1

Stop

ω

Pass band

Figure 4.2. Low-pass filter frequency response

cp orωω sωsδ

1)(1 ≤≤− ωδ Hp

Pδ−1

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The filter with this type of frequency response is called a low-pass filter as it passes all frequencies less than a certain value (or ), called the cut-off frequency and attenuates or stops all frequencies past , the stop band frequency.

The analogue low pass filters are commonly used as anti-aliasing filters that are applied to continuous-time signals before A/D conversion and also used as reconstruction filters.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Note: The technique used to design analogue filters is to specify a prototype low-pass filter function which is normalized to provide a Cut-off frequency ( ) at 1 rad/sec and then apply transformations to achieve the actual desired cut-off frequencies and filter type.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Therefore, prime consideration will be given to low-pass filter design using the following design procedures:

Butterworth Low-pass filter- Maximally flat in passband.

ωωpωc

|H(ω)|

1

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Chebyshev I low-pass filter- Maximal ripple in passband.

Chebychev II low-pass filters- Maximal ripple in stopband

|H(ω)|

1

ωωpωc

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Elliptic low pass filter- Minimal transition width- Ripple in both pass band and stopband

Bessel filter- Maximally constant group delay.

Transition band

Pass Band Stop band

ωc

|H(ω)|

1

ωωp

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The ideal, brick-wall, low pass filter prototype is one, which has a unit amplitude frequency response from dc to 1 rad/sec with response dropping to zero there after.

This may be defined in term of the following squared magnitude transfer function:

1

1‘brick wall’ filterIdeal low pass filter

( ) 2ωH

ω

( ) ( ) (4.1) )(1

1)( 22

ωωωω

FjHjHjH

+==−⋅

Where (4.2) 1

100)( 2

⎩⎨⎧

>∞<<

=ωω

ωF

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Since is a polynomial in , must satisfy the lower condition in (4.2). It is not practically feasible to form a polynomial of this type (∞ order).

Therefore approximations to are made. The approximation for due to Butterworth is given by . This yields the following squared magnitude transfer functions:

)( 2ωF 2ω n

nLimF 22 )( ωω

∞→=

)( 2ωF)( 2ωF

nF 22 )( ωω =

(4.3) 1

1)( 22

njHω

ω+

=

(4.4) 1

1)(2n

jHω

ω+

=

(4.2) 1

100)( 2

⎩⎨⎧

>∞<<

=ωω

ωF

Where n is a positive integer.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

4.2 Design of LowpassButterworth Filters [9]

A Butterworth filter of order ‘n’ is defined by

(4.3)equation see (4.5) 21

1)( 2

njH

c⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

ωω

ω

- Cut-off frequency of the filter.cω

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The following properties are easily determined:

1. for all n.

2. for all n; this implies

and

3. is monotonically decreasing function of

ω (i.e. throughout pass band and stop band.)

4. As n gets larger approaches an ideal low-pass frequency response.

1)( 2

0=

=ωωjH

21)( 2 =

= cjH

ωωω 707.0

21)( ==ωjH

dB0.3|)(|log20 −== cjH ωωω

2)( ωjH

2)( ωjH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

5. is called maximally flat at the origin since all order derivatives exist with respect to ωand are zero at the origin.

2)( ωjH

( )( )[ ] ( )[ ]

( ) ( ) ( )⎪⎪⎩

⎪⎪⎨

+−+−=

+=+

=−

Lnnn

n

n

ccc

c

c

jH

61654

832

21

2

2

1

11

1 21

21

ωω

ωω

ωω

ωω

ωω

ω

Note:

Power series expansion

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

2)( ωjH

21

1

ωcω

∞=n

100=n

2=n

1=n

Figure 4.3. The magnitude frequency response of a Butterworth filter

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

It is convenient in many cases to look at the frequency response in decibels, that is, plot versus .

Figure 4.4 is a straight line approximation of the frequency response in decibels (dBs) for the Butterworth filters.

)(log20 ωjH ω

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

n=1 Slope= -20dB/decade

n=2 Slope= -40dB/decade

ω0.1ωc

=20log|H (jω)|

Actual values for n=3

-60dB

-40

-20

-3dB

dB

0

n=3 Slope= -60dB/decade

ωc 100ωc

Figure 4.4. Filter gain plot for analogue Butterworth filters of various orders of n.Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

Starting with the magnitude square frequency response we would like to find the system function

H(s) that gives the Butterworth magnitude squared response.

4.4)equation (see )().(]1[

12)(

]1[

1)(

2

21

2

sHsHjH

jH

n

n

−=+

=

+=

ωω

ωω

(4.6) 2

1

1

21

1)(21

21

⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

=n

jsn

jj

sH

ω

Let ωjs =

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

(4.7) 1

1)(2ns

sH+

=

(4.8) 1

1)(2ns

sH−

=

For n even

For n odd

(4.6) 2

1

1

21

1)(21

21

⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+

=n

jsn

jj

sH

ω

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

)2

(n

j

esπ+

=∴ n -even

642,....,, 1284

=↑=↑=↑

=⎟⎠⎞

⎜⎝⎛±⎟

⎠⎞

⎜⎝⎛±⎟

⎠⎞

⎜⎝⎛±

nnneees

jjj πππ

From equation (4.7) the roots of the denominator, i.e. poles are given by

πjnn ess ±=−=⇒=+ 10)1( 221

2

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

From equation (4.8), the roots of the denominator i.e. poles are given by

( ) π2221

2 101 jnn ess ±==⇒=−

nj

nj

eesππ

±±==∴ 2

2

n is odd

,......,, 53πjπjπj eees

±±±=∴

ππ sincos j±3

sin3

cos ππ j±

n = 1 n = 3 n = 5

= -1Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The poles of the Butterworth filter all lie in the left-hand side of the s-plane with a locus which is a circle of unit radius whose centre is the s-plane origin.

A plot of the poles the Butterworth function for n = 3(odd) is shown in Figure 4.5.

600

600- 600

- 600H(s)

H(-s)

σ

-1

1 s-plane

Figure 4.5. The s-plane of a butterworth filter with n = 3.

623 =⇒= nn poles of H(s) H(-s)Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

( ) ( ) (4.6)equation see

1

12n

js

sHsH

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=−⋅

A plot of the poles of the Butterworth function for n = 4(even ‘n’) is shown in Figure 4.6.

H(s)

H(-s)

σ

-1

1s-plane

π/4

π/8

- π/4

-π/8

Figure 4.6. The s-plane of a butterworth filter with n = 4.

n = 4 ⇒ 2n = 8 poles of H(s) H(-s)Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

Find the transfer function H(s) for the normalized

Butterworth filter of order 2 (n = 2)sec 1rad/c =ω

Since n = 2 ; 4πj

es±

=

21

21

44jπjSinπCos ±=⎟

⎠⎞

⎜⎝⎛±⎟

⎠⎞

⎜⎝⎛

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

σ

s1

s2 s4

s3

π/4π/4

π/4

-1/√2

-1 1

Poles of H(s)H(-s) for a normalized Butterworth filter of order 2

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −−

−⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +−

−=

−−=

21

21

21

21

1))((

1)(21

jsjs

sssssH

Normalisedimplies ωc= 1

121)(

2 ++=

sssH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example: [9]Determine the transfer function of a Butterworth

filter of the low-pass type with order n = 3. Assume

that the 3dB cut-off frequency rad/sec.

For n = 3, the 2n = 6 poles of H(s)H(-s) are located on a circle of unit radius with angular spacing as

shown in Figure 4.6. Hence allocating the lest-half plane poles to H(s), we define

23

21;

23

21;1 321 jsjss −

−=+

−=−=Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

The transfer function of a Butterworth filter of order

3 is therefore

( )( )

( )( )

( )1221

111

23

21

23

211

1

23

2

+++=

+++=

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛−++

=

sss

sss

jsjsssH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

n Butterworth Polynomials1 s+1

2

3

4

5

122 ++ ss

( )( )112 +++ sss

( )( )184776.1176536.0 22 ++++ ssss

( )( )( )16180.116180.01 22 +++++ sssssProfes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example: Design of low-pass Butterworth filters [9]

Design an analogue Butterworth filter that has -2dBor better cut-off frequency of 20 rad/sec and at least

10dB of attenuation at 30 rad/sec

k2= -10dB

0k1= -2dB

ωωsωx

|H(ω)|

20 rad/sec

dB =20log|H(jω)| or 10log|H(jω)|2

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

(4.3))equation (see

1

1)( 22

n

c

jH

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

ωω

ω

filter order

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛+

= n

c

jH 22

1

1log10)(log10

ωω

ω

equal to k1 at equal to k2 at

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

(4.9)

1

1log10 21

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛+

= n

c

x

k

ωω

(4.10)

1

1log10 22

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛+

= n

c

s

k

ωω

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=−=>

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

n

c

n

n

c

x kk2

1

2

1 1log10

1log1log10 ω

ωωω

10

21

101kn

c

x−

=⎟⎟⎠

⎞⎜⎜⎝

⎛+

ωω

(4.11) 110 10

21

−=⎟⎟⎠

⎞⎜⎜⎝

⎛ −kn

c

x

ωω

(4.12) 110 10

22

−=⎟⎟⎠

⎞⎜⎜⎝

⎛ −kn

c

ssimilarlyωω

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

From equations (4.11) and (4.12)∴

110

110

10

10

2

2

2

1

−=

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

k

k

n

c

s

n

c

x

ωω

ωω

110

110

10

102

2

1

−=⎟⎟

⎞⎜⎜⎝

⎛−

k

kn

s

x

ωω

⎟⎟⎟

⎜⎜⎜

−=⎟⎟

⎞⎜⎜⎝

⎛−

110

110loglog10

10

10

2

10 2

1

k

kn

s

x

ωω

⎟⎟⎟

⎜⎜⎜

−=⎟⎟

⎞⎜⎜⎝

⎛−

110

110loglog210

10

1010 2

1

k

k

s

xnωωProf

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

(4.13) log2

110

110log

10

10

10

10 2

1

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎟

⎜⎜⎜

=

s

x

k

k

n

ωω

If n is an integer we use that value, otherwise we use the next larger integer.

⎟⎠⎞

⎜⎝⎛

⎟⎟⎟

⎜⎜⎜

=

−−

−−

3020log2

110

110log

10

10)10(

10)2(

10

n

43709.3 ==n 4th order filter

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

From equation (4.9), we have

⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=n

c

x

ωω

k2101

1

1log10

sec/3868.21

110

20

11042

1

10)2(2

1

101

rad

nk

xc

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−

=×−−−

ωω∴

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The normalized low-pass Butterworth filter for n = 4can be found from the table given previously

)1( =cω

( )( )184776.1176536.01)( 22 ++++

=ssss

sH

De-normalized transfer function∴

⎟⎟

⎜⎜

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛⎟⎟

⎜⎜

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

184776.1176536.0

1)(22

cccc

sssssH

ωωωω

21.3868

( ) ( )394.4575176.39394.4573886.1610209210.0)( 22

6

++++×

=ssss

sH Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

Design an analogue Butterworth filter (the filter is monotonic in the pass and stop bands (i.e. no ripples)) which meets the following specifications:

Low-pass filter: 0 to 10 kHz (pass band)

Transition band: 10 to 20 kHzStop band attenuation: -10dB (starts at 20 kHz)

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

10 kHz

-10dB

0

ω20 kHz

dB

n

c

jH 22

1

1)(

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

ωω

ωdbjHat p 10)(log10 ; 2

10 −== ωωω

n

c

p

jH 2102

10

1

1log10)(log10

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

ωω

ωProfes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

( ) 9291022029

1011log1

1log1010

1log101log1010

222

22

10

2

10

2

1010

==⎟⎠⎞

⎜⎝⎛

××

=⎟⎟⎠

⎞⎜⎜⎝

=⎟⎟⎠

⎞⎜⎜⎝

⎛+⇒

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+=

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−=−

⎟⎟

⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛+−=−

nnn

c

p

n

c

pn

c

p

n

c

p

n

c

p

ππ

ωω

ωω

ωω

ωω

ωω

5849.12log2

9log

10

10 ==n∴Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

121)(

2 ++=

sssH

( )22

2

2

)(2

12

1)(

cc

c

cc

ss

sseddenormalissH

ωωω

ωω

++=

+⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛=

Thus we choose n = 2 (even)

Normalized

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

4.3 Lowpass to High pass transformation [9]

To transform analogue low-pass filter H(s)with unity cut-off frequency to low-pass filter

H(s) with cut-off frequency , we substitute

cωss →

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

First order Butterworth prototype filter is given by

11)(+

=s

sH Normalized

,5=cω

cωs

55

1

1)(+

=+

=+

=sωs

ω

ωs

sHc

c

c

To transform to new cut-off frequency

we replace s with

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Note: To transform an analogue low-pass

filter H(s) with unit cut-off frequency to high-

pass filter H(s) with cut-off frequency , we substitute

ss cω→

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:First order Butterworth prototype filter is given by

To transfer to a high-pass filter with cut-off frequency

We replace ;

11)(+

=s

sH Normalized

;2=cω

ss cω→ 21

1)(+

=+

=s

s

s

sHcω

Note: High-pass filter contains zeros as well as poles

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

3rd order Butterworth filter.)1)(1(1)( 2 +++

=sss

sH

Determine the transfer function of the corresponding high-pass filter with cut off frequency (normalized)1=cω

ssei

ss c 1.. →→ ω

( ) ( )1111111

1)( 2

3

2 +++=

⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛ +

=sss

s

sss

sH

normalized

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

4.4 Low-pass to Band-pass Transformations [9]

By definition, a band pass filter rejects both low and high frequency components and passes a certain band of frequencies some where between them. Thus the frequency response , of a band-pass filter has the following properties.

1. at both 2. for a frequency band centred on ,

where is the mid frequency of the filter

)( ωjH

∞== ωω &00)( =ωjH1)( =ωjH 0ω

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

ωL ω0 ωu

dB = 20log|H(jω)|

ω

Lower cut-off frequency Upper cut-off frequency

1

k1

k2

LuB ωω −=

Bandwidth of the band-pass filter

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

To convert unity cut off low-pass filter H(s) into a

Band-Pass filter H(s) with lower cut-off frequency

ωL and the upper cut-off frequency ωu , we replace

Similarly to convert unity cut-off lowpass filter H(s)into a bandstop filter H(s) with lower cutoff

frequency ωL and upper cut-off frequency ωu, we

replace:

)(

2

Lu

uL

sss

ωωωω

−+

uL

Lu

sss

ωωωω

+−

→ 2

)(Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

dB

0

k1

k2

ωL ω1 ω2 ωuω

Band stop filter

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Note (second method): A lowpass to bandpass transformation can be performed by

Bsss o

22 ω+→

)( Lu ωω −

B - Bandwidth of the band-pass filter

- centre frequency.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

ss cω→

( )Lu

Lu

sss

ωωωω

+−

→ 2ωc/ωp ωc ω

k1

k2

dB

k1

k2

ωL ω1 ω0 ω2 ωu ω

dB

ω1 ωL ω0 ωu ω2

k1

k2

ω0-ωL

≠ ωu-ω0

ω

dB

0k1

k2

1 ωp ω

dB = 20log|H(jω)|

unity cut-offωp.ωc

k1

0

ωc

Butterworth Prototype response Transformed filter response

dB

ω

k2

c

ssω

( )Lu

Lu

sss

ωωωω

−+

→2

Summary: Analogue to Analogue Transformation

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:The specification for a Butterworth low-pass continuous filter reads as follows:

Cutoff frequency, and Amplitude response to be at least 20dB down

when 3=ω

75.0=cω

ωsωc ω

-20dB

dB

0

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

( )

( )

( )⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

n

c

n

c

n

c

jH

jH

jH

22

10

2102

10

22

1log101log10log10

1

1log10log10

1

1

ωωω

ωω

ω

ωω

ω

-20dB at 3=ω

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

[ ]nn

210

2

10 )4(1log275.031log1020 +=⇒

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+−=−∴

( )

657.14log2

99log99log4log2;994100)4(1

10

10

1022

==

==⇒=+

∴n

nnn

n = 2 would satisfy the requirement.∴

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

Design an analogue band-pass filter with the following characteristics

-3.0103 dB upper and lower cut-off frequency of 50Hz and 20kHza stop-band attenuation of at least 20dB at 20Hz and 45 kHza monotonic frequency response.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Solution :

20 kHz

At least 20dB

-3.010

ω1 ωL ωu ω2

dB =20log|H(jω)|

ω

20Hz 50Hz 45 kHz

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The monotonic requirement can be satisfied with a Butterworth filter.

sec/1025663.1)1020(2

sec/159.314)50(2sec/1082743.2)1045(2

sec/663.125)20(2

53

532

1

rad

radrad

rad

u

L

×=×=

==×=×=

==

πω

πωπω

πω

BPLP →

( )Lu

uL

sss

ωωωω

−+

→2

Transformation is

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

For band-pass filter to satisfy the stop-band attenuation requirement at we must have equality within the transformation. i.e.

Similarly solving ,to satisfy stop-band attenuation requirement at

( )Lu

uLr j

jjωωωωωωω

−+

=)()(

1

21

( ) 5053.21

21 =

−−

=Lu

uLr ωωω

ωωωω Substitute values for ul ωωω ,,1

rω2ω

( )( )Lu

uLr j

jjωωωωωωω

−+

=2

22Prof

esso

r E. A

mbikair

ajah

UNSW, A

ustra

lia

( ) 2545.22

22 =

−−

=Lu

uLr ωωω

ωωωω

{ }2545.2,5053.2min=rω

Obtained are not equal.

Lu ωω & to obtain BP filter.

First design a low-pass filter H(s) with

and then apply transformation (LP to BP) using

We choose

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The low-pass filter order n can be calculated as before

⎟⎠⎞

⎜⎝⎛

⎟⎟⎟

⎜⎜⎜

=

+

+

2545.21log2

110

110log

10

1020

100103.3

10

n

1221)( 23 +++

=∴sss

sH LP

( ) )1025349.1(1094784.3

5

722

××+

=−

+→

ss

sss

Lu

uL

ωωωω

[ ] [ ] 1..........2............2)1025349.1(

1094784.3

1)(2

3

5

73

+++⎥⎦

⎤⎢⎣

⎡××+

=∴s

ssH BP

n = 2.829 and we choose n=3

LP BP

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

4.5 Chebyshev Filters [9]

There are two types Chebyshev filters, one containing a ripple in the pass-band (type 1) and the other containing a ripple in the stop-band(type 2).

A type 1 – Low-pass normalized (unit bandwidth) Chebyshev filter with a ripple in the pass-band is characterized by the following magnitude squared frequency response:

[ ]22

2

)(11)(

ωεω

nTjH

+=

Where )(ωnT is the nth order Chebyshev polynomial

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Chebyshev polynomials can be generated and thus defined from the following recursiveformula :

( ) 2 )()(2 21 >−= −− nTTT nnn ωωωω

1)(0 =ωT ( ) ωω =1Twith and

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The list of first 6 Chebyshev polynomials is given in table below:

n Chebyshev Polynomial:

0 11

2

3

4

5

6

ω12 2 −ωωω 34 3 −

188 24 +− ωωωωω 52016 35 +−

1184832 246 −+− ωωω

)(ωnT

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Note: This type of equi-ripple function results from use of Chebyshev cosine polynomials.

( )

( ) 1 for coshcosh)(

1 for coscos)(

1

1

>=

≤=

ωωω

ωωω

nT

nT

n

n

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

[ ]252

25 )(1

1|)(|ωε

ωT

jH+

=

211ε+

(a)

(b)1

10.58778

0.3124

T5(ω)

1

-11 ω-1

ω

For n = 5

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

It is noticed that for n = 5, the Chebyshevpolynomial oscillates between +1 and -1 while outside the interval it grows towards .

(See Figure (a) )

This same type of oscillation takes place for every Chebyshev polynomial and causes the equal magnitude ripple in the as shown in

Figure (b).

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

The amplitude of oscillates between 1 and

as ω goes from -1 to +1, but the

period of oscillations are not equal .

The heads to zero outside -1 and 1, because the magnitude of the chebyshev

polynomial leads toward ∞ as ω goes away from -1 or +1

211ε+

2)( ωjH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

( )ωεω 22

2

11)(

nTjH

+=

even is when11

1)0(1

1)( 2222

0n

TjH

n

=+

=+

== εε

ωω

( ) odd isn where0=ωnT

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Note :The magnitude squared frequency response

oscillates between 1 and within the pass-band,

the so called equiripple, and has a value of at , the cut-off frequency.

2)( ωjH

211ε+

211ε+

1=cω

ω1 ωs

1

211ε+

2

1A

2)( ωjH

n odd

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

2)( ωjH

2

1A

ω1 ωs

1

n even21

1ε+

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

is monotonic outside the pass-band , including both transition band and the stop-band.

2)( ωjH

( )[ ]22

2

11)(

ωεω

nTjH

+=

( )[ ] 1 22 >>ωεω nTincreasesas

[ ] ( )ωεω

ωεω

nn TjH

TjH 1)(

)(1)( 22

2 =⇒=∴

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

)(1log20)(log20ωε

ωnT

jH

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

[ ])(log20log20)(log20)(log20

1010

1010

ωεωεω

n

n

TTjH+−=

−=

nnhighabove for see table ωω 12 ; −

ωεωεω

101010

101

101010

log202log20)1(log20log202log20log20)(log20

nnjH nn

+−+=

++=− −

Therefore the attenuation

( ) ωεω 101010 log20)1(6log20||log20 nnjH +−+≈− Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Clearly the Chebyshev approximation depends on the values of є and n.

The maximum permissible ripple fixes the value of є, and once this value of є has been determined the value of the attenuation in the stop-band fixes the value of the filter complexity n.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example:

A Chebyshev low-pass characteristic is required to

have a maximum pass-band ripple of 1.2dB and an

attenuation of at least 25dB at ω = 2.5. Determine

the values of є and n.

[ ]22

2

)(11)(

ωεω

nTjH

+=

1)(Tn =ωAt ω = 1, the ripple is 1.2dB and

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

5641.0110

101101

1

11log10dB2.1

102.1

2

102.1

2102.1

2

210

=⇒−=

=+⇒=+

⎟⎠⎞

⎜⎝⎛+

=−

εε

εε

ε

At ω = 2.5, namely in the stop-band, attenuation = -25dB.

25 = 20log10 є+ 6 (n-1) + 20n log10 ω25 = 20log10(0.5641) + (n-1)6 + 20*n log102.5n = 2.577 and we choose n = 3.

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

|H(jω)|ripple amplitude

α1

ω

( )21

21

1

ε+21

11ε

α+

−=

)(11)(2 ωε

ωnT

jH+

=

1)0(T ; 1

1)( n20=

+=

= εω

ωjH

129.05641.01

11 =+

−=α

ripple amplitude

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Having obtained є and n we could continue to derive H(s)

)(11)( 22

2

ωεω

nTjH

+=

01 22 =⎟⎟⎠

⎞⎜⎜⎝

⎛+

jsTnε

It can be shown that H(s) can be obtained by finding the roots of

It can be shown that the poles of fall on an

ellipse as shown below.

⎟⎟⎠

⎞⎜⎜⎝

⎛+

jsTn

221 ε

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Poles of Hn(-s)Poles of Hn(s)jω

σ

ellipse

Poles on axis for odd n

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Example : n = 6 & є = 0.7647831

σ

0.90.70.26

-0.17

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Note:It can be shown that a comparison of the normalized Chebshev pole locations with the normalized Butterworth pole locations reveals that the imaginary parts are identical and the real part of the Butterworth pole times a factor “tanh(Ak)” is equal to the real part of the Chebyshev pole

Hence knowing the normalized Butterworth poles the corresponding normalized Chebyshev poles can be derived.

The denormalized Chebyshev poles are obtained by multiplying the normalized Chebshev poles by a denormalising–factor equal to cosh(Ak).

)1(sinh1 1

ε−=

nAwhere k

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

H(s) can be calculated for the previous example as follows:

for n = 3 , the Butterworth poles are ( selecting in the left-hand of the s-plane)

4457.05641.01sinh

31 1 =⎟

⎠⎞

⎜⎝⎛= −

KA

4184.0tanh =kA1009.1cosh =kA

866.05.03

4sin3

4cos

01sincos

866.05.03

2sin3

2cos

3

2

1

jjp

jjp

jjp

−−=+=

+−=+=

+−=+=

ππππ

ππ

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Multiplying the real parts of p1, p2 and p3 by

tanh(Ak) we obtain the normalized Chebyshev poles.

Multiplying by cosh(Ak), we obtain the de-normalized Chebyshev poles

866.02092.0

04184.0

866.02092.0

'3

'2

'1

jp

jp

jp

−−=

+−=

+−=

'3

'2

'1 ,, ppp

9534.02303.0

04606.0

9534.02303.0

"3

"2

"1

jp

jp

jp

−−=

+−=

+−=

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

)9534.02303.0)(9534.02303.0)(4606.0()(

jsjssksH

++−++=∴

1)9534.02303.0)(9534.02303.0)(46060.0(0)( =

+−== jj

ksH ω

gain DC 4431.0=∴k

De-normalized Chebyshev transfer function

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia

Obtain values for є and n

Obtain normalized Butterworth Poles

Select only the poles in the LHS of the s-plane

Obtain corresponding normalized Chebyshev

poles

Obtain denormilisedChebyshev ploes

obtain value of k

H(s)

Multiply real parts of the poles by tanh Ak

Multiply the poles (real & imaginary) by cosh Ak

)1(sinh1 1

ε−=

nAk

Recommended design process for deriving H(s) for a Chebyshev low-pass filter [9]

Profes

sor E

. Ambik

airaja

h

UNSW, A

ustra

lia