ametank model example 2 api 650 calculation report

54
Page: 1/54 AMETANK REPORT

Upload: sipil123

Post on 17-Dec-2015

1.119 views

Category:

Documents


122 download

DESCRIPTION

eng

TRANSCRIPT

  • Page: 1/54

    AMETANK REPORT

  • Page: 2/54

    TABLE OF CONTENTS SUMMARY OF DESIGN DATA AND REMARKS ROOF DESIGN ROOF SUMMARY OF RESULTS SHELL COURSE DESIGN SHELL SUMMARY OF RESULTS BOTTOM DESIGN BOTTOM SUMMARY OF RESULTS WIND MOMENT SEISMIC SITE GROUND MOTION SEISMIC CALCULATIONS ANCHOR BOLT DESIGN ANCHOR BOLT SUMMARY OF RESULTS CAPACITIES AND WEIGHTS MAWP & MAWV SUMMARY

  • Page: 3/54

    Warnings!! Initial Data 1.- Design internal pressure is greater than maximum allowable working pressure (MAWP). 2.- Design external pressure is greater than maximum allowable working vacuum (MAWV). Shell Course Data 1.- Please revise the shell thk, 3 courses have problems. 2.- The required minimum thickness based on external pressure is greater than the available thickness and the shell must be stiffened. Top Member Data 1.- Design pressure is greater that maximum allowable pressure 2.- Reinforcement needed due to insufficient cross sectional area. 3.- Reinforcement needed due to insufficient combined stiffener shell moment of inertia. Intermediate Stiffener Data 1.- Number of intermediate stiffeners is less than required. Revise shell thicknesses or add stiffeners. Structure Data 1.- Please revise the Structure, there is a problem in the sizes. Shell Clean Outs Clean-Out-0001 1.- Please revise the bottom plate thickness, has problem. Shell Pipe Overflows Pipe-Overflow-0001 1.- Re Pad thickness is less than min req'd. SUMMARY OF DESIGN DATA AND REMARKS Back Job : 2014-6-20-9-46 Date of Calcs. : 8/11/11 Mfg. or Insp. Date : Designer : TCB Project : Tag Number : Plant : PURCHASER DESCRIPTION CITY AND STATE Plant Location : Site : Design Basis : API-650 12th Edition, March 2013 TANK NAMEPLATE INFORMATION Pressure Combination Factor 0.4

    Design Standard API-650 12th Edition, March 2013Appendices Used

    Roof A36 : 0.1875 inShell (1) A36 : 0.75 in

  • Page: 4/54

    Shell (2) A36 : 0.5625 inShell (3) A36 : 0.3125 inShell (4) A36 : 0.3125 inShell (5) A36 : 0.3125 in

    Bottom A36 : 0.25 in Design Internal Pressure = 0.1 psi or 2.7682 inh2o Design External Pressure = -0.06 psi or -1.6609 inh2o MAWP = 0.0764 psi or 2.1165 inh2o MAWV = -0.0575 psi or -1.5915 inh2o D of Tank = 150 ft OD of Tank = 150.125 ft ID of Tank = 150 ft CL of Tank = 150.0625 ft Shell Height = 40 ft S.G of Contents = 1 Max Liq. Level = 40 ft Min Liq. Level = 2 ft Design Temperature = 120 F Tank Joint Efficiency = 1 Ground Snow Load = 0 psf Roof Live Load = 20 psf Additional Roof Dead Load = 0 psf Basic Wind Velocity = 125 mph Wind Importance Factor = 1 Using Seismic Method: API-650 - ASCE7 Mapped(Ss & S1) DESIGNER REMARKS Remarks or Comments SUMMARY OF SHELL RESULTS

    Shell #

    Width

    (in) Materi

    al

    CA

    (in)

    JE

    Min Yield

    Strength (psi)

    Tensile Strength (psi)

    Sd (psi)

    St (psi)

    Weight (Lbf)

    Weight CA (Lbf)

    t-min Erectio

    n (in) t-Des

    (in) t-

    Test (in)

    t-min Seismi

    c (in)

    t-min Ext-

    Pe (in)

    t-min (in)

    t-Actu

    al (in)

    Status

    1 96 A36 0 1 36,000 58,000 23,20024,90

    0115,29

    7115,29

    7 0.31250.655

    60.610

    8 0.5087 0.435

    9 0.655

    6 0.75 OK

    2 96 A36 0 1 36,000 58,000 23,20024,90

    0 86,482 86,482 0.31250.521

    10.485

    5 0.4062 0.435

    9 0.521

    1 0.562

    5 OK

    3 96 A36 0 1 36,000 58,000 23,20024,90

    0 48,052 48,052 0.31250.386

    60.360

    2 0.3029 0.435

    9 0.435

    9 0.312

    5 FAIL

    4 96 A36 0 1 36,000 58,000 23,20024,90

    0 48,052 48,052 0.31250.252

    20.234

    9 0.199 0.435

    9 0.435

    9 0.312

    5 FAIL

    5 93 A36 0 1 36,000 58,000 23,20024,90

    0 46,550 46,550 0.31250.117

    70.109

    6 0.0948 0.435

    9 0.435

    9 0.312

    5 FAIL

    Total Weight of Shell = 344,435.3686 lbf CONE ROOF

  • Page: 5/54

    Plates Material = A36 Structural Material = A36 t.required = 0.1875 in t.actual = 0.1875 in Roof corrosion allowance = 0 in Roof Joint Efficiency = 1 Plates Overlap Weight = 2,136.0223 lbf Plates Weight = 135,679.1475 lbf RAFTERS: Qty At Radius (ft) Size Length (ft) W (lbf/ft) Ind. Weight (lbf) Total Weight (lbf) 40 37.5 W10X12 35.2765 12 423.3185 16,932.7414 80 74.9052 W10X22 40.926 22 900.374 72,029.9234

    Rafters Total Weight = 88,962.6649 lbf GIRDERS: Qty At Radius (ft) Size Length (ft) W (lbf/ft) Ind. Weight (lbf) Total Weight (lbf)

    8 37.5 W12X50 28.7012 50 1,435.0628 11,480.5029 Girders Total Weight = 11,480.5029 lbf COLUMNS: Qty At Radius (ft) Size Length (ft) W (lbf/ft) Ind. Weight (lbf) Total Weight (lbf)

    1 0 10" SCH STD 43.6853 40.5207 1,770.1605 1,770.1605 8 37.5 10" SCH STD 40.4587 40.5207 1,640.1602 13,121.2819

    Columns Total Weight = 14,891.4425 lbf Bottom Type : Flat Bottom Annular Bottom Material = A36 t.required = 0.236 in t.actual = 0.25 in Bottom corrosion allowance = 0 in Bottom Joint Efficiency = 1 Total Weight of Bottom = 175,797.7572 lbf TOP END STIFFENER : Detail D Size = l3x3x3/8 Material = A36 Weight = 3,385.0672 lbf

  • Page: 6/54

    STRUCTURALLY SUPPORTED CONICAL ROOF Back A = Actual Part. Area of Roof-to-shell Juncture per API-650 (in^2) A-min = Minimum participating area (in^2) per API-650 5.10.5.2 a-min-A = Minimum participating area due to full design pressure per API-650 F.5.1 (in^2) a-min-Roof = Minimum participating area per API-650 App. F.5.2 (in^2) Add-DL = Added Dead load (psf) Alpha = 1/2 the included apex angle of cone (degrees) Aroof = Contributing Area due to roof plates (in^2) Ashell = Contributing Area due to shell plates (in^2) CA = Roof corrosion allowance (in) D = Tank Nominal Diameter per API-650 5.6.1.1 Note 1 (ft) density = Density of roof (lbf/in3) DL = Dead load (psf) e.1b = Gravity Roof Load (1) - Balanced (psf) e.1u = Gravity Roof Load (1) - Unbalanced (psf) e.2b = Gravity Roof Load (2) - Balanced (psf) e.2u = Gravity Roof Load (2) - Unbalanced (psf) Fp = Pressure Combination Factor Fy = smallest of the yield strength (psi) Fy-roof = Minimum yield strength for shell material (Table 5-2b) (psi) Fy-shell = Minimum yield strength for shell material (Table 5-2b) (psi) Fy-stiff = Minimum yield strength for stiffener material (Table 5-2b) (psi) hr = Roof height (ft) ID = Tank Inner Diameter (ft) Insulation = Roof Insulation (ft) JEr = Roof joint efficiency Lr = Entered Roof Live Load (psf) Lr-1 = Computed Roof Live Load, including External Pressure Max-p = Max Roof Load due to participating Area (psf) Net-Uplift = Uplift due to internal pressure minus nominal weight of shell, roof and attached framing (lbf), per API-650 F.1.2 P = Minimum participating area (psf) P-ext-2 = Max external pressure due to roof shell joint area (psi) P-F41 = Max design pressure limited by the roof-to-shell joint (inH2O) P-F42 = Max design pressure due to Uplift per API-650 F.4.2 (inH2O) P-F51 = Max design pressure reversing a-min-A calculation (psf) P-max-ext-T = Total max external pressure due to roof actual thickness and roof participating area (psi) P-max-internal = Maximum design pressure and test procedure per API-650 F.4, F.5. (psf) P-Std = Max pressure pressure allowed per API-650 App. F.1 & F.7 (psi) P-Uplift = Uplift case per API-650 1.1.1 (lbf) P-weight = Dead load of roof plate (Psf) Pe = External Pressure (psf) pt = Roof cone pitch (in) rise per 12 (in) Pv = Internal Pressure (psf) R = Roof horizontal radius (ft) Ra = Roof surface area (in^2) Roof-wc = Weight corroded of roof plates (lbf) S = Ground Snow Load per ASCE 7-05 Fig 7-1 (psf) Sb = Balanced Design Snow Load per API-650 Section 5.2.1.h.1 (psf) Shell-wc = Weight corroded of shell (lbf) Su = Unbalanced Design Snow Load per API-650 Section 5.2.1.h.2 (psf) T = Balanced Roof Design Load per API-650 Appendix R (psf) t-calc = Minimum nominal roof plates thickness per API-650 Section 5.10.5.1 (in) t-Ins = thickness of Roof Insulation (ft) Theta = Angle of cone to the horizontal (degrees) U = Unbalanced Roof Design Load per API-650 Appendix R (psf) Wc = Maximum width of participating shell per API-650 Fig. F-2 (in) Wh = Maximum width of participating roof per API-650 Fig. F-2 (in)

  • Page: 7/54

    Roof Design Per API-650 Note: Tank Pressure Combination Factor Fp = 0.4 D = 150 ft ID = 150 ft CA = 0 in R = 75.0677 ft Fp = 0.4 JEr = 1 JEs = 1 JEst = 1 Insulation = 0 ft Add-DL = 0 psf Lr = 20 psf S = 0 psf Sb = 0 psf Su = 0 psf density = 0.2833 lbf/in3 P-weight = 7.6779 Psf Pe = 8.64 psf pt = 0.75 in rise per 12 in t-actual = 0.1875 in Fy-roof = 36,000 psi Fy-shell = 36,000 psi Fy-stiff = 36,000 psi Shell-wc = 344,435.3686 lbf Roof-wc = 135,679.1475 lbf P-Std = 2.5 psi, Per API-650 F.1.3 t-1 = 0.3125 in CA-1 = 0 in Sd = 23200 psi Theta = TAN^-1 (pt/12) Theta = TAN^-1 (0.75/12) Theta = 3.5763 degrees Alpha = 90 - Theta Alpha = 90 - 3.5763 Alpha = 86.4237 degrees Ap-Vert = D^2 * TAN(Theta)/4 Ap-Vert = 150^2 * TAN(3.5763)/4 Ap-Vert = 351.5625 ft^2 Horizontal Projected Area of Roof per API-650 5.2.1.f Xw = D * 0.5 Xw = 150 * 0.5 Xw = 75 ft Ap = PI * (D/2)^2 Ap = PI * (150/2)^2 Ap = 17,671.4586 ft^2 DL = Insulation + P-weight + Add-DL DL = 0 + 7.6779 + 0

  • Page: 8/54

    DL = 7.6779 psf Roof Loads per API-650 5.2.2 e.1b = DL + MAX(Sb , Lr) + (0.4 * Pe) e.1b = 7.6779 + MAX(0 , 20) + (0.4 * 8.64) e.1b = 31.1339 psf e.2b = DL + Pe + (0.4 * MAX(Sb , Lr)) e.2b = 7.6779 + 8.64 + (0.4 * MAX(0 , 20)) e.2b = 24.3179 psf T = MAX(e.1b , e.2b) T = MAX(31.1339 , 24.3179) T = 31.1339 psf e.1u = DL + MAX(Su , Lr) + (0.4 * Pe) e.1u = 7.6779 + MAX(0 , 20) + (0.4 * 8.64) e.1u = 31.1339 psf e.2u = DL + Pe + (0.4 * MAX(Su , Lr)) e.2u = 7.6779 + 8.64 + (0.4 * MAX(0 , 20)) e.2u = 24.3179 psf U = MAX(e.1u , e.2u) U = MAX(31.1339 , 24.3179) U = 31.1339 psf Lr-1 = MAX(T , U) Lr-1 = MAX(31.1339 , 31.1339) Lr-1 = 31.1339 psf Ra = PI * R * SQRT(R^2 + hr^2) Ra = PI * 75.0677 * SQRT(75.0677^2 + 4.6917^2) Ra = 2,554,260.9252 in^2 or 17738 ft^2 Roof Plates Weight = density * Ra * t-actual Roof Plates Weight = 0.2833 * 2,554,260.9252 * 0.1875 Roof plates Weight = 135,679.1475 lbf BAY 2 DETAILS MINIMUM # OF RAFTERS l = Maximum rafter spacing per API-650 5.10.4.4 (in) l-actual-2 = Actual rafter spacing (in) Max-T1-2 = Due to roof thickness (psf) N-actual-2 = Actual number of rafter N-min-2 = Minimum number of rafter P = Uniform pressure as determined from load combinations described in Appendix R (psi) P-ext-1-2 = Due to roof thickness vacuum limited by actual rafter spacing (psf) R-2 = Outer radius (in) RLoad-Max-2 = Maximun roof load based on actual rafter spacing (psf) t-calc-2 = Minimum roof thickness based on actual rafter spacing (in) FOR OUTER SHELL RING

  • Page: 9/54

    P = Lr-1 P = 0.2162 psi R-2 = 898.8625 in l = MIN(((t-Roof - CA-Roof) * SQRT((1.5 * Fy-Roof)/P)) , 84) l = MIN(((0.1875 - 0) * SQRT((1.5 * 36,000) / 0.2162)) , 84) l = MIN(93.705 , 84) l = 84 in N-min-2 = (2 * PI * R-2)/l N-min-2 = (2 * PI * 898.8625)/84 N-min-2 = 68 N-min-2 must be a multiple of 8, therefore N-min-2 = 72. N-actual-2 = 80 l-actual-2 = (2 * PI * R-2)/N-actual-2 l-actual-2 = (2 * PI * 898.8625)/80 l-actual-2 = 70.5965 in Minimum roof thickness based on actual rafter spacing t-calc-2 = l-actual-2/SQRT((1.5 * Fy-Roof)/P) + CA-Roof t-calc-2 = 70.5965/SQRT((1.5 * 36,000)/0.2162) + 0 t-calc-2 = 0.1413 in NOTE: Governs for roof plate thickness. RLoad-Max-2 = (1.5 * Fy-Roof)/(l-actual-2/(t-Roof - CA-Roof))^2 RLoad-Max-2 = (1.5 * 36,000)/(70.5965/(0.1875 - 0))^2 RLoad-Max-2 = 54.852 psf Max-T1-2 = RLoad-Max-2 Max-T1-2 = 54.852 psf P-ext-1-2 = Max-T1-2 - DL - (0.4 * MAX(Sb , Lr)) P-ext-1-2 = 54.852 - 7.6779 - (0.4 * MAX(0 , 20)) P-ext-1-2 = -39.1741 psf Pa-rafter-3-2 = P-ext-1-2 Pa-rafter-3-2 = -39.1741 psf t-required-2 = MAX(0.1413 , (0.1875 + 0)) t-required-2 = 0.1875 in RAFTER DESIGN Average-p-width-2 = Average plate width (ft) Average-r-s-inner-2 = Average rafter spacing on inner girder (ft) Average-r-s-shell-2 = Average rafter spacing on shell (ft) Max-P-2 = Load allowed for each rafter in ring (psi) Max-r-span-2 = Maximum rafter span (ft) Max-T1-rafter-2 = Due to roof thickness (psf) Mmax-rafter-2 = Maximum moment bending (in-lbf) P = Uniform pressure as determined from load combinations described in Appendix R (psi)

  • Page: 10/54

    P-ext-2-2 = Vacuum limited by rafter type (psf) R-2 = Outer radius (in) R-Inner-2 = Inner radius (ft) Rafter-Weight-2 = (lb/ft) Sx-rafter-actual-2 = Actual elastic section modulus about the x axis (in^3) Sx-rafter-Req'd-2 = Required elastic section modulus about the x axis (in^3) Theta = Angle of cone to the horizontal (degrees) W-Max-rafter-2 = Maximum stress allowed for each rafter in ring (lbf/in) W-rafter-2 = (lbf/in) SPAN TO SHELL P = 0.2162 psi Rafter-Weight-2 = 22 lbf/ft Theta = 3.5763 degrees R-2 = 903 in R-Inner2 = 447 in Max-r-span-2 = (R-2 - R-Inner-2)/COS(Theta) Max-r-span-2 = (903 - 447)/COS(3.5763) Max-r-span-2 = 40.9261 ft Average-r-s-inner-2 = (2 * PI * R-Inner-2)/N-actual-2 Average-r-s-inner-2 = (2 * PI * 447)/80 Average-r-s-inner-2 = 2.9256 ft Average-r-s-shell-2 = (2 * PI * R-2)/N-actual-2 Average-r-s-shell-2 = (2 * PI * 903)/80 Average-r-s-shell-2 = 5.9101 ft Average-p-width-2 = (Average-r-s-inner-2 + Average-r-s-shell-2)/2 Average-p-width-2 = (2.9256 + 5.9101)/2 Average-p-width-2 = 4.4179 ft W-rafter-2 = (P * Average-p-width-2) + Rafter-Weight-2 W-rafter-2 = (0.2162 * 53.0148) + 1.8333 W-rafter-2 = 13.2954 lbf/in Mmax-rafter-2 = (W-rafter-2 * Max-r-span-2^2)/8 Mmax-rafter-2 = (13.2954 * 491.1132^2)/8 Mmax-rafter-2 = 400,844 in-lbf Sx-rafter-Req'd-2 = Mmax-rafter-2/Sd Sx-rafter-Req'd-2 = 400,844/23,200 Sx-rafter-Req'd-2 = 17.2778 in^3 Sx-actual-2 = 23.2 in^3 W-Max-rafter-2 = (Sx-rafter-actual-2 * Sd * 8)/Max-r-span-2^2) W-Max-rafter-2 = (23.2 * 23,200 * 8)/491.1132^2) W-Max-rafter-2 = 17.8526 lbf/in Max-P-2 = (W-Max-rafter-2 - Rafter-Weight-2)/Average-p-width-2 Max-P-2 = 0.3022 psi Max-T1-rafter-2 = Max-P-2 Max-T1-rafter-2 = 43.5168 psf

  • Page: 11/54

    P-ext-2-2 = Max-T1-rafter-2 - DL - (Fp * MAX(S , Lr)) P-ext-2-2 = 43.5168 - 7.6779 - (0.4 * MAX(0 , 20)) P-ext-2-2 = -27.8345 psf P2-rafter-3-2 = P-ext-2-2 P2-rafter-3-2 = -27.8345 psf Limited by rafter type GIRDER DESIGN Average-p-width-previous-2 = Average plate width (ft) C1-2 = (in) C2-2 = (in) F-Max-girder-2 = Maximum load allowed for each girder in ring (lbf) Girder-Length-2 = Girder length (ft) Girder-W-2 = Girder weight (lb) Girder-W-previous-2 = Girder weight (lb) Max-P-girder-2 = Load allowed for each rafter in ring (psi) Max-r-span/2-actual-2 = Average maximum rafter span (ft) Max-r-span/2-previous-2 = Average maximum rafter span previous (ft) Max-T1-girder-2 = Due to roof thickness (psf) Mmax-girder-2 = Maximum moment bending (in-lbf) N-columns-actual-2 = Actual number of columns N-columns-previous-2 = Previous number of columns N-previous-2 = Previous number of rafter Num-Gird-actual-2 = Actual Number of girders Num-Gird-Req-actual-2 = Required Number of girders Num-Gird-Req-previous-2 = Required Number of girders previous P-ext-4-2 = Vacuum limited by girder type (psi) Pa-girder-2-2 = Vacuum limited by girder type (psi) R-Inner-previous-2 = Inner radius (ft) R-previous-2 = Outer radius (ft) Sx-girder-actual-2 = Actual elastic section modulus about the x axis (in^3) Sx-girder-Req'd-2 = Required elastic section modulus about the x axis (in^3) W-girder-2 = Total load including weight of girder (lbf/in) W-Max-girder-2 = Maximum stress allowed for each girder in ring (lbf/in) W-rafter-actual-2 = (lbf/in) W-rafter-previous-2 = (lbf/in) W1-2 = Total rafter and roof load per girder length (lbf/in) Wi-2 = Load due to inner rafters and roof (lbf) Wo-2 = Load due to outer rafters and roof (lbf) Num-Gird-actual-2 = 8 N-columns-actual-2 = 8 Girder-Length-2 = 344.4151 ft Girder-W-2 = 50 lbf/ft Wi-2 = W-rafter-previous-2 * Max-r-span/2-previous-2 * (Num-of-Rafters-Previous-2 / Number-of-columns) Wi-2 = 9.2357 * 226.5 * (40 / 8) Wi-2 = 10,390.1988 lbf C2-2 = [(Radial-distance-next - Radial-distance-actual) / 2] * Num-Gird-Req-actual-2 C2-2 = [(900.0 - 450.0) / 2] * 10 C2-2 = 2250 in Wo-2 = W-rafter-actual-2 * C2-2 Wo-2 = 13.2954 * 2250

  • Page: 12/54

    Wo-2 = 29,914.7288 lbf W1-2 = (Wi-2 + Wo-2)/Girder-Length-2 W1-2 = (10,390.1988 + 29,914.7288)/344.4151 W1-2 = 117.0242 lbf/in W-girder-2 = W1-2 + Girder-W-2 W-girder-2 = 117.0242 + 4.1666 W-girder-2 = 121.1909 lbf/in Mmax-girder-2 = (W-girder-2 * Girder-Length-2^2)/8 Mmax-girder-2 = (121.1909 * 344.4151^2)/8 Mmax-girder-2 = 1,796,985 in-lbf Sx-girder-Req'd-2 = Mmax-girder-2/Sd Sx-girder-Req'd-2 = 1,796,985/23,200 Sx-girder-Req'd-2 = 77.4563 in^3 Sx-girder-actual-2 = 64.2 in^3 W-Max-girder-2 = (Sx-girder-actual-2 * Sd * 8)/Girder-Length-2^2 W-Max-girder-2 = (64.2 * 23,200 * 8)/344.4151^2 W-Max-girder-2 = 100.4497 lbf/in Let C1-2 = Max-r-span/2-previous-2 * Num-Gird-Req-previous-2 C1-2 = 226.5 * 5 C1-2 = 1125 in Let C2-2 = [(Radial-distance-next - Radial-distance-actual) / 2] * Num-Gird-Req-actual-2 C2-2 = [(900.0 - 450.0) / 2] * 10 C2-2 = 2250 in F-Max-girder-2 = (W-Max-girder-2 - Girder-W-2) * Girder-Length-2 F-Max-girder-2 = (100.4497 - 4.1666) * 344.4151 F-Max-girder-2 = 33,161.3307 lbf Solve for Max-P: Max-P-girder-2 = (F-Max-girder-2 - (Girder-W-2 * Girder-W-previous-2) - (C1-2 * Girder-W-2))/((C2-2 * Average-p-width-previous-2) + (C1-2 * Average-p-width-2)) Max-P-girder-2 = (33,161.3307 - (50 * 0) - (1125 * 50))/((2250 * 38.0918) + (1125 * 4.4179)) Max-P-girder-2 = 0.1664 psi COLUMN DESIGN A-actual-2 = Actual area of column (in^2) A-req-2 = Required area of column (in^2) C-length-2 = Column length (in) E-c = Modulus of elasticity of the column material (psi) Fa-2 = Allowable compressive stress per API-650 5.10.3.4 (psi) Fy-c = Allowable design stress (psi) Max-P-column-2 = Maximum Load allowed for each column in ring (psi) Max-T1-column-2 = Due to roof thickness (psf) P-c-2 = Total roof load supported by each column (lbf) P-ext-3-2 = Vacuum limited by column type (psf) Pa-column-3-2 = Vacuum limited by column type (psi) Pa-column-3-2 = Vacuum limited by column type (psi) R-c-2 = Per API-650 5.10.3.3

  • Page: 13/54

    Radius-Gyr-2 = Radius of gyration Radius-Gyr-req-2 = Radius of gyration required W-column-2 = Total weight of column (lbf) W-Max-column-2 = Maximum weight allowed for each column in ring (lbf) Wi-2 = Load due to inner rafters and roof (lbf) Wo-2 = Load due to outer rafters and roof (lbf) W1-2 = Total rafter and roof load per girder length (lbf/in) W-girder-2 = Total load including weight of girder (lbf/in) AT GIRDER RING OUTER Radius = 75.25 ft W-column-2 = 1,640.1602 lbf Fy-c = 35,000 psi E-c = 28,600,000.38 psi A-actual-2 = 11.9083 in^2 C-length-2 = 40.4587 ft Radius-Gyr-2 = 3.6717 in If C-length-2/Radius-Gyr-2 must be less than 180, then Radius-Gyr-req-2 = C-length-2/180 Radius-Gyr-req-2 = 40.4587/180 Radius-Gyr-req-2 = 2.6972 in Per API-650 5.10.3.3 R-c-2 = C-length-2/Radius-Gyr-2 R-c-2 = 40.4587/3.6717 R-c-2 = 132.2306 Rafter-L-2 = (- R-2 - R-Inner2)/COS(Theta) Rafter-L-2 = (- 898.8625 - 408.7058)/COS(3.5763) Rafter-L-2 = 491.1131 in Wi-2 = W-rafter-previous-2 * Max-r-span/2-previous-2 * (Num-of-Rafters-Previous-2 / Number-of-columns) Wi-2 = 9.2357 * 226.5 * (40 / 8) Wi-2 = 10,390.1988 lbf C2-2 = [(Radial-distance-next - Radial-distance-actual) / 2] * Num-Gird-Req-actual-2 C2-2 = [(900.0 - 450.0) / 2] * 10 C2-2 = 2250 in Wo-2 = W-rafter-actual-2 * C2-2 Wo-2 = 13.2954 * 2250 Wo-2 = 29,914.7288 lbf W1-2 = (Wi-2 + Wo-2)/Girder-Length-2 W1-2 = (10,390.1988 + 29,914.7288)/344.4151 W1-2 = 117.0242 lbf/in W-girder-2 = W1-2 + Girder-W-2 W-girder-2 = 117.0242 + 4.1666 W-girder-2 = 121.1909 lbf/in P-c-2 = W-column-2 + (W-girder-2 * Girder-Length-2) P-c-2 = 1,640.1602 + (121.1909 * 344.4151) P-c-2 = 43,380.1508 lbf

  • Page: 14/54

    Since R-c-2 > 120, using API-650 Formulas in 5.10.3.4 Fa-2 = (/ (* 12 (EXPT PI 2) E-c) (* 23 (EXPT R-c-2 2))) Fa-2 = (/ (* 12 (EXPT PI 2) 28,600,000.38) (* 23 (EXPT 132.2306 2))) Per API-650 M.3.5 Fa is not modified Since Design Temp.

  • Page: 15/54

    P = Lr-1 P = 0.2162 psi R-1 = 450 in l = MIN(((t-Roof - CA-Roof) * SQRT((1.5 * Fy-Roof)/P)) , 84) l = MIN(((0.1875 - 0) * SQRT((1.5 * 36,000) / 0.2162)) , 84) l = MIN(93.705 , 84) l = 84 in N-min-1 = (2 * PI * R-1)/l N-min-1 = (2 * PI * 450)/84 N-min-1 = 34 N-min-1 must be a multiple of 8, therefore N-min-1 = 40. N-actual-1 = 40 l-actual-1 = (2 * PI * R-1)/N-actual-1 l-actual-1 = (2 * PI * 450)/40 l-actual-1 = 70.6858 in Minimum roof thickness based on actual rafter spacing t-calc-1 = l-actual-1/SQRT((1.5 * Fy-Roof)/P) + CA-Roof t-calc-1 = 70.6858/SQRT((1.5 * 36,000)/0.2162) + 0 t-calc-1 = 0.1414 in NOTE: Governs for roof plate thickness. RLoad-Max-1 = (1.5 * Fy-Roof)/(l-actual-1/(t-Roof - CA-Roof))^2 RLoad-Max-1 = (1.5 * 36,000)/(70.6858/(0.1875 - 0))^2 RLoad-Max-1 = 54.7134 psf Max-T1-1 = RLoad-Max-1 Max-T1-1 = 54.7134 psf P-ext-1-1 = Max-T1-1 - DL - (0.4 * MAX(Sb , Lr)) P-ext-1-1 = 54.7134 - 7.6779 - (0.4 * MAX(0 , 20)) P-ext-1-1 = -39.0356 psf Pa-rafter-3-1 = P-ext-1-1 Pa-rafter-3-1 = -39.0356 psf t-required-1 = MAX(0.1414 , (0.1875 + 0)) t-required-1 = 0.1875 in RAFTER DESIGN Average-p-width-1 = Average plate width (ft) Average-r-s-inner-1 = Average rafter spacing on inner girder (ft) Average-r-s-shell-1 = Average rafter spacing on shell (ft) Max-P-1 = Load allowed for each rafter in ring (psi) Max-r-span-1 = Maximum rafter span (ft) Max-T1-rafter-1 = Due to roof thickness (psf) Mmax-rafter-1 = Maximum moment bending (in-lbf) P = Uniform pressure as determined from load combinations described in Appendix R (psi)

  • Page: 16/54

    P-ext-2-1 = Vacuum limited by rafter type (psf) R-1 = Outer radius (in) R-Inner-1 = Inner radius (ft) Rafter-Weight-1 = (lb/ft) Sx-rafter-actual-1 = Actual elastic section modulus about the x axis (in^3) Sx-rafter-Req'd-1 = Required elastic section modulus about the x axis (in^3) Theta = Angle of cone to the horizontal (degrees) W-Max-rafter-1 = Maximum stress allowed for each rafter in ring (lbf/in) W-rafter-1 = (lbf/in) SPAN TO GIRDER RING OUTER Radius = 37.75 ft P = 0.2162 psi Rafter-Weight-1 = 12 lbf/ft Theta = 3.5763 degrees R-1 = 453 in R-Inner1 = 32 in Max-r-span-1 = (R-1 - R-Inner-1)/COS(Theta) Max-r-span-1 = (453 - 32)/COS(3.5763) Max-r-span-1 = 35.2765 ft Average-r-s-inner-1 = (2 * PI * R-Inner-1)/N-actual-1 Average-r-s-inner-1 = (2 * PI * 32)/40 Average-r-s-inner-1 = 0.4189 ft Average-r-s-shell-1 = (2 * PI * R-1)/N-actual-1 Average-r-s-shell-1 = (2 * PI * 453)/40 Average-r-s-shell-1 = 5.9298 ft Average-p-width-1 = (Average-r-s-inner-1 + Average-r-s-shell-1)/2 Average-p-width-1 = (0.4189 + 5.9298)/2 Average-p-width-1 = 3.1743 ft W-rafter-1 = (P * Average-p-width-1) + Rafter-Weight-1 W-rafter-1 = (0.2162 * 38.0916) + 1 W-rafter-1 = 9.2357 lbf/in Mmax-rafter-1 = (W-rafter-1 * Max-r-span-1^2)/8 Mmax-rafter-1 = (9.2357 * 423.318^2)/8 Mmax-rafter-1 = 206,879 in-lbf Sx-rafter-Req'd-1 = Mmax-rafter-1/Sd Sx-rafter-Req'd-1 = 206,879/23,200 Sx-rafter-Req'd-1 = 8.9172 in^3 Sx-actual-1 = 10.9 in^3 W-Max-rafter-1 = (Sx-rafter-actual-1 * Sd * 8)/Max-r-span-1^2) W-Max-rafter-1 = (10.9 * 23,200 * 8)/423.318^2) W-Max-rafter-1 = 11.2893 lbf/in Max-P-1 = (W-Max-rafter-1 - Rafter-Weight-1)/Average-p-width-1 Max-P-1 = 0.2701 psi Max-T1-rafter-1 = Max-P-1 Max-T1-rafter-1 = 38.8944 psf

  • Page: 17/54

    P-ext-2-1 = Max-T1-rafter-1 - DL - (Fp * MAX(S , Lr)) P-ext-2-1 = 38.8944 - 7.6779 - (0.4 * MAX(0 , 20)) P-ext-2-1 = -23.2195 psf P2-rafter-3-1 = P-ext-2-1 P2-rafter-3-1 = -23.2195 psf Limited by rafter type GIRDER DESIGN NOT REQUIRED FOR CENTER COLUMN CENTER COLUMN A-actual-1 = Actual area of column (in^2) A-req-1 = Required area of column (in^2) C-length-1 = Column length (in) E-c = Modulus of elasticity of the column material (psi) Fa-1 = Allowable compressive stress per API-650 5.10.3.4 (psi) Fy-c = Allowable design stress (psi) Max-P-column-1 = Maximum Load allowed for each column in ring (psi) Max-T1-column-1 = Due to roof thickness (psf) P-c-1 = Total roof load supported by each column (lbf) P-ext-3-1 = Vacuum limited by column type (psf) Pa-column-3-1 = Vacuum limited by column type (psi) Pa-column-3-1 = Vacuum limited by column type (psi) R-c-1 = Per API-650 5.10.3.3 Radius-Gyr-1 = Radius of gyration Radius-Gyr-req-1 = Radius of gyration required W-column-1 = Total weight of column (lbf) W-Max-column-1 = Maximum weight allowed for each column in ring (lbf) W-column-1 = 1,770.1605 lbf Fy-c = 35,000 psi E-c = 28,600,000.38 psi A-actual-1 = 11.9083 in^2 C-length-1 = 43.6853 ft Radius-Gyr-1 = 3.6717 in If C-length-1/Radius-Gyr-1 must be less than 180, then Radius-Gyr-req-1 = C-length-1/180 Radius-Gyr-req-1 = 43.6853/180 Radius-Gyr-req-1 = 2.9124 in Per API-650 5.10.3.3 R-c-1 = C-length-1/Radius-Gyr-1 R-c-1 = 43.6853/3.6717 R-c-1 = 142.776 Rafter-L-1 = (- R-1 - R-Inner1)/COS(Theta) Rafter-L-1 = (- 450 - 0)/COS(3.5763)

  • Page: 18/54

    Rafter-L-1 = 423.3185 in P-c-1 = W-column-1 + (Rafter-L-1 * W-rafter-1 * N-actual-1)/2 P-c-1 = 1,770.1605 + (423.3185 * 9.2357 * 40)/2 P-c-1 = 79,963.2946 lbf Since R-c-1 > 120, using API-650 Formulas in 5.10.3.4 Fa-1 = (/ (* 12 (EXPT PI 2) E-c) (* 23 (EXPT R-c-1 2))) Fa-1 = (/ (* 12 (EXPT PI 2) 28,600,000.38) (* 23 (EXPT 142.776 2))) Per API-650 M.3.5 Fa is not modified Since Design Temp.

  • Page: 19/54

    ID (Shell inside diameter) = 150.0 ft Theta angle (Angle between the roof and a horizontal plane at the roof-to-shell junction) = 3.5763 deg tc (Thickness of shell plate) = 0.3125 in th (Thickness of roof plate) = 0.1875 in Shell inside radius Rc = ID / 2 = 1800.0 / 2 = 900.0 in Shell nominal diameter (D) = 150.0625 ft Length of normal to roof R2 = Rc / SIN(Theta angle) = 900.0 / SIN(3.5763) = 14428.0976 in Thickness of corroded roof plate th_corroded = th - CA_roof = 0.1875 - 0 = 0.1875 in Thickness of corroded shell plate tc_corroded = tc - CA_shell = 0.3125 - 0 = 0.3125 in Maximum width of participating roof API-650 Figure F-2 Wh = MIN((0.3 * SQRT((R2 * th_corroded))) , 12) = MIN((0.3 * SQRT((14428.0976 * 0.1875))) , 12) = 12 in Maximum width of participating shell API-650 Figure F-2 Wc = 0.6 * SQRT((Rc * tc_corroded)) = 0.6 * SQRT((900.0 * 0.3125)) = 10.0623 in Nominal weight of shell plates and framing DLS = Ws + W_framing = 344435.3687 + 59409.7227 = 403845.0914 lbf Nominal weight of roof plates and attached structural DLR = Wr + W_structural = 135679.1475 + 677.7268 = 136356.8743 lbf Compression Ring Detail d Properties ID (Shell inside diameter) = 150.0 ft Size (Compression ring size) = l3x3x3/8 Wc (Length of contributing shell) = 10.0623 in Wh (Length of contributing roof) = 12 in tc (Thickness of shell plate) = 0.3125 in th (Thickness of roof plate) = 0.1875 in Angle vertical leg size (l_vert) = 3.0 in Angle horizontal leg size (l_horz) = 3.0 in Angle thickness (t_angle) = 0.375 in Angle area (A_angle) = 2.11 in^2 Angle centroid (c_angle) = 0.884 in Angle moment of inertia (I_angle) = 1.75 in^4 Length of contributing shell reduced wc_reduced = Wc - l_vert = 10.0623 - 3.0 = 7.0623 in Contributing shell moment of inertia I_shell = (wc_reduced * (tc_corroded^3)) / 12 = (7.0623 * (0.3125^3)) / 12 = 0.018 in^4 Contributing shell area A_shell = wc_reduced * tc_corroded = 7.0623 * 0.3125 = 2.207 in^2

  • Page: 20/54

    Contributing roof area A_roof = Wh * th_corroded = 12 * 0.1875 = 2.25 in^2 Detail total area A_detail = A_shell + A_roof + A_angle = 2.207 + 2.25 + 2.11 = 6.567 in^2 Find combined moment of inertia about shell inside axis with negative value toward center

    Description Variable Equation Value UnitShell centroid d_shell tc_corroded / 2 0.1563 in

    Stiffener centroid d_stiff (the-reference (current-object) '(superior angle-centroid) t t t nil 'default-the-error nil)

    0.8840 in

    moment of inertia of first body I_1 I_angle + (A_angle * (d_stiff^2)) 3.3989 in^4

    moment of inertia of second body I_2 I_shell + (A_shell * (d_shell^2)) 0.0718 in^4

    Total area A_sum A_angle + A_shell 4.3170 in^2Sum of moments of inertia's I_sum I_1 + I_2 3.4707 in^4

    Combined centroid c_combined ((d_stiff * A_angle) + (d_shell * A_shell)) / (A_angle + A_shell) 0.5120 in

    Combined moment of inertia I_combined I_sum - (A_sum * (c_combined^2)) 2.3393 in^4

    Distance from neutral axis to edge 1 (inside) e1 l_horz - c_combined 2.4880 in

    Distance from neutral axis to edge 2 (outside) e2 l_horz - e1 0.5120 in

    Combined stiffener shell section modulus S I_combined / MAX(e1 , e2) 0.9402 in^3

    Roof Design Requirements Appendix F Requirements A_actual (Area resisting compressive force) = 6.567 in^2 D (Tank nominal diameter) = 150.0625 ft DLR (Nominal weight of roof plates and attached structural) = 136356.8743 lbf DLS (Nominal weight of shell plates and framing) = 403845.0914 lbf Fy (Minimum specified yield-strength of the materials in the roof-to-shell junction) = 36000 psi ID (Tank inside diameter) = 150.0 ft Mw (Wind moment) = 6.6057000203E6 ft.lbf P (Design pressure) = 0.1 psi Theta angle (Angle between the roof and a horizontal plane at the roof-to-shell junction) = 3.5763 deg W_framing (Weight of framing supported by the shell and roof) = 59409.7227 lbf W_structural (Weight of roof attached structural) = 677.7268 lbf Wr (Roof plates weight) = 135679.1475 lbf Ws (Shell plates weight) = 344435.3687 lbf

  • Page: 21/54

    Uplift due to internal pressure API-650 F.1.2 P_uplift = P * pi * ((ID^2) / 4) = 0.1 * pi * ((1800.0^2) / 4) = 254469.0049 lbf Weight of roof shell and attached-framing W_total = Wr + Ws + W_framing = 135679.1475 + 344435.3687 + 59409.7227 = 539524.2389 lbf Net uplift due to internal pressure Net_uplift = MAX((P_uplift - W_total) , 0) = MAX((254469.0049 - 539524.2389) , 0) = 0 lbf Wr < P_uplift P_max ==> Design pressure is greater that maximum allowable pressure *** WARNING *** : Design pressure is greater that maximum allowable pressure Required area API 650 F.5.1 A_F51 = ((D^2) * (P - ((0.245 * DLR) / (D^2)))) / (0.962 * Fy * TAN(Theta angle)) = ((150.0625^2) * (2.7682 - ((0.245 * 136356.8743) / (150.0625^2)))) / (0.962 * 36000 * TAN(3.5763)) = 13.3657 in^2 A_actual < A_F51 ==> Compression region actual cross sectional area is not sufficient. *** WARNING *** : Reinforcement needed due to insufficient cross sectional area. As per API-650 5.2.1 c), Maximum design internal pressure (P_std) = 2.5 psi Maximum allowable internal pressure for the actual resisting area API 650 F.5.1 P_F51 = ((0.962 * Fy * TAN(Theta angle) * A_actual) / (D^2)) + ((0.245 * DLR) / (D^2)) = ((0.962 * 36000 * TAN(3.5763) * 6.567) / (150.0625^2)) + ((0.245 * 136356.8743) / (150.0625^2)) = 2.1148 inH2O Maximum allowable internal pressure P_max_internal = MIN(P_std , P_F51 , P_max) = MIN(2.5 , 0.0764 , 0.0764) = 0.0764 psi Appendix V Requirements

  • Page: 22/54

    A_resisting (Detail resisting area) = 6.567 in^2 D (Nominal Tank Diameter) = 150.0625 ft E (Modulus of Elasticity of Roof Plate Material) = 2.879999924E7 lb/in^2 H (Shell Height) = 40 ft I_combined (Combined stiffener shell moment of inertia) = 2.3393 in^4 N (Waves Quantity) = 10.0 P (Total design external pressure for design of shell) = 37.0932 psf Pr (Total design external pressure for design of roof) = 31.1339 lb/ft^2 f (Smallest Allowable Tensile Stress) = 23200 psi Radial Load Imposed on End Stiffener by Shell API 650 Section V.8.2.3.1 V1 = (Ps * H) / 48 = (37.0932 * 40) / 48 = 30.911 lb/in End Stiffener Region Required Moment of Inertia API 650 Section V.8.2.3.2 Ireqd = (684 * V1 * (D^3)) / (E * ((N^2) - 1)) = (684 * 30.911 * (150.0625^3)) / (2.879999924E7 * ((10.0^2) - 1)) = 25.0586 in^4 I_combined < Ireqd ==> Combined stiffener shell moment of inertia is not sufficient. *** WARNING *** : Reinforcement needed due to insufficient combined stiffener shell moment of inertia. End Stiffener Region Required Cross Sectional Area API 650 Section V.8.2.3.3.1 Areqd = (6 * V1 * D) / f = (6 * 30.911 * 150.0625) / 23200.0 = 1.1996 in^2 Top stiffener required cross sectional area A_stiff = (Areqd) = (1.1996) = 1.1996 in^2 A_resisting >= A_stiff ==> Compression region actual cross sectional area is sufficient. Warning!! 1.- Design pressure is greater that maximum allowable pressure 2.- Reinforcement needed due to insufficient cross sectional area. 3.- Reinforcement needed due to insufficient combined stiffener shell moment of inertia. SUMMARY OF ROOF RESULTS Back Material = A36 Structural Material = A36 t-actual = 0.1875 in t-required = 0.1875 in t-calc = 0.1875 in P-Max-Internal = 0.0764 psi P-Max-External = -0.1604 psi Roof Plates Weight = 135,679.1475 lbf Weight of Rafters = 88,962.6649 lbf Weight of Girders = 11,480.5029 lbf Weight of Columns = 14,891.4425 lbf

  • Page: 23/54

    SHELL COURSE DESIGN (Bottom course is #1) Back API-650 ONE FOOT METHOD D = Tank Nominal diameter (ft) per API-650 5.6.1.1 Note 1 H = Max liquid level (ft) I-p = Design internal pressure (psi) L = Factor I-p = 0.1 psi D = 150 ft H = 40 ft L = (6 * D (t-1 - Ca-1))^0.5 L = (6 * 150 (0.75 - 0))^0.5 = 25.9808 Course # 1 Ca-1 = Corrosion allowance per API-650 5.3.2 (in) G = Design specific gravity of the liquid to be stored H' = Effective liquid head at design pressure (ft) hmax-1 = Max liquid level based on shell thickness (ft) JE = Joint efficiency pmax-1 = Max pressure at design (psi) pmax-int-shell-1 = Max internal pressure at design (psi) Sd = Allowable design stress for the design condition per API-650 Table 5-2a (psi) St = Allowable stress for the hydrostatic test condition per API-650 5.6.2.2 (psi) t-1 = Shell actual thickness (in) t-calc-1 = Shell thickness design condition td (in) t-seismic-1 = See E.6.2.4 table in SEISMIC calculations. t-test-1 = Shell thickness hydrostatic test condition (in) Material = A36 Width = 8 ft Ca-1 = 0 in JE = 1 t-1 = 0.75 in Sd = 23,200 psi St = 24,900 psi Design Condition G = 1 (per API-650) H' = H H' = 40 H' = 40 ft t-calc-1 = (2.6 * D * (H' - 1) * G)/Sd + Ca-1 (per API-650 5.6.3.2) t-calc-1 = (2.6 * 150 * (40 - 1) * 1)/23,200 + 0 t-calc-1 = 0.6556 in hmax-1 = Sd * (t-1 - CA-1)/(2.6 * D * G) + 1 hmax-1 = 23,200 * (0.75 - 0)/(2.6 * 150 * 1) + 1 hmax-1 = 45.6154 ft pmax-1 = (hmax-1 - H) * 0.433 * G pmax-1 = (45.6154 - 40) * 0.433 * 1 pmax-1 = 2.4315 psi pmax-int-shell-1 = pmax-1

  • Page: 24/54

    pmax-int-shell-1 = 2.4315 psi Hydrostatic Test Condition G = 1 H' = H H' = 40 H' = 40 ft t-test-1 = (2.6 * D * (H' - 1))/St t-test-1 = (2.6 * 150 * (40 - 1))/24,900 t-test-1 = 0.6108 in Course # 2 Ca-2 = Corrosion allowance per API-650 5.3.2 (in) G = Design specific gravity of the liquid to be stored H' = Effective liquid head at design pressure (ft) hmax-2 = Max liquid level based on shell thickness (ft) JE = Joint efficiency pmax-2 = Max pressure at design (psi) pmax-int-shell-2 = Max internal pressure at design (psi) Sd = Allowable design stress for the design condition per API-650 Table 5-2a (psi) St = Allowable stress for the hydrostatic test condition per API-650 5.6.2.2 (psi) t-2 = Shell actual thickness (in) t-calc-2 = Shell thickness design condition td (in) t-seismic-2 = See E.6.2.4 table in SEISMIC calculations. t-test-2 = Shell thickness hydrostatic test condition (in) Material = A36 Width = 8 ft Ca-2 = 0 in JE = 1 t-2 = 0.5625 in Sd = 23,200 psi St = 24,900 psi Design Condition G = 1 (per API-650) H' = H H' = 32 H' = 32 ft t-calc-2 = (2.6 * D * (H' - 1) * G)/Sd + Ca-2 (per API-650 5.6.3.2) t-calc-2 = (2.6 * 150 * (32 - 1) * 1)/23,200 + 0 t-calc-2 = 0.5211 in hmax-2 = Sd * (t-2 - CA-2)/(2.6 * D * G) + 1 hmax-2 = 23,200 * (0.5625 - 0)/(2.6 * 150 * 1) + 1 hmax-2 = 34.4615 ft pmax-2 = (hmax-2 - H) * 0.433 * G pmax-2 = (34.4615 - 32) * 0.433 * 1 pmax-2 = 1.0658 psi pmax-int-shell-2 = MIN(pmax-int-shell-1 pmax-2) pmax-int-shell-2 = MIN(2.4315 1.0658) pmax-int-shell-2 = 1.0658 psi

  • Page: 25/54

    Hydrostatic Test Condition G = 1 H' = H H' = 32 H' = 32 ft t-test-2 = (2.6 * D * (H' - 1))/St t-test-2 = (2.6 * 150 * (32 - 1))/24,900 t-test-2 = 0.4855 in Course # 3 Ca-3 = Corrosion allowance per API-650 5.3.2 (in) G = Design specific gravity of the liquid to be stored H' = Effective liquid head at design pressure (ft) hmax-3 = Max liquid level based on shell thickness (ft) JE = Joint efficiency pmax-3 = Max pressure at design (psi) pmax-int-shell-3 = Max internal pressure at design (psi) Sd = Allowable design stress for the design condition per API-650 Table 5-2a (psi) St = Allowable stress for the hydrostatic test condition per API-650 5.6.2.2 (psi) t-3 = Shell actual thickness (in) t-calc-3 = Shell thickness design condition td (in) t-seismic-3 = See E.6.2.4 table in SEISMIC calculations. t-test-3 = Shell thickness hydrostatic test condition (in) Material = A36 Width = 8 ft Ca-3 = 0 in JE = 1 t-3 = 0.3125 in Sd = 23,200 psi St = 24,900 psi Design Condition G = 1 (per API-650) H' = H H' = 24 H' = 24 ft t-calc-3 = (2.6 * D * (H' - 1) * G)/Sd + Ca-3 (per API-650 5.6.3.2) t-calc-3 = (2.6 * 150 * (24 - 1) * 1)/23,200 + 0 t-calc-3 = 0.3866 in hmax-3 = Sd * (t-3 - CA-3)/(2.6 * D * G) + 1 hmax-3 = 23,200 * (0.3125 - 0)/(2.6 * 150 * 1) + 1 hmax-3 = 19.5897 ft pmax-3 = (hmax-3 - H) * 0.433 * G pmax-3 = (19.5897 - 24) * 0.433 * 1 pmax-3 = -1.9096 psi pmax-int-shell-3 = MIN(pmax-int-shell-2 pmax-3) pmax-int-shell-3 = MIN(1.0658 -1.9096) pmax-int-shell-3 = 0 psi (Since pmax-int-shell-3 < 0, pmax-int-shell-3 = 0 psi) Hydrostatic Test Condition G = 1

  • Page: 26/54

    H' = H H' = 24 H' = 24 ft t-test-3 = (2.6 * D * (H' - 1))/St t-test-3 = (2.6 * 150 * (24 - 1))/24,900 t-test-3 = 0.3602 in Course # 4 Ca-4 = Corrosion allowance per API-650 5.3.2 (in) G = Design specific gravity of the liquid to be stored H' = Effective liquid head at design pressure (ft) hmax-4 = Max liquid level based on shell thickness (ft) JE = Joint efficiency pmax-4 = Max pressure at design (psi) pmax-int-shell-4 = Max internal pressure at design (psi) Sd = Allowable design stress for the design condition per API-650 Table 5-2a (psi) St = Allowable stress for the hydrostatic test condition per API-650 5.6.2.2 (psi) t-4 = Shell actual thickness (in) t-calc-4 = Shell thickness design condition td (in) t-seismic-4 = See E.6.2.4 table in SEISMIC calculations. t-test-4 = Shell thickness hydrostatic test condition (in) Material = A36 Width = 8 ft Ca-4 = 0 in JE = 1 t-4 = 0.3125 in Sd = 23,200 psi St = 24,900 psi Design Condition G = 1 (per API-650) H' = H H' = 16 H' = 16 ft t-calc-4 = (2.6 * D * (H' - 1) * G)/Sd + Ca-4 (per API-650 5.6.3.2) t-calc-4 = (2.6 * 150 * (16 - 1) * 1)/23,200 + 0 t-calc-4 = 0.2522 in hmax-4 = Sd * (t-4 - CA-4)/(2.6 * D * G) + 1 hmax-4 = 23,200 * (0.3125 - 0)/(2.6 * 150 * 1) + 1 hmax-4 = 19.5897 ft pmax-4 = (hmax-4 - H) * 0.433 * G pmax-4 = (19.5897 - 16) * 0.433 * 1 pmax-4 = 1.5544 psi pmax-int-shell-4 = MIN(pmax-int-shell-3 pmax-4) pmax-int-shell-4 = MIN(0 1.5544) pmax-int-shell-4 = 0 psi Hydrostatic Test Condition G = 1 H' = H H' = 16

  • Page: 27/54

    H' = 16 ft t-test-4 = (2.6 * D * (H' - 1))/St t-test-4 = (2.6 * 150 * (16 - 1))/24,900 t-test-4 = 0.2349 in Course # 5 Ca-5 = Corrosion allowance per API-650 5.3.2 (in) G = Design specific gravity of the liquid to be stored H' = Effective liquid head at design pressure (ft) hmax-5 = Max liquid level based on shell thickness (ft) JE = Joint efficiency pmax-5 = Max pressure at design (psi) pmax-int-shell-5 = Max internal pressure at design (psi) Sd = Allowable design stress for the design condition per API-650 Table 5-2a (psi) St = Allowable stress for the hydrostatic test condition per API-650 5.6.2.2 (psi) t-5 = Shell actual thickness (in) t-calc-5 = Shell thickness design condition td (in) t-seismic-5 = See E.6.2.4 table in SEISMIC calculations. t-test-5 = Shell thickness hydrostatic test condition (in) Material = A36 Width = 7.75 ft Ca-5 = 0 in JE = 1 t-5 = 0.3125 in Sd = 23,200 psi St = 24,900 psi Design Condition G = 1 (per API-650) H' = H H' = 8 H' = 8 ft t-calc-5 = (2.6 * D * (H' - 1) * G)/Sd + Ca-5 (per API-650 5.6.3.2) t-calc-5 = (2.6 * 150 * (8 - 1) * 1)/23,200 + 0 t-calc-5 = 0.1177 in hmax-5 = Sd * (t-5 - CA-5)/(2.6 * D * G) + 1 hmax-5 = 23,200 * (0.3125 - 0)/(2.6 * 150 * 1) + 1 hmax-5 = 19.5897 ft pmax-5 = (hmax-5 - H) * 0.433 * G pmax-5 = (19.5897 - 8) * 0.433 * 1 pmax-5 = 5.0184 psi pmax-int-shell-5 = MIN(pmax-int-shell-4 pmax-5) pmax-int-shell-5 = MIN(0 5.0184) pmax-int-shell-5 = 0 psi Hydrostatic Test Condition G = 1 H' = H H' = 8 H' = 8 ft

  • Page: 28/54

    t-test-5 = (2.6 * D * (H' - 1))/St t-test-5 = (2.6 * 150 * (8 - 1))/24,900 t-test-5 = 0.1096 in SUMMARY OF SHELL RESULTS Back t-min-Seismic = See API-650 E.6.1.4, table in SEISMIC calculations. Shell API-650 Summary (Bottom is 1)

    Shell #

    Width

    (in) Materi

    al

    CA

    (in)

    JE

    Min Yield

    Strength (psi)

    Tensile Strength (psi)

    Sd (psi)

    St (psi)

    Weight (Lbf)

    Weight CA (Lbf)

    t-min Erectio

    n (in) t-Des

    (in) t-

    Test (in)

    t-min Seismi

    c (in)

    t-min Ext-

    Pe (in)

    t-min (in)

    t-Actu

    al (in)

    Status

    1 96 A36 0 1 36,000 58,000 23,20024,90

    0115,29

    7115,29

    7 0.31250.655

    60.610

    8 0.5087 0.435

    9 0.655

    6 0.75 OK

    2 96 A36 0 1 36,000 58,000 23,20024,90

    0 86,482 86,482 0.31250.521

    10.485

    5 0.4062 0.435

    9 0.521

    1 0.562

    5 OK

    3 96 A36 0 1 36,000 58,000 23,20024,90

    0 48,052 48,052 0.31250.386

    60.360

    2 0.3029 0.435

    9 0.435

    9 0.312

    5 FAIL

    4 96 A36 0 1 36,000 58,000 23,20024,90

    0 48,052 48,052 0.31250.252

    20.234

    9 0.199 0.435

    9 0.435

    9 0.312

    5 FAIL

    5 93 A36 0 1 36,000 58,000 23,20024,90

    0 46,550 46,550 0.31250.117

    70.109

    6 0.0948 0.435

    9 0.435

    9 0.312

    5 FAIL

    Total Weight = 344,435.3686 Lbf Warning!! 1.- Please revise the shell thk, 3 courses have problems. 2.- The required minimum thickness based on external pressure is greater than the available thickness and the shell must be stiffened.

    API-650 APPENDIX V FOR EXTERNAL PRESSURE

    V = Wind load velocity (mph) W = Wind pressure (psf) Pe = External Pressure (psi) Ps = Shell design pressure (psf) t-width = Shell ring actual width (ft) t-course = Shell ring actual thickness (in) t-uniform = as-built thickness, unless otherwise specified, of the thinnest shell course, (in) Wtr = Transposed width of each shell course (ft) Hts = Height of the transformed shell (ft) V = 125 mph Pe = 8.64 psf W = 31 * (V/120)^2 W = 31 * (125/120)^2 W = 33.6372 psf Ps = MAX(Pe , (W + (Fp * Pe))) Ps = MAX(8.64 , (33.6372 + (0.4 * 8.64))) Ps = 37.0932 psf Wtr = Course-width * (t-uniform / t-course)^2.5

  • Page: 29/54

    Hts = SUM(Wtr) Transforming courses (1) to (5) Wtr-1 = 8 * (0.3125 / 0.75)^2.5 = 0.8965 ft Wtr-2 = 8 * (0.3125 / 0.5625)^2.5 = 1.8404 ft Wtr-3 = 8 * (0.3125 / 0.3125)^2.5 = 8 ft Wtr-4 = 8 * (0.3125 / 0.3125)^2.5 = 8 ft Wtr-5 = 8 * (0.3125 / 0.3125)^2.5 = 8 ft Hts = 26.7369 ft

    INTERMEDIATE STIFFENER CALCULATIONS PER API-650 APP. V.8

    A-reqd-(n) = Required area (in^2) A-stiff-(n) = Area required by Stiffener (in^2) A-stiff-actual-(n) = Actual area (in^2) Bottom-OD = Bottom floor OD diameter per API-650 5.6.1.1 Note 1 (ft) D = Nominal diameter per API-650 5.6.1.1 Note 1 (ft) E = Modulus of elasticity of the roof plate material (psi) EFC = Elastic failure F-btm = Allowable stress for bottom floor (psi) F-roof = Allowable stress for thinnest shell (psi) F-stiff = Allowable stress for stiffener (psi) Fc = Smallest allowable compressive stress (psi) Fp = Pressure Combination Ratio Fy-shell = Minimum yield strength for shell material (Table 5-2b) (psi) Fy-stiff = Minimum yield strength for stiffener material (Table 5-2b) (psi) Hs = Maximum unstiffened shell height (ft) Hts = Height of the transformed shell (ft) I-actual-(n) = Actual moment of inertia (in^4) I-reqd-(n) = Required moment of inertia (in^4) JEb = Bottom joint efficiency JEn = Bottom shell course joint efficiency JEr = Roof joint efficiency JEs = Top shell course joint efficiency Ls = Actual spacing (ft) Lx = Maximum stiffener spacing on transposed shell (ft) L_act = Actual Transform Height Spacing between Stiffeners (ft) N = Number of waves NS = Number of stiffeners required NS-actual = Actual Number of stiffeners Pe = External Pressure (psf) Ps = Shell design pressure (psf) Ps-Max = Maximum allowable external pressure for unstiffened shell (psf) PSI-C = Stability factor PSI1 = Stability factor under condition 1 (V.8.1) PSI2 = Stability factor under condition 2 (V.8.1) Pv-Max-1 = Maximum allowable external pressure for unstiffened shell under condition 1 (psf) Pv-Max-2 = Maximum allowable external pressure for unstiffened shell under condition 2 (psf) Pv-Max-C = Final maximum allowable external pressure for unstiffened shell (psi) Q-(n) = Radial load imposed on intermediate stiffeners by the shell (lbf/ft) t-min-ext = Minimum thickness due to design pressure (in) t-min-ext-stiff = Minimum thickness due to stiffener (in) ts-(n) = Actual shell course thickness (in) ts1 = Top shell course thickness (in) tsmin = Smallest actual shell course thickness (in) tsn = Bottom shell course thickness (in) W = Wind pressure (psf)

  • Page: 30/54

    W-shell-(n) = Contributing shell at stiffener n (in) W = 33.6372 psf Hts = 26.7369 ft Wtr-1 = t-width-(n) * (t-top/ts-(n))^2.5 Wtr = Hts = 26.7369 ft Fp = 0.4 D = 150 ft ts1 = 0.3125 in tsn = 0.75 in CA = 0 in tsmin = 0.3125 in JEr = 1 JEs = 1 F-roof = 23,200 psi Fy-shell = 36,000 psi E = 28,799,999 psi F-stiff = 0 psi Fy-stiff = 0 psi F-btm = 23,200 psi JEn = 1 JEb = 1 Bottom-OD = 145.7083 ft V.8.1 UNSTIFFENED SHELLS Pe = 8.64 psf Ps = 37.0932 psf V.8.1.1 Criteria (Elastic failure when EFC >= 0.19, otherwise must use ASME section VIII Div 1.) EFC = (D / tsmin)^0.75 * [(HtS / D) * (Fy-shell / E)^0.5] EFC = (150 / 0.3125)^0.75 * [(26.7369 / 150) * (36,000 / 28,799,999)^0.5] EFC = 0.6463 Since EFC >= 0.19 using App. V method. Condition 1: Wind plus specified external (Vacuum) pressure Since Pe > 5.2 & Pe

  • Page: 31/54

    Pv-Max-C = MIN(Pv-Max-1 , Pv-Max-2) Pv-Max-C = MIN(-43.4726 , 6.4018) Pv-Max-C = -43.4726 psf or -0.3019 psi Condition 2: Specified external (Vacuum) pressure only PSI2 = 3 V.8.1.3 Minimum thickness due to design pressure Since Pe < Ps t-min-1-ext = (1.23 * (PSI1 * HTS * Ps)^0.4 * D^0.6) / E^0.4 t-min-1-ext = (1.23 * (1.182 * 26.7369 * 37.0932)^0.4 * 150^0.6) / 28,799,999^0.4 t-min-1-ext = 0.4359 in t-min-2-ext = (1.23 * (PSI2 * HTS * Pe)^0.4 * D^0.6) / E^0.4 t-min-2-ext = (1.23 * (3 * 26.7369 * 8.64)^0.4 * 150^0.6) / 28,799,999^0.4 t-min-2-ext = 0.3533 in t-min-ext = MAX(t-min-1-ext , t-min-2-ext) t-min-ext = MAX(0.4359 , 0.3533) t-min-ext = 0.4359 CIRCUMFERENTIALLY STIFFENED SHELLS Since no Int. stiffener are specified, L_act = Wrt L_act = 26.7369 ft Number of Intermediate Stiffeners NOT Sufficient Since Hsafe < L_act Warning: Stiffener spacing is greater than permitted height of unstiffened shell V.8.2.2.3 Radial load Q = N.A., Since no Int. stiffeners are specified. V.8.2.2.4 Contributing shell at stiffener W-shell = N.A., Since no Int. stiffeners are specified. SUMMARY OF SHELL STIFFENING RESULTS Number of Intermediate stiffeners req'd (NS) = 2 Warning!! 1.- Number of intermediate stiffeners is less than required. Revise shell thicknesses or add stiffeners.

  • Page: 32/54

    FLAT BOTTOM: ANNULAR PLATE DESIGN Back Ann-a = Area of annular ring (in^2) Ann-d = Density of annular ring (lbf/in3) Ann-t-actual = Actual annular ring thickness (in) Ann-t-min = Minimum annular ring plates thickness per API-650 5.5.3 TABLE 5-1b (in) Ann-w-actual = Actual annular ring width (in) Ann-w-min = Minimum annular ring width per API-650 5.5.2 (in) Ba = Area of bottom (in^2) Bottom-OD = Bottom diameter (ft) ca-1 = Bottom (1st) shell course corrosion allowance ca-Ann = Annular ring corrosion allowance (in) Ca-bottom = Bottom corrosion allowance (in) D = Nominal diameter per API-650 5.6.1.1 Note 1 (ft) D-bottom = Density of bottom (lbf/in3) G = Design specific gravity of the liquid to be stored H = Max liquid level (ft) H' = Effective liquid head at design pressure (ft) R = Nominal radius (ft) S = Maximum Stress in first shell course per API 650 Table 5.1.b S1 = Product stress in the first shell course per API 650 Table 5.1.b S2 = Hydrostatic test stress in the first shell course per API 650 Table 5.1.b Sd = Allowable design stress for the design condition in bottom (1st) shell course (psi) per API 650 5.6.3.2 St = Allowable stress for the hydrostatic test condition in bottom (1st) shell course (psi) per API 650 5.6.3.2 t-1 = Bottom (1st) shell course thickness (in) t-actual = Actual bottom thickness (in) t-calc = Minimum nominal bottom plates thickness per API-650 5.4.1 (in) t-min = Minimum nominal bottom plates thickness per API-650 5.4.1 (in) t-test-1 = Bottom (1st) shell course test thickness (in) td-1 = Bottom (1st) shell course design thickness (in) Material = A36 t-actual = 0.25 in Annular Ring Material = A36 Ann-t-actual = 0.375 in Ann-w-actual = 30 in Calculation of Hydrostatic Test Stress & Product Stress (per API-650 Section 5.5.1) Bottom-OD = 145.7083 ft JE = 1 D-bottom = 0.283 lbf/in3 t-1 = 0.75 in ca-1 = 0 in G = 1 H = 40 ft H' = 40 ft St = 24,900 psi Sd = 23,200 psi Ca-bottom = 0 in ca-Ann = 0 in Ann-d = 0.2 lbf/in3 Product stress in first shell course S1 = ((td-1 - ca-1) / (t-1 - ca-1)) * Sd

  • Page: 33/54

    S1 = ((0.6556 - 0) / (0.75 - 0)) * 23,200 S1 = 20,280 psi Hydrostatic test stress in first shell course S2 = (t-test-1 / t-1) * St S2 = (0.6108 / 0.75) * 24,900 S2 = 20,280 psi S = Max (S1, S2) S = Max (20,280 , 20,280) S = 20,280 psi API-650 Table 5.1b required thickness of annular ring excluding corrosion allowance is 0.236 in Annular ring required thickness = 0.236 + ca-Ann = 0.236 + 0 Annular ring required thickness = 0.236 in Weight of Bottom plate BA = PI * ((Bottom-OD / 2) - Ann-w-actual)^2 BA = PI * ((1748.5 / 2) - 30)^2 BA = 2,239,195.4929 in^2 Ann-a = PI/4 * Bottom-OD^2 - BA Ann-a = PI/4 * 1748.5^2 - 2,239,195.4929 Ann-a = 161,964.8092 in^2 weight = (D-bottom * t-actual * BA) + (Ann-d * Ann-t-actual * Ann-A) weight = (0.283 * 0.25 * 2,239,195.4929) + (0.2 * 0.375 * 161,964.8092) weight = 175,797.7572 lbf API-650 t-min = 0.236 + Ca-bottom t-min = 0.236 + 0 t-min = 0.236 in t-calc = t-min t-calc = 0.236 in Per API 650 appendix V.9.1 P-btm = D-bottom * t-actual + P_liq_min P-btm = 0.283 * 0.25 + 0.8669 P-btm = 0.9378 psi ABS(E-p) < P-btm Then there is no uplift API-650 5.5 Ann-t-min = 0.236 in Ann-w-min = (390 * Ann-t-actual)/(H * G)^0.5 Ann-w-min = (390 * 0.375)/(40 * 1)^0.5

  • Page: 34/54

    Ann-w-min = 24 in Note: API-650 until the inner radius of the shell. Ann-w-min = 28.25 in Note: including chime distance, overlap and shell thickness. SUMMARY OF BOTTOM RESULTS Back Material = A36 t-actual = 0.25 in t-req = 0.236 in Annular Ring Material = A36 Ann-t-actual = 0.375 in Ann-w-actual = 30 in Ann-t-min = 0.236 in Ann-w-min = 28.25 in NET UPLIFT DUE TO INTERNAL PRESSURE Net-Uplift = 0 lbf, (See roof report for calculations) WIND MOMENT (Per API-650 SECTION 5.11) Back A = Area resisting the compressive force, as illustrated in Figure F.1 P-F41 = Design pressure determined in F.4.1 P-v = Internal pressure Wind Velocity per API-650 ASCE 7-05 V_entered = 125 mph I = 1 Vs (Wind Velocity) = SQRT(I) * V_entered = 125 mph Vf = (Vs / 120)^2 Vf = (125 / 120)^2 Vf (Velocity Factor) = 1.0851 PWS = 18 * Vf PWS = 19.5312 psf PWR = 30 * Vf PWR = 32.552 psf API-650 5.2.1.k Uplift Check P-F41 = (0.962 * A * Fy * TAN(Theta))/D^2 + (0.245 * DLR)/D^2 P-F41 = ((0.962 * 6.567 * 36,000 * TAN(3.5763))/150^2) + ((0.245 * 136357) / 150^2) P-F41 = 0.0765 psi = 11.0098 psf Wind-Uplift = MIN(PWR , (1.6 * P-F41 - Pv)) Wind-Uplift = MIN(32.552 , 3.2157) Wind-Uplift = 3.2157 psf Ap-Vert (Vertical Projected Area of Roof) = 351.5625 ft^2 Horizontal Projected Area of Roof (Per API-650 5.2.1.f) Xw (Moment Arm of UPLIFT wind force on roof) = 75 ft Ap (Projected Area of roof for wind moment) = 17,671 ft^2

  • Page: 35/54

    M-roof (Moment Due to Wind Force on Roof) = Wind-Uplift * Ap * Xw M-roof = (3.2157 * 17,671 * 75) M-roof = 4,261,950 lbf-ft Xs (Height from bottom to the Shell's center of gravity) = Shell Height/2 Xs = (40/2) Xs = 20 ft As (Projected Area of Shell) = Shell Height * (D + 2 * t-ins) As = 40 * (150 + 2 * 0) As = 6,000 ft^2 M-Shell (Moment Due to Wind Force on Shell) = (PWS * As * (Shell Height / 2)) M-Shell = (19.5312 * 6,000 * (40 / 2)) M-Shell = 2,343,750 lbf-ft Mw (Wind moment) = M-roof + M-shell Mw = 4,261,950 + 2,343,750 Mw = 6,605,700.0202 lbf-ft

    RESISTANCE TO OVERTURNING (per API-650 5.11.2)

    DLR = Nominal weight of roof plate plus weight of roof plates overlap plus any attached structural. DLS = Nominal weight of the shell and any framing (but not roof plates) support by the shell and roof. F-friction = Maximum of 40% of weight of tank MDL = Moment about the shell-to-bottom joint from the nominal weight of the shell MDLR = Moment about the shell-to-bottom joint from the nominal weight of the roof plate plus any attached structural. MF = Stabilizing moment due to bottom plate and liquid weight MPi = Destabilizing moment about the shell-to-bottom joint from design pressure Mw = Destabilizing wind moment tb = Bottom plate thickness less C.A. wl = Circumferential loading of contents along shell-to-bottom joint An unanchored tank must meet with this criteria: Mw = 6,605,700 ft-lbf DLS = 403,845.0914 lbf DLR = 136,356.8743 lbf MPi = P * (Pi * D^2 / 4) * (D / 2) MPi = 14.4 * (3.1416 * 150^2 / 4) * (150 / 2) MPi = 19,085,175 ft-lbf MDL = DLS * (D/2) MDL = 403,845.0914 * 150/2 MDL = 30,288,382 lbf-ft MDLR = DLR * (D/2) MDLR = 136,356.8743 * 150/2 MDLR = 10,226,766 lbf-ft tb = 0.25 in wl = (min [4.67 * tb * SQRT(fy-btm * H-liq)] [0.9 * H-liq * D])

  • Page: 36/54

    wl = (min [4.67 * 0.25 * SQRT(36,000 * 40)] [0.9 * 40 * 150]) wl = 1,401 lbf/ft MF = (D/2) * wl * Pi * D MF = 75.0 * 1,401 * 3.1416 * 150 MF = 49,515,427 ft-lbf Criteria 3 M-shell + Fp * Mpi < MDL /1.5 + MDLR 2,343,750 + 0.4 * 19,085,175 < 30,288,382 / 1.5 + 10,226,766 Since 9,977,820 < 30,419,021, Tank is stable

    RESISTANCE TO SLIDING (per API-650 5.11.4)

    F-wind = Vf * 18 * As F-wind = 1.0851 * 18 * 6,000 F-wind = 117,188 lbf F-friction = 0.4 * (W-roof-corroded + W-shell-corroded + W-btm-corroded + W-roof-struct) F-friction = 0.4 * (135,679 + 344,435 + 175,798 + 48,588) F-friction = 281,800 lbf No anchorage needed to resist sliding since F-friction > F-wind Anchorage Requirement Tank does not require anchorage

  • Page: 37/54

    Back SITE GROUND MOTION CALCULATIONS Anchorage_System (Anchorage System) = self anchored D (Nominal Tank Diameter) = 150 ft Fa (Site Acceleration Coefficient) = 1.6 Fv (Site Velocity Coefficient) = 2.4 H (Maximum Design Product Level) = 40 ft I (Importance Factor) = 1.0 K (Spectral Acceleration Adjustment Coefficient) = 1.5 Q (MCE to Design Level Scale Factor) = 0.6667 Rwc (Convective Force Reduction Factor) = 2 Rwi (Impulsive Force Reduction Factor) = 3.5 S1 (Spectral Response Acceleration at a Period of One Second) = 0.05 Seismic_Site_Class (Seismic Site Class) = seismic site class d Seismic_Use_Group (Seismic Use Group) = seismic use group i Ss (Spectral Response Acceleration Short Period) = 0.1 TL (Regional Dependent Transistion Period for Longer Period Ground Motion) = 12 sec Design Spectral Response Acceleration at Short Period API 650 Sections E.4.6.1 and E.2.2 SDS = Q * Fa * Ss = 0.6667 * 1.6 * 0.1 = 0.1067 Design Spectral Response Acceleration at a Period of One Second API 650 Sections E.4.6.1 and E.2.2 SD1 = Q * Fv * S1 = 0.6667 * 2.4 * 0.05 = 0.08 Sloshing Coefficient API 650 Section E.4.5.2 Ks = 0.578 / SQRT(TANH(((3.68 * Liq_max) / D))) = 0.578 / SQRT(TANH(((3.68 * 40) / 150))) = 0.6658 Convective Natural Period API 650 Section E.4.5.2 Tc = Ks * SQRT(D) = 0.6658 * SQRT(150) = 8.1544 sec Impulsive Design Response Spectrum Acceleration Coefficient API 650 Sections E.4.6.1 Ai = SDS * (I / Rwi) = 0.1067 * (1.0 / 3.5) = 0.0305 API 650 Sections E.4.6.1 Ai = MAX(Ai , 0.007) = MAX(0.0305 , 0.007) = 0.0305 Tc

  • Page: 38/54

    SEISMIC CALCULATIONS Back < Mapped ASCE7 Method > Ac = Convective spectral acceleration parameter Ai = Impulsive spectral acceleration parameter Av = Vertical Earthquake Acceleration Coefficient Ci = Coefficient for impulsive period of tank system (Fig. E-1) D/H = Ratio of Tank Diameter to Design Liquid Level Density = Density of tank product (SG * 62.42786) Fc = Allowable longitudinal shell-membrane compressive stress Fty = Minimum specified yield strength of shell course Fy = Minimum yield strength of bottom annulus Ge = Effective specific gravity including vertical seismic effects I = Importance factor defined by Seismic Use Group k = Coefficient to adjust spectral acceleration from 5% - 0.5% damping L = Required Annular Ring Width Ls = Actual Annular Plate Width Mrw = Ringwall moment-portion of the total overturning moment that acts at the base of the tank shell perimeter Ms = Slab moment (used for slab and pile cap design) Pa = Anchorage chair design load Pab = Anchor seismic design load Q = Scaling factor from the MCE to design level spectral accelerations RCG = Height from Top of Shell to Roof Center of Gravity Rwc = Force reduction factor for the convective mode using allowable stress design methods (Table E-4) Rwi = Force reduction factor for the impulsive mode using allowable stress design methods (Table E-4) S0 = Design Spectral Response Param. (5% damped) for 0-second Periods (T = 0.0 sec) Sd1 = The design spectral response acceleration param. (5% damped) at 1 second based on ASCE7 methods per API 650 E.2.2 Sds = The design spectral response acceleration param. (5% damped) at short periods (T = 0.2 sec) based on ASCE7 methods per API 650 E.2.2 SigC = Maximum longitudinal shell compression stress SigC-anchored = Maximum longitudinal shell compression stress SUG = Seismic Use Group (Importance factors depends on SUG) T-L = Regional Dependent Transition Period for Long Period Ground Motion (Per ASCE 7-05, fig. 22-15) ta = Actual Annular Plate Thickness less C.A. ts1 = Thickness of bottom Shell course minus C.A. tu = Equivalent uniform thickness of tank shell V = Total design base shear Vc = Design base shear due to convective component from effective sloshing weight Vi = Design base shear due to impulsive component from effective weight of tank and contents wa = Force resisting uplift in annular region Wab = Design uplift load on anchor per unit circumferential length Wc = Effective Convective (Sloshing) Portion of the Liquid Weight Weff = Effective Weight Contributing to Seismic Response Wf = Weight of Floor (Incl. Annular Ring) Wi = Effective Impulsive Portion of the Liquid Weight wint = Uplift load due to design pressure acting at base of shell Wp = Total weight of Tank Contents based on S.G. Wr = Weight Fixed Roof, framing and 10 % of Design Snow Load & Insul. Wrs = Roof Load Acting on Shell, Including 10% of Snow Load Ws = Weight of Shell (Incl. Shell Stiffeners & Insul.) wt = Shell and roof weight acting at base of shell Xc = Height to center of action of the lateral seismic force related to the convective liquid force for ringwall moment Xcs = Height to center of action of the lateral seismic force related to the convective liquid force for the slab moment

  • Page: 39/54

    Xi = Height to center of action of the lateral seismic force related to the impulsive liquid force for ringwall moment Xis = Height to center of action of the lateral seismic force related to the impulsive liquid force for the slab moment Xr = Height from Bottom of Shell to Roof Center of Gravity Xs = Height from Bottom to the Shell's Center of Gravity WEIGHTS Ws = 347,769 lb Wf = 175,798 lb Wr = 135,679 lb EFFECTIVE WEIGHT OF PRODUCT D/H = 3.75 Wp = 44,127,682 lbf Wi = TANH (0.866 * D/H) / (0.866 * D/H) * Wp Wi = TANH (0.866 * 3.75) / (0.866 * 3.75) * 44,127,682 Wi = 13,547,200 lbf Wc = 0.23 * D/H * TANH (3.67 * H/D) * Wp Wc = 0.23 * 3.75 * TANH (3.67 * 0.2667) * 44,127,682 Wc = 28,639,793 lbf Weff = Wi + Wc Weff = 13,547,200 + 28,639,793 Weff = 42,186,992.9182 lbf Wrs = 59,253 lbf DESIGN LOADS Vi = Ai * (Ws + Wr + Wf + Wi) Vi = 0.0305 * (347,769 + 135,679 + 175,798 + 13,547,200) Vi = 433,297 lbf Vc = Ac * Wc Vc = 0.0074 * 28,639,793 Vc = 211,934 lbf V = SQRT (Vi^2 + Vc^2) V = SQRT (433,297^2 + 211,934^2) V = 482,350.6725 lbf CENTER OF ACTION FOR EFFECTIVE LATERAL FORCES Xs = 20 ft RCG = 1/3 * R * (TAND (Theta)) RCG = 1/3 * 900.8125 * (TAND (3.5763)) RCG = 18.7669 in or 1.5639 ft Xr = Shell Height + RCG Xr = 40 + 1.5639 Xr = 41.5639 ft

  • Page: 40/54

    CENTER OF ACTION FOR RINGWALL OVERTURNING MOMENT Xi = 0.375 * H Xi = 0.375 * 40 Xi = 15 ft Xc = (1 - (COSH (3.67 * H/D) - 1) / ((3.67 * H/D) * SINH (3.67 * H/D))) * H Xc = (1 - (COSH (3.67 * 0.2667) - 1) / ((3.67 * 0.2667) * SINH (3.67 * 0.2667))) * 40 Xc = 21.4569 ft CENTER OF ACTION FOR SLAB OVERTURNING MOMENT Xis = 0.375 * [1 + 1.333 * [(0.866 * D/H) / TANH (0.866 * D/H) - 1]] * H) Xis = 0.375 * [1 + 1.333 * [(0.866 * 3.75) / TANH (0.866 * 3.75) - 1]] * 40) Xis = 60.1353 ft Xcs = (1 - (COSH (3.67 * H/D) - 1.937) / ((3.67 * H/D) * SINH(3.67 * H/D))) * H Xcs = (1 - (COSH (3.67 * 0.2667) - 1.937) / ((3.67 * 0.2667) * SINH(3.67 * 0.2667))) * 40 Xcs = 54.9759 ft Dynamic Liquid Hoop Forces

    SHELL Width (ft) Y

    (ft) Ni (lb/in) Nc (lb/in) Nh

    (lb/in) SigT+ (lbf/in^2) SigT- (lbf/in^2)

    SUMMARY

    = 4.5 * Ai * G * D * H * [(Y / H) - (0.5 * (Y / H)^2)]

    * (TANH (0.866 * (D / H)))

    = 0.98 * Ac * G * D^2 * (COSH (3.68 * (H - Y)) /

    D) / (COSH (3.68 * H / D))

    = 2.6 * Y * D * G

    = (+ Nh (SQRT (Ni^2 + Nc^2 + (Av * Nh /

    2.5)^2))) / t-n = (- Nh (SQRT (Ni^2 +

    Nc^2 + (Av * Nh / 2.5)^2))) / t-n

    Shell 1 8 39 410.251 107.2813 15,210 20,974.888 19,585.1119Shell 2 8 31 389.7256 109.874 12,090 22,330.889 20,655.7776Shell 3 8 23 336.3596 116.7128 8,970 29,978.7375 27,429.2624Shell 4 8 15 250.153 128.0618 5,850 19,693.537 17,746.4629Shell 5 7.75 7 131.1058 144.3597 2,730 9,383.8386 8,088.1613

    Overturning Moment Mrw = ((Ai * (Wi * Xi + Ws * Xs + Wr * Xr))^2 + (Ac * Wc * Xc)^2)^0.5 Mrw = ((0.0305 * (13,547,200 * 15 + 347,769 * 20 + 135,679 * 41.5639))^2 + (0.0074 * 28,639,793 * 21.4569)^2)^0.5 Mrw = 8,000,120.4084 lbf-ft Ms = ((Ai * (Wi * Xis + Ws * Xs + Wr * Xr))^2 + (Ac * Wc * Xcs)^2)^0.5 Ms = ((0.0305 * (13,547,200 * 60.1353 + 347,769 * 20 + 135,679 * 41.5639))^2 + (0.0074 * 28,639,793 * 54.9759)^2)^0.5 Ms = 27,791,667.4683 lbf-ft RESISTANCE TO DESIGN LOADS Fy = 36,000 psi Ge = S.G. * (1- 0.4 * Av) Ge = 1 * (1- 0.4 * 0.0498) Ge = 0.9801 wa = MIN (7.9 * ta * (Fy * H * Ge)^0.5 , 1.28 * H * D * Ge)

  • Page: 41/54

    wa = MIN (7.9 * 0.375 * (36,000 * 40 * 0.9801)^0.5) , 1.28 * 40 * 150 * 0.9801) wa = MIN ( 3,519.414 , 7,527.0144) wa = 3,519.414 lbf/ft wt = (Wrs + Ws) / (Pi * D) wt = (59,253 + 347,769) / (3.1416 * 150) wt = 863.7276 lbf/ft wint = P * 144 * (Pi * D^2 / 4) / (Pi * D) wint = 0.1 * 144 * (3.1416 * 150^2 / 4) / (3.1416 * 150) wint = 540 lbf/ft Annular Ring Requirements L = MIN (0.035 * D , MAX (1.5 , 0.216 * ta * (Fy / (H * Ge))^0.5)) L = MIN (0.035 * 150 , MAX (1.5 , 0.216 * 0.375 * (36,000 / (40 * 0.9801))^0.5)) L = MIN (5.25 , MAX (1.5 , 2.4546)) L = 2.4546 ft Ls = 2.5 ft Since Ls > L. Anchorage Ratio J = Mrw / (D^2 * [wt * (1 - 0.4 * Av)] + wa - 0.4 * wint J = 8,000,120.4084 / (150^2 * [863.7276 * (1 - 0.4 * 0.0498)] + 3,519.414 - 0.4 * 540 J = 0.0857 Since J = 1,000,000 Since [1 * 40 * 150^2 / 0.75^2] >= 1,000,000 Since 1.6E6 >= 1,000,000 Then Fc = 10^6 * ts1 / D Fc = 10^6 * ts1 / D Fc = 10^6 * 0.75 / 150 Fc = 5,000 lbf/in^2 SigC

  • Page: 42/54

    SHELL SUMMARY SigT+ Sd * 1.333 Fy * 0.9 * E Allowable Membrane t-Min Shell Ok

    Shell 1 20,974.888 30,925.6 32,400 30,925.6 0.5086 OKShell 2 22,330.889 30,925.6 32,400 30,925.6 0.4061 OKShell 3 29,978.7375 30,925.6 32,400 30,925.6 0.3029 OKShell 4 19,693.537 30,925.6 32,400 30,925.6 0.199 OKShell 5 9,383.8386 30,925.6 32,400 30,925.6 0.0948 OK

    Mechanically Anchored Number of anchor = 0 Wab = (1.273 * Mrw) / D^2 - wt * (1 - 0.4 * Av) + wint Wab = (1.273 * 8,000,120.4084) / 150^2 - 863.7276 * (1 - 0.4 * 0.0498) + 540 Wab = 146.1068 lbf/ft Pab = Wab * Pi * D / Na Pab = 146.1068 * 3.1416 * 150 / 0 Pab = 0 lbf Pa = 3 * Pab Pa = 3 * 0 Pa = 0 lbf Shell Compression in Mechanically-Anchored Tanks SigC-anchored = [Wt * (1 + (0.4 * Av)) + (1.273 * Mrw) / D^2] * (1 / (12 * ts)) SigC-anchored = [863.7276 * (1 + (0.4 * 0.0498)) + (1.273 * 8,000,120.4084) / 150^2] * (1 / (12 * 0.75)) SigC-anchored = 148.1735 lbf/in^2 Fc = 5,000 lbf/in^2 Detailing Requirements (Anchorage) SUG = I Sds = 0.1067 g or 10.67 %g Freeboard - Sloshing TL-sloshing = 4 sec I-sloshing = 1.0 Tc = 8.1544 k = 1.5 Sd1 = 0.08 g or 8 %g Af = 0.0072 g per API 650 E.7.2 Delta-s = 0.42 * D * Af Delta-s = 0.42 * 150 * 0.0072 Delta-s = 0.4536 ft

  • Page: 43/54

    0.7 * Delta-s = 0.3175 ft Since Sds < 0.33g and SUG = I per API 650 Table E-7. a. A freeboard of O.7*Delta-s is recommended for economic considerations but not required. Sliding Resistance mu = 0.4 (friction coefficient) V = 482,350.6725 lbf Vs = mu * (Ws + Wr + Wf + Wp) * (1 - 0.4 * Av) Vs = 0.4 * (347,769 + 135,679 + 175,798 + 44,127,682) * (1 - 0.4 * 0.0498) Vs = 17,557,909.1068 lbf Since V

  • Page: 44/54

    ANCHOR BOLT DESIGN Back Bolt Material : A36 Sy = 36,000 psi UPLIFT LOAD CASES, PER API-650 TABLE 5-21b A-s-r = Bolt Root Area Req'd bt = Uplift load per bolt D = Tank D (ft) Fp = Pressure Combination Factor Mrw = Seismic Ringwall Moment (ft-lbf) N = Anchor bolt quantity P = Design pressure (psi) Pf = Failure pressure per F.6 (inh2o) Pt = Test pressure per F.7.6 = 1.25 * P = 3.4603 (psi) sd = Allowable Anchor Bolt Stress (psi) Shell-sd-at-anchor = Allowable Shell Stress at Anchor Attachment (psi) t-actual = Actual Roof plate thickness (in) t-h = Roof plate thickness less CA (in) Vf = Velocity factor (mph) W1 = Dead Load of Shell minus C.A. and Any Dead Load minus C.A. other than Roof Plate Acting on Shell W2 = Dead Load of Shell minus C.A. and Any Dead Load minus C.A. including Roof Plate minus C.A. Acting on Shell W3 = Dead Load of New Shell and Any Dead Load other than Roof Plate Acting on Shell For Tank with Structural Supported Roof W1 = W-shell-corroded + Shell Insulation W1 = 344,435.3686 + 0 W1 = 344,435.3686 lbf W2 = W-shell-corroded + Shell Insulation + Corroded Roof Plates Supported by Shell + Roof Dead Load Supported by Shell W2 = 344,435.3686 + 0 + 135,679.1475 + 0 W2 = 480,114.5161 lbf W3 = New Shell + Shell Insulation W3 = 344,435.3686 + 0 W3 = 344,435.3686 lbf Uplift Case 1: Design Pressure Only U = [(P - 8 * t-h) * D^2 * 4.08] - W1 U = [(2.7682 - 8 * 0.1875) * 150^2 * 4.08] - 344,435.3686 U = -228,010.4508025381 lbf bt = U/N bt = 0 lbf sd = 15,000 psi Shell-sd-at-anchor = 24,000 psi A-s-r = N.A., since Load per Bolt is zero Uplift Case 2: Test Pressure Only

  • Page: 45/54

    U = [(Pt - 8 * t-h) * D^2 * 4.08] - W1 U = [(3.4603 - 8 * 0.1875) * 150^2 * 4.08] - 344,435.3686 U = -164,479.22133643666 lbf bt = U/N bt = 0 lbf sd = 20,000 psi Shell-sd-at-anchor = 30,000 psi A-s-r = N.A., since Load per Bolt is zero Uplift Case 3: Failure Pressure Only Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A. Uplift Case 4: Wind Load Only PWR = Wind-Uplift per API 650 Table 5-21a, 5-21b PWS = Wind-Pressure per API 650 Table 5-21a, 5-21b PWR = 6.2574 inh2o PWS = 19.5312 psf MWH = PWS * D * (H^2 / 2) per API 650 Table 5-21a, 5-21b MWH = 19.5312 * 150 * (40^2 / 2) MWH = 2,343,750 ft-lb U = PWR * D^2 * 4.08 + (4 * MWH / D) - W2 U = 6.2574 * 150^2 * 4.08 + (4 * 2,343,750 / 150) - 480,114.5161 U = 156,813.6016 lbf bt = U/N bt = 0 lbf sd = 28,800 psi Shell-sd-at-anchor = 30,000 psi A-s-r = N.A., since Load per Bolt is zero Uplift Case 5: Seismic Load Only U = [4 * Mrw / D] - W2 * (1 - 0.4 * Av) U = [4 * 8,000,120 / 150] - 480,114.5161 * (1 - 0.4 * 0.0498) U = -257,214.09080365018 lbf bt = U/N bt = 0 lbf sd = 28,800 psi Shell-sd-at-anchor = 30,000 psi A-s-r = N.A., since Load per Bolt is zero Uplift Case 6: Design Pressure + Wind Load

  • Page: 46/54

    U = [(Fp * P + PWR - 8 * t-h) * D^2 * 4.08] + [4 * MWH / D] - W1 U = [(0.4 * 2.7682 + 6.2574 - 8 * 0.1875) * 150^2 * 4.08] + [4 * 2,343,750 / 150] - 344,435.3686 U = 256,442.7162 lbf bt = U/N bt = 0 lbf sd = 20,000 psi Shell-sd-at-anchor = 30,000 psi A-s-r = N.A., since Load per Bolt is zero Uplift Case 7: Design Pressure + Seismic Load U = [(Fp * P - 8 * t-h) * D^2 * 4.08] + [4 * Mrw / D] - W1 * (1 - 0.4 * Av) U = [(0.4 * 2.7682 - 8 * 0.1875) * 150^2 * 4.08] + [4 * 8,000,120 / 150] - 344,435.3686 * (1 - 0.4 * 0.0498) U = -160,287.70475124574 lbf bt = U/N bt = 0 lbf sd = 28,800 psi Shell-sd-at-anchor = 30,000 psi A-s-r = N.A., since Load per Bolt is zero Uplift Case 8: Frangibility Pressure Not applicable since if there is a knuckle on tank roof, or tank roof is not frangible. Pf (failure pressure per F.6) = N.A.

  • Page: 47/54

    ANCHOR BOLT SUMMARY Back Bolt Root Area Req'd = 0 in^2 Bolt Diameter (d) = 2.25 in Threads per inch (n) = 4.5 A-s = Actual Bolt Root Area A-s = (pi / 4) * (d - 1.3 / n)^2 A-s = 0.7854 * (2.25 - 1.3 / 4.5)^2 A-s = 3.0206 in^2 Exclusive of Corrosion Bolt Diameter Req'd = 0.2888 in (per ANSI B1.1) Actual Bolt Diameter = 2.25 in Bolt Diameter Meets Requirements ANCHOR CHAIR DESIGN (from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII) Entered Parameters Chair Material : A36 Top Plate Type : DISCRETE Chair Style : VERT. TAPERED Top Plate Width (a) : 10 in Top Plate Length (b) : 8 in Vertical Plate Width (k) : 5 in Top Plate Thickness (c) : 1 in Bolt Eccentricity (e) : 4 in Outside of Top Plate to Hole Edge (f) : 2.625 in Distance Between Vertical Plates (g) : 4.25 in Chair Height (h) : 28 in Vertical Plates Thickness (j) : 1 in Bottom Plate thickness (m) : 0.25 in Shell Course + Repad Thickness (t) : 0.75 in Nominal Radius to Tank Centerline (r) : 900.375 in Design Load per Bolt (P) : 0 lbf Bolt Diameter (d) = 2.25 in Threads per unit length (n) = 4.5 Bolt Yield Load = A-s * Sy Bolt Yield Load = 3.0206 * 36,000 Bolt Yield Load = 108,742.1206 lbf Seismic Design Bolt Load (Pa) = 0 lbf Anchor Chairs will be designed to withstand Design Load per Bolt Anchor Chair Design Load, (P) : 0 lbf

  • Page: 48/54

    NORMAL AND EMERGENCY VENTING (API-2000 6th EDITION) Back NORMAL VENTING T_boil (Product boiling point) = 299 degf T_flash (Product flash point) = 99 degf Vpe (Maximum emptying rate) = 100.0 gpm Vpf (Maximum filling rate) = 100.0 gpm Vtk (Tank capacity) = 5.4953515955E6 gal In-breathing Required in-breathing flow rate due to liquid movement API-2000 A.3.4.1.1 Vip = 5.6 * Vpe * (60 / 42) = 5.6 * 100.0 * (60 / 42) = 800.0 ft^3/hr As per API-2000 A.3.4.1.2 Table A.4 Column 2, Required in-breathing flow rate due to thermal effects (VIT) = 71794.5966 ft^3/hr Total required in-breathing volumetric flow rate Vi = Vip + VIT = 800.0 + 71794.5966 = 72594.5966 ft^3/hr Out-breathing (T_flash < 100) OR (T_boil < 300) ==> Use API-2000 section A.3.4.2.2 Required out-breathing flow rate due to liquid movement API-2000 A.3.4.2.2 Vop = 12 * Vpf = 12 * 100.0 = 1200.0 ft^3/hr As per API-2000 A.3.4.2.2 Table A.4 Column 4, Required out-breathing flow rate due to thermal effects (VOT) = 71794.5966 ft^3/hr Total required out-breathing volumetric flow rate Vo = Vop + VOT = 1200.0 + 71794.5966 = 72994.5966 ft^3/hr EMERGENCY VENTING D (Tank diameter) = 150 ft H (Tank height) = 40 ft Pg (Design pressure) = 0.1 psi inslation_type (Insulation type) = no insulation vapour_pressure_type (Vapour pressure type) = hexane or similar As per API-2000 Table 9, Environmental factor for insulation (F_ins) = 1.0 As per API-2000 Table 9, Environmental factor for drainage (F_drain) = 0.5 Environmental factor API-2000 4.3.3.3.4 F = MIN(F_ins , F_drain) = MIN(1.0 , 0.5) = 0.5 Wetted surface area ATWS = pi * D * MIN(H , 30) = pi * 150 * MIN(40 , 30) = 14137.1669 ft^2 Required emergency venting capacity API-2000 Table 6 and 4.3.3.3.4 q = 742000 * F = 742000 * 0.5 = 371000.0 ft^3/hr

  • Page: 49/54

    PLAN VIEW APPURTENANCE

    MARK CUST. MARK DESCRIPTION OUTSIDE PROJ (in)

    INSIDE PROJ (in) ORIENT

    RADIUS (in) REMARKS

    REF DWG

    RH01 30" x 30" ROOF

    HATCH -- 0" 90 ' 70'-10" RM99RN01 6" ROOF NOZZLE 8" 8" 45 ' 41'-8" RN01RV01

    12" x 24" ROOF VENT 1'-4 5/16" 0" 0 ' 25'-0" RV

    RV02 6" GOOSENECK

    ROOF VENT 8" 0" 0 ' 0" RV02

    ELEVATION VIEW APPURTENANCE

    MARK CUST. MARK DESCRIPTION OUTSIDE PROJ (in)

    INSIDE PROJ

    (in) ORIENT ELEVATION (in) REMARKS

    REF DWG

    CD01 36" x 48" SHELL

    CLEAN OUT 6 5/8" 0" 180 ' 1'-1" CD01NP01A STD API -- -- 0 ' 3'-4" NP01PF01A

    10" PIPE OVERFLOW 2'-0" 1'-3" 270 ' 37'-3" PF01

    SM01 30" SHELL MANWAY 10 3/8" 0" 70 ' 3'-0" W/ DAVIT SM01

    SN01 6" SHELL NOZZLE 8" 7 1/4" 30 ' 1'-0 1/8" SN01

    SW DOUBLE

    STRINGER STAIRWAY (CW)

    -- -- 59.38 ' -- SW01

    Warnings!! Shell Clean Outs Clean-Out-0001 1.- Please revise the bottom plate thickness, has problem. Shell Pipe Overflows Pipe-Overflow-0001 1.- Re Pad thickness is less than min req'd. Nozzle Nozzle-0001 Reinforcement Requirements (Per API-650 and other references below) NOZZLE Description : 6 in SCH 80 TYPE RFSO

  • Page: 50/54

    t_rpr = (Re Pad Required Thickness) t_n = (Thickness of Neck) Sd_n = (Stress of Neck Material) Sd_s = (Stress of Roof Material) CA = (Corrosion Allowance of Neck) MOUNTED ON ROOF: Elevation = 42.1032 ft ROOF PARAMETERS: t-calc = 0.1875 in t_cr = 0.1875 in (Roof t-calc less C.A) t_c = 0.1875 in t_Basis = 0.1875 in (FOR ROOF NOZZLE,REF. API-650 FIG 5-19, TABLE 5-14 AND FOOTNOTE A OF TABLE 5-14, or API-650 FIG 5-20, TABLE 5-15 AND FOOTNOTE A OF TABLE 5-15) Required Area = t_Basis * D Required Area = 0.1875 * 6.625 Required Area = 1.2422 in^2 Available Roof Area = (t_c - t_Basis) * D Available Roof Area = (0.1875 - 0.1875) * 6.625 Available Roof Area = 0 in^2 Available Nozzle Neck Area = [4 * (t_n - CA) + t_c] * (t_n - ca) * MIN((Sd_n/Sd_s) 1) Available Nozzle Neck Area = [4 * (0.432 - 0) + 0.1875] * (0.432 - 0) * MIN((15,000/23,200) 1) Available Nozzle Neck Area = 0.6921 in^2 A-rpr = (Required Area - Available Roof Area - Available Nozzle Neck Area) A-rpr = 1.2422 - 0 - 0.6921 A-rpr = 0.5501 in^2 t_rpr = (A_rpr / D) + repad_CA t_rpr = (0.5501 / 6.625) + 0 t_rpr = 0.083 in Reinforcement Pad is required. Based on Roof Nozzle Size of 6 in Repad Size (OD) Must be 15 in Nozzle Nozzle-0001 Reinforcement Requirements NOZZLE Description : 6 in SCH 80 TYPE RFSO t_rpr = (Re Pad Required Thickness) t_n = (Thickness of Neck) Sd_n = (Stress of Neck Material) Sd_s = (Stress of Shell Course Material) CA = (Corrosion Allowance of Neck) MOUNTED ON SHELL 1 : Elevation = 1.0104 ft COURSE PARAMETERS:

  • Page: 51/54

    t-calc = 0.6556 in t_cr = 0.6556 in (Course t-calc less C.A) t_c = 0.75 in (Course t less C.A.) t_Basis = 0.6556 in (SHELL NOZZLE REF. API-650 TABLE 5-6, TABLE 3-6 AND FOOTNOTE A OF TABLE 5-7) Required Area = t_Basis * D Required Area = 0.6556 * 6.625 Required Area = 4.3434 in^2 Available Shell Area = (t_c - t_Basis) * D Available Shell Area = (0.75 - 0.6556) * 6.625 Available Shell Area = 0.6254 in^2 Available Nozzle Neck Area = [4 * (t_n - CA) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1) Available Nozzle Neck Area = [4 * (0.432 - 0) + 0.75] * (0.432 - 0) * MIN((15,000/23,200) 1) Available Nozzle Neck Area = 1.3206 in^2 A-rpr = (Required Area - Available Shell Area - Available Nozzle Neck Area) A-rpr = 4.3434 - 0.6254 - 1.3206 A-rpr = 2.3974 in^2 t_rpr = (A_rpr / D) + repad_CA t_rpr = (2.3974 / 6.625) + 0 t_rpr = 0.3619 in Reinforcement Pad is required. Based on Shell Nozzle Size of 6 in Repad Size (L x W) Must be 15.75 x 19.5 in Manway Manway-0001 Reinforcement Requirements MANWAY Description : 30 in SCH -- t_rpr = (Re Pad Required Thickness) t_n = (Thickness of Neck) Sd_n = (Stress of Neck Material) Sd_s = (Stress of Shell Course Material) CA = (Corrosion Allowance of Neck) MOUNTED ON SHELL 1 : Elevation = 3.0 ft COURSE PARAMETERS: t-calc = 0.6556 in t_cr = 0.6556 in (Course t-calc less C.A) t_c = 0.75 in (Course t less C.A.) t_Basis = 0.6556 in (SHELL MANWAY REF. API-650 TABLE 5-6, TABLE 3-6 AND FOOTNOTE A OF TABLE 5-7) Required Area = t_Basis * D Required Area = 0.6556 * 31.25 Required Area = 20.4876 in^2

  • Page: 52/54

    Available Shell Area = (t_c - t_Basis) * D Available Shell Area = (0.75 - 0.6556) * 31.25 Available Shell Area = 2.9499 in^2 Available Manway Neck Area = [4 * (t_n - CA) + t_c] * (t_n - CA) * MIN((Sd_n/Sd_s) 1) Available Manway Neck Area = [4 * (0.625 - 0) + 0.75] * (0.625 - 0) * MIN((23,200/23,200) 1) Available Manway Neck Area = 3.4375 in^2 A-rpr = (Required Area - Available Shell Area - Available Manway Neck Area) A-rpr = 20.4876 - 2.9499 - 3.4375 A-rpr = 14.1002 in^2 t_rpr = (A_rpr / D) + repad_CA t_rpr = (14.1002 / 31.25) + 0 t_rpr = 0.4512 in Reinforcement Pad is required. Based on Shell Manway Size of 30 in Repad Size (L x W) Must be 60.75 x 73.5 in

  • Page: 53/54

    CAPACITIES and WEIGHTS Back Maximum Capacity (to Max Liq Level) : 125,910 BBLS Capacity to Top of Shell (to Tank Height) : 125,910 BBLS Working Capacity (to Normal Working Level) : 119,615 BBLS Net working Capacity (Working Capacity - Min Capacity) : 113,319 BBLS Minimum Capacity (to Min Liq Level) : 6,295 BBLS

    Component New Condition (lbf) Corroded (lbf) SHELL 344,436 344,436ROOF 135,680 135,680

    RAFTERS 88,963 88,963GIRDERS 11,481 11,481FRAMING 0 0

    COLUMNS 14,892 14,892BOTTOM 175,798 175,798

    STAIRWAYS 3,677 3,677STIFFENERS 3,386 3,386

    WIND GIRDERS 20,061 20,061ANCHOR CHAIRS 0 0

    INSULATION 0 0TOTAL 798,374 798,374

    Weight of Tank, Empty : 798,374 lbf Weight of Tank, Full of Product (SG = 1) : 44,926,056 lbf Weight of Tank, Full of Water : 44,926,056.2042 lbf Net Working Weight, Full of Product : 42,719,672.094 lbf Net Working Weight Full of Water : 42,719,672.094 lbf Foundation Area Req'd : 15,549.9687 ft^2 Foundation Loading, Empty : 51.3424 lbf/ft^2 Foundation Loading, Full of Product : 2,837.7987 lbf/ft^2 Foundation Loading, Full of Water : 2,837.7987 lbf/ft^2 SURFACE AREAS Roof : 17,737.923 ft^2 Shell : 18,849.5559 ft^2 Bottom : 15,549.9687 ft^2 Wind Moment : 6,605,700.0202 ft-lbf Seismic Moment : 27,791,667.4683 ft-lbf MISCELLANEOUS ATTACHED ROOF ITEMS MISCELLANEOUS ATTACHED SHELL ITEMS

  • Page: 54/54

    MAWP & MAWV SUMMARY Back MAWP = Maximum calculated internal pressure MAWV = Maximum calculated external pressure

    MAXIMUM CALCULATED INTERNAL PRESSURE

    MAWP = 2.5 psi or 69.2061 inh2o (per API-650 App. F.1.3 & F.7) MAWP = 2.4315 psi or 67.3099 inh2o (due to shell) MAWP = 0.0765 psi or 2.1165 inh2o (due to roof) TANK MAWP = 0.0765 psi or 2.1165 inh2o Warning!! - Design internal pressure is greater than maximum allowable working pressure (MAWP).

    MAXIMUM CALCULATED EXTERNAL PRESSURE

    MAWV = -1 psi or -27.6825 inh2o (per API-650 V.1) MAWV = -0.3019 psi or -8.3573 inh2o (due to shell) MAWV = -0.0575 psi or -1.5917 inh2o (due to roof) TANK MAWV = -0.0575 psi or -1.5915 inh2o Warning!! - Design external pressure is greater than maximum allowable working vacuum (MAWV).