ammonia

58
PRO/II CASEBOOK Ammonia Synthesis ABSTRACT Over 100 million tons of ammonia are produced each year. The rewards for reducing costs, increasing efficiency and improving the profitability of ammonia plants are enormous. Computer simulation of the plant is the first step towards identifying which parameters control the conversion rate, the product purity, the energy usage and the production rate. This casebook demonstrates the use of PRO/II ® in the simulation of ammonia process. The entire plant is modeled, from the reforming of the hydrocarbon feedstream to synthesis gas through its purification to its conversion to ammonia in a synthesis reactor. The ammonia synthesis loop involves a large recycle compared to the feed and product rates. In addition there are several thermal recycles and two control loops. Special thermodynamics are used to ensure that the separation of ammonia from the other components is predicted accurately. The casebook outlines the use of the model for parametric studies in the evolution of a control strategy. Casebook #3. Ammonia Synthesis Rev. 0 January 1992 ® PRO/II is a registered mark of SIMULATION SCIENCES INC. SM - SIMSCI is a service mark of SIMULATION SCIENCES INC. © Copyright 1992, SIMULATION SCIENCES INC. ALL RIGHTS RESERVED

Upload: ridhajamel

Post on 22-Oct-2015

12 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Ammonia

PRO/II CASEBOOK

Ammonia Synthesis

ABSTRACT

Over 100 million tons of ammonia are produced each year. The rewards for reducing costs, increasingefficiency and improving the profitability of ammonia plants are enormous. Computer simulation of the plantis the first step towards identifying which parameters control the conversion rate, the product purity, the energyusage and the production rate.

This casebook demonstrates the use of PRO/II® in the simulation of ammonia process. The entire plant ismodeled, from the reforming of the hydrocarbon feedstream to synthesis gas through its purification to itsconversion to ammonia in a synthesis reactor.

The ammonia synthesis loop involves a large recycle compared to the feed and product rates. In additionthere are several thermal recycles and two control loops. Special thermodynamics are used to ensure thatthe separation of ammonia from the other components is predicted accurately.

The casebook outlines the use of the model for parametric studies in the evolution of a control strategy.

Casebook #3. Ammonia SynthesisRev. 0 January 1992

® PRO/II is a registered mark of SIMULATION SCIENCES INC.SM - SIMSCI is a service mark of SIMULATION SCIENCES INC.© Copyright 1992, SIMULATION SCIENCES INC. ALL RIGHTS RESERVED

Page 2: Ammonia

SIMSCISimulation Sciences Inc.

HEADQUARTERS: FULLERTON, CALIF, USAPHONE (714) 879-9180

(800) 854-3198 (USA)(800) 427-4672 (CALIF.)(800) 874-6724 (CANADA)

TELEX 4722053 or 685547CABLE SSI, FULLERTON, CALIFFAX (714) 447-4107

MID-USA/Virgin islands: HOUSTON, TEXAS, USAPHONE (713) 683-1710

(800) 231-2754 (USA)FAX (713) 683-6613

DENVER, COLORADO, USAPHONE (303) 758-6862FAX (303) 692-0757

EAST USA/EAST CANADA/S AMERICA: NEWTOWN SQUARE, PA, USAPHONE (215) 359-0801

(800) 237-4371 (USA) (800) 648-8883 (CANADA)

TELEX 405097 OR 62918713FAX (215) 359-0806

EUROPE/MID-EAST/AFRICA: STOCKPORT, CHESHIRE, UKPHONE 061-429-6744TELEX 666127FAX 061-480-9063

PACIFIC RIM: BREA, CALIF, USA PHONE (714) 579-0412

(800) 827-7999 (USA) (800) 443-4418 (CANADA)

TELEX 413692 OR 62053595FAX (714) 579-7468

JAPAN: TOKYOPHONE 3-3585-3191TELEX J22274FAX 3-3589-0516

Page 3: Ammonia

INTRODUCTIONChemically combined nitrogen is essential for the growth of all living organisms. Neither animals nor (withone or two exceptions) plants can assimilate free nitrogen from the air; they depend upon nitrates, ammoniumsalts or other nitrogen compounds found in the soil.

The natural supplies of fixed nitrogen were adequate for many centuries to satisfy the normal processes ofnature. However, by the beginning of the nineteenth century, the increase in world population and the growthof big cities created a demand from the more industrialized countries for other supplemental sources of fixednitrogen.

This supplement was first found in imported guano and sodium nitrate and later in ammoniacal solutions andammonium sulphate by-products from the carbonization of coal in gas-works and coke ovens.

By the start of this century, with the demand for fertilizer nitrogen again having outstripped supply, necessityhad once again become the mother of invention and three different processes for the fixation of nitrogen werein commercial operation and adequate supplies of fertilizer nitrogen were assured.

One of those three was the direct synthesis of ammonia from nitrogen and hydrogen by the Haber-Boschprocess. This was developed in Germany between 1905 and 1913 and virtually all fixed nitrogen is nowproduced by this process.

The total world production in 1990 was over 100 million tons of fixed nitrogen and is increasing at the rate ofover 4% per annum. More than 90% of this is produced as ammonia and about 80% of the total fixed nitrogenproduction is used in fertilizers.

Alternative Routes to Ammonia

There are three principal licensors of ammonia synthesis processes1: Braun, ICI and Kellogg. All produceammonia from hydrocarbon feedstocks and air. The hydrocarbon feedstock is usually a natural gas althoughothers, such as naphtha, are used where natural gas is not locally available.

The processes are fundamentally similar: the feed hydrocarbon gas is desulfurized then converted tosynthesis gas in a reforming process followed by a CO shift and methanation. The resulting syngas, afterpurification, is a mixture of hydrogen and nitrogen in stoichiometric quantities (3:1). This is converted toammonia in a synthesis reactor which, because of a low conversion per pass, is in a recycle loop.

Braun Process

The key features of the Braun Purifier process are mild primary reforming, secondary reforming with excessair, cryogenic purification of Syngas and synthesis of ammonia in Braun converters.

Twenty five single-train plants of Braun design have been contracted worldwide including the world’s largestat 2,000 tons/day.1

ICI Process

There are two ICI processes. The AMV process is a large, world-scale process for ammonia production andhas a tightly integrated energy recovery system. The LCA process produces ammonia efficiently in smallscale plants of the order of 500 tons/day and uses pressure swing adsorption to remove nitrogen, carbonmonoxide and inerts from the syngas.1

ICI licenses its ammonia processes to Chiyoda and Mannesman/KTI.

The Kellogg Process

At almost 150 units worldwide, the Kellogg process has been installed in more ammonia plants than anyother process.

1 Hydrocarbon Processing, March 1991

3

Page 4: Ammonia

Although the Kellogg process is a licensed process, operational benefits can be gained from changing anumber of the variable parameters: temperatures, recycle rates, air and steam quantities and so on. Recentlythere has been some work on lowering the steam to carbon ratio to the primary reformer and modifying thecatalysts used in the shift converters.

The emphasis in ammonia plants today is for lower energy usage. New Kellogg plants claim 6.3Gcal/shortton for all energy requirements. This compares with 6.5 Gcal/ton claimed for the ICI AMV process and 7.0Gcal/ton for the ICI LCA process.1

PROCESS OVERVIEW

The ammonia process is a single train process and divides into four stages, which operate sequentially. Instage 1 the natural gas undergoes catalytic reforming to produce hydrogen from methane and steam. Thenitrogen required for the ammonia is introduced at this stage. In stage 2, the resulting syngas is purified bythe removal of carbon monoxide and carbon dioxide. Stage 3 consists of compression of the syngas up tothe pressure required in stage 4, the ammonia loop.

Feedstocks and Products

Main Feeds

The main feedstock for this ammonia process is 6 million SCFD of natural gas at a temperature of 60oF anda pressure of 340 psig. Its composition is shown in Table 1.

Table 1Natural Gas Feed

Component Mole %

Carbon dioxide 2.95

Nitrogen 3.05

Methane 80.75

Ethane 7.45

Propane 3.25

Butane 2.31

Pentane 0.24

Before entering the primary reformer, the natural gas is mixed with superheated steam at 334 psig and 950F.Nitrogen is supplied from the air which is fed to the secondary reformer at 289 psig and 330 F. Thecomposition of air is displayed in Table 2.

Table 2Air Feed

Component Mole %

Oxygen 21.00

Nitrogen 78.05

Argon 0.95

There is also a water feed which is used to saturate the syngas in the MEA plant.

4

Page 5: Ammonia

Products

The main product of an ammonia plant is, of course, ammonia. The ammonia product stream must have apurity greater than 99.5%. The major impurities are hydrogen, nitrogen, argon and methane.

The other product streams are:

-- letdown gas from the final separator consisting of 45% ammonia, 30% hydrogen with the rest beingnitrogen, argon and methane

-- purge gas from the ammonia loop consisting of 10% ammonia, 50% hydrogen plus nitrogen, argonand methane

Ammonia is recovered from the letdown and purge gases in an absorber.

Detailed descriptions of the product streams may be found at the end of the Simulation section in Table 3.

Stage 1: Catalytic Reforming

Following sulfur removal, the primary steam reformer converts about 70% of the hydrocarbon feed into rawsynthesis gas in the presence of steam using a nickel catalyst.

The main reforming reactions are:

CH4 + H2O →← CO + 3H2

CO + H2O →← CO2 + H2

In the secondary reformer, air is introduced to supply the nitrogen. The heat of combustion of the partiallyreformed gas raises the temperature and supplies the energy to reform most of the remaining hydrocarbonfeed.

The reformer product stream is used to generate steam and to preheat the natural gas feed.

STEAM

AIR

GAS

AIR

AIR COMPRESSOR

PRIMARY REFORMERSECONDARY

DESULFURIZER

GAS HEATERINTERCHANGER

WASTE HEAT

NATURAL

BOILER

REFORMER

GAS

TO SHIFT REACTORS

5

Page 6: Ammonia

Stage 2: Shift and Methanation

The shift conversion is carried out in two stages. The first uses a high temperature catalyst and the seconduses a low temperature one.

The shift convertors remove the carbon monoxide produced in the reforming stage by converting it to carbondioxide by the reaction:

CO + H2O →← CO2 + H2

This reaction also creates additional hydrogen for the ammonia synthesis.

Shift reactor effluent is cooled and the condensed water is separated. The gas is then passed to thepurification section where carbon dioxide is removed from the synthesis gas in any one of a number of systemssuch as hot carbonate, MEA, Selexol etc.

After the purification stage, the last traces of carbon monoxide and carbon dioxide are removed in themethanation reactions:

CO + 3H2O →← CH4 + H2

CO2 + 4H2 →← CH4 + 2H2O

6

Page 7: Ammonia

Stage 3: Compression

The purified synthesis gas is cooled and the condensed water is removed. The gas is then compressed ina three stage unit. The centrifugal compressors are driven by steam turbines using steam generated in theplant itself, reducing overall power consumption.

Stage 4: Conversion

The compressed synthesis gas is dried, mixed with a recycle stream and introduced into the synthesis loopafter the recycle compressor. The gas mixture is chilled and liquid ammonia is removed from the secondaryseparator. The vapor is heated and passed to the ammonia converter. The feed is preheated inside theconvertor before entering the catalyst bed.

7

Page 8: Ammonia

The ammonia synthesis reaction is:

N2 + 3H2 →← 2NH3

Very high pressures (typically in excess of 300 atmospheres) are required in order to obtain a reasonableconversion. The conversion of hydrogen per pass is still less than 30% and so a large recycle of unreactedgases is necessary.

The convertor vapor product is cooled by ammonia refrigeration in the primary separator to condense theammonia product.

A purge is removed from the remaining gases to prevent the build up of inerts in the loop. The molarconcentration of inerts (argon and methane) in the convertor feed is maintained at 12%.

ENERGY INTEGRATION

The process features a high level of energy integration. Nearly all the power and heating requirements ofthe process are met by the heat available elsewhere in the process.

In the Reformer

The primary reformer passes the natural gas and steam mixture through catalyst-packed tubes in a furnace.The furnace exhaust gases are used to generate steam in a series of boilers. This steam is then used todrive the compressors.

The effluent from the secondary reformer is used in a waste heat boiler and then to preheat the feed to thedesulfurizer.

In the Shift and Methanators

The methanator feed is preheated by exchanging with the methanator product and then further heated byexchange with the high temperature shift reactor effluent. Energy from this effluent is further recovered in awaste heat boiler.

The effluent from the low temperature shift reaction is used in another reboiler.

In the ConversionThe products from the ammonia converter are mixed with the synthesis gas from the compressors and cooledfor ammonia separation by exchange with the converter feed. The convertor feed is preheated by theproducts inside the convertor vessel.

MATERIAL RECYCLE

The final stage, the Synthesis Loop, is a recycle operation. The conversion of nitrogen and hydrogen toammonia in the converter is very low - less than 30% of the hydrogen is converted per pass. Therefore therehas to be a large recycle in order to convert all the feed and ensure that the final ammonia product reachesthe required purity.

The ratio of recycle to ammonia product is of the order of 3:1.

8

Page 9: Ammonia

PROCESS SIMULATIONThe full input for the simulation may be found in Appendix B. Fragments of the input are shown here toillustrate points of interest. For detailed explanations of all the input data, please refer to the PRO/II KeywordInput Manual, which may be obtained from SimSci.

The ‘‘Simulation Flowsheets’’ shown below differ from the previous process flowsheets in that they includestream identifiers and show the way the simulation is solved. This is especially important for recycle solutions,both for thermal recycles and material recycles.

A full flowsheet may be found in Appendix A.

General DataBecause stage 4 of this process involves a loop which has a large recycle rate in comparison to the productrates, it is essential that the flowsheet balances. The normal stream recycle convergence tolerances musttherefore be tightened - in this case to 0.05%. The threshold mole fraction limit for trace components in therecycle is also reduced in order to ensure that all components are checked for the loop convergence.

The maximum allowed number of recycle trials is increased to 100 and, to check the overall balance, PRO/IIis asked to carry out an overall material balance (MBAL)

PRINT INPUT=SEQUENCE, STREAM=PART, RATE=M, MBALCALC TRIAL=100TOLER STREAM=5e-4,-1.0,0.001,0.01

Component Data

All the components in the simulation are in the PRO/II data bank.

Thermodynamic Data

For most of the units in the flowsheet the Soave-Redlich-Kwong (SRK) equation of state is an excellentpredictor of phase equilibrium and thermal properties. However, in stage 4 where the ammonia is beingseparated from the recycle gas in flash units, a more accurate prediction is needed to represent the interactionbetween ammonia and the other components in the streams. For this, a second method is defined with SRKinteraction parameters:

THERMO DATA METHOD SYSTEM=SRK, DENS(L)=RACKETT, SET=1, DEFAULT METHOD SYSTEM=SRK, DENS(L)=RACKETT, SET=2$ TEMPERATURE DEPENDENT KIJ’S FOR THE NH3 SEPARATORS

KVALUE SRK(R) 5, 6, 0.0850 / & $ H2 - N2 5, 7, 0.0004 / & $ H2 - A 5, 8, -0.2079 / & $ H2 - C1 7, 8, 0.0204 / & $ A - C1 5, 13, 0.2760 / & $ H2 - NH3 6, 13, 0.3100 / & $ N2 - NH3 7, 13, 0.3383 / & $ A - NH3 8, 13, 0.1800 $ C1 - NH3

9

Page 10: Ammonia

The alternative data set is invoked in the ammonia separators by the instruction:

METHODS SET=2

Stream Data

Feed Streams

The main feed streams - natural gas, steam and air - are defined in the normal way by rate, composition,temperature and pressure. In addition there is a water feed to the MEA plant which ensures that the syngasleaves the plant saturated.

Recycle Streams

There is a recycle stream in stage 4. Because of the large flowrate of this stream relative to the flowsheetfeeds and products and because the ammonia species is created in the recycle, an initial estimate of the rateand composition of the recycle stream is supplied.

$ RECYCLE GUESS PROP STRM=31R, TEMP=85, PRES=4660, * COMP=5,6000 / 6,2000 / 7,300 / 8,1000 / 13,700

Other Streams

There are several thermal recycles in this flowsheet. These may be simulated in several ways

-- they can be input as they are and allowed to converge naturally

-- they may be replaced by simpler units and solved rigorously after the flowsheet has solved

-- they may be circumvented by using the REFERENCE STREAM facility.

PROP STRM=13, REFS=11, TEMP=400, PRES=274 $ LTS SHIFT FEED PROP STRM=21, REFS=19, TEMP=675, PRES=254 $ METHANATOR FEED

In stage 2, the feed to the low temperature shift reactor (stream 13) is referenced to the high temperatureshift product (stream 11). This defines all the properties of stream 13 except temperature and pressure,which are always as defined on this instruction. Similarly, stream 21 is referenced to stream 19. Thesereference streams allow the heat exchangers to be solved separately after converging the air flowratecontroller loop.

Stream 13 is not defined as a product from a unit operation. However, in stage 4, stream 38B is a unitoperation product. Nevertheless, in order to eliminate a thermal recycle around the Ammonia Converter, itis referenced to stream 38.

PROP STRM=38B, REFS=38, PRESS=4780, TEMP=575

This means that stream 38B takes its composition and rate at all times from stream 38 but its temperatureand pressure are calculated by the heat exchanger from which it is a product.

10

Page 11: Ammonia

Unit Operations for Stage 1 - Catalytic Reforming

Input

Since there is no sulfur in the input, the Desulfurizer RX1 can be modeled as an isothermal flash to set thetemperature and pressure of the reformer feed.

Both the reformers, RX2 and RX3, are modeled as Gibbs Free Energy reactors with typical temperatureapproaches specified.

The rate of air feed to the secondary reformer must be such that the syngas product from stage 2 has thecorrect nitrogen:hydrogen ratio. This is achieved by putting a controller on the stage 2 Methanator productand varying the air feed rate to the secondary reformer. This means that stages 1 and 2 are in a controllerloop.

To satisfy the primary reformer, the molar ratio of steam (stream 5) to natural gas (stream 1) should be 6:1.The flow rate of the steam could be set to the correct value in the Stream Data Section. However, that wouldinvolve calculating the molar rate of natural gas (the stream is known only in volume units) before thesimulation begins. It is much easier to let the program do the calculation. Furthermore, now the natural gasstream can be changed at any time (for a turndown case or a different design case) and the steam rate isautomatically recalculated.

CALC UID=S1, NAME=STM-GAS FLOW SEQU STREAM=1,5 PROCEDURE R(1) = 6.0 * SMR(1) $ SET R(1) TO 6 * GAS RATE CALL SRXSTR(SMR,R(1),5) $ SET RATE OF STREAM 5 TO R(1) RETURN

11

Page 12: Ammonia

The secondary reformer product (stream 8) is used to preheat the desulfurizer feed (stream 2). This thermalrecycle is not a simple one in that the process demands a fixed temperature for both the products fromexchanger X-1. This is achieved by dividing the exchanger into two halves: the cold side is X-1A and issolved before the desulfurizer; the secondary reformed product is cooled in H-1, a combination of waste heatboiler WHB1 and the hot side of X-1.

HX UID=X-1A COLD FEED=2, V=3, DP=2 SPEC COLD, TEMP=750

..............Solve DesulfurizerSolve Primary ReformerSolve Secondary Reformer..............

HX UID=H-1, NAME=COOL REFGAS HOT FEED=8, M=10, DP=4 SPEC HOT, TEMP=675

After stages 1 and 2 have solved, H-1 is divided into WHB1 and the hot side of X-1 (X-1B). This can beachieved because PRO/II allows streams to be feeds to more than one unit although care must be taken notto duplicate product stream names (hence stream 10X). This procedure also uses the facility to referenceduties from one exchanger to another.

HX UID=WHB1 HOT FEED=8, V=9, DP=2 DEFI DUTY, AS, HX=H-1, DUTY, MINUS, HX=X-1A, DUTY

HX UID=X1-B HOT FEED=9, V=10X, DP=1 DEFI DUTY, AS, HX=X-1A, DUTY, MULTIPLY, -1.0

WHB1’s duty is calculated as the difference between the duties of H-1 and X-1A. X1-B’s duty is simply thesame as that for X1-A but with the opposite sign.

Results

The stream calculator determines the steam flowrate as 3953 lb mole/hr which is six times the natural gasflowrate.

Virtually all of the C2 and higher hydrocarbons are broken down in the primary reformer and converted tohydrogen, carbon monoxide and carbon dioxide. 58% of the methane in the feed is also converted. 95% ofthe residual methane is converted in the secondary reformer along with the remaining traces of ethane andpropane. All of the oxygen is consumed in the secondary reformer.

The duties of WHB1 and X-1 are 53.7 and 4.2 MM Btu/hr respectively.

12

Page 13: Ammonia

Unit Operations for Stage 2 - Catalytic Shift and Methanation

Input

Both the High Temperature Shift Reactor (RX4) and the Low Temperature Shift Reactor (RX5) are modeledby the general reactor unit operation using built-in shift reaction equilibrium data. They operate adiabaticallyand the products are assumed to be at equilibrium.

The MEA plant removes the bulk (99.92%) of the carbon dioxide from the shift reactor product and is modeledas a stream calculator (T-1). The treated gas is saturated with water in flash unit SAT and excess waterdischarged.

The final part of stage 2 is the Methanator (RX6), modeled by the general reactor unit using built-in methanatorand shift reaction equilibrium data. The reactor operates adiabatically and equilibrium is assumed to beachieved.

The syngas must have a hydrogen:nitrogen molar ratio of 3:1 to satisfy the stoichiometry of the ammoniareaction. This is accomplished by inserting a controller to measure that ratio in the Methanator product andvary the air feed to the Secondary Reformer until the required ratio is achieved. Thus there is a significantloop involving most of the units of stages 1 and 2. This makes it all the more important for any thermalrecycles within that loop to be eliminated if at all possible.

The thermal recycle in stage 2 of the plant is a complex one, involving preheating the Methanator feed firstwith its own product and then with the RX4 product. This recycle is eliminated by referencing streams 13and 21 to bypass these exchangers completely.

13

Page 14: Ammonia

Stream 13 is the same as stream 11 except for its temperature and pressure, both of which are known.Therefore stream 13 is set in the Stream Data Section and referenced to stream 11. It gets its rate andcomposition from stream 11 and its conditions from the Stream Data Section.

In the same way, stream 21 is referenced to stream 19.

After the control loop has solved, exchangers X-2, WHB2 and X-3 are solved in the normal way, except thatproduct stream names must not be duplicated.

Results

The controller solves after 3 trials with an air flowrate of 1009 lb mole/hr. This produces the requiredhydrogen:nitrogen ratio in the product from the methanator.

85% of the carbon monoxide is converted in RX-4 and 93% of the remainder is converted in RX-5. This givesa concentration of 0.055% carbon monoxide and 11.1% carbon dioxide in the exit gas from RX-5. Theconcentration of carbon dioxide is reduced to 0.02% in the MEA Plant.

The final removal of all the carbon monoxide and carbon dioxide is carried out in the methanator reactor.

Unit Operations for Stage 3- Compression

Input

The Condensate Separator (D-2) is modeled as a flash unit, decanting water in a declared water stream andusing the PRO/II built-in water solubility data.

The compressors are modeled as single stage isentropic compressions with a specified adiabatic efficiencyof 95%. Each one has an aftercooler reducing the product temperature to 95 F. The first and secondcompressors also have water decantation streams to knock out any liquid water that may have condensedout in the aftercoolers. Finally, all the remaining water is removed in a drying unit (SEP1), modeled as astream calculator.

Results

The compressor work for the three stages is 1752, 1831 and 1778 HP respectively. The correspondingaftercooler duties are 4.73, 4.70 and 4.35 MM Btu/hr.

Most of the water is removed after the first compressor with smaller amounts after the other two. The finalseparator removes all remaining water from the synthesis loop feed.

14

Page 15: Ammonia

Unit Operations for Stage 4 - Conversion

Input

The fourth compressor (CP-4) is in the ammonia recycle loop. The loop starts at that unit, stream 31R beingthe main recycle stream. An initial estimate for this stream is needed, as discussed in the Stream DataSection above.

The Ammonia Converter feed is preheated by exchanging inside the converter with its product stream. Thisexchanger is modeled separately in the flowsheet as FDEF. The exchangers before the separators do notappear on the simulation flowsheet as they are combined with the separators.

There are two thermal recycles in the loop. The loop involving the convertor and feed preheater is split byreferencing the convertor feed (stream 38B) to the product from exchanger X-4 (stream 38) in the StreamData Section. FDEF is then solved after the convertor when both feed streams have been calculated.

The loop involving exchanger X-4 is solved explicitly as it appears in the flowsheet. This involves introducingan inner loop within the ammonia recycle loop. This loop could also be eliminated by using the devicesmentioned above.

The Ammonia Converter (RX-7) is modeled using a general reactor model with supplied equilibrium data.

REAC UID=RX-7, NAME=CONVERTER FEED 38B PROD V=29A OPER PHASE=V, ADIA, DP=30, TEMP=900 $ TEMP ESTIMATE RXCA EQUIL, REFTEMP=800 STOI 5,-3 / 6,-1 / 13,2 $ 3H2 + N2 = 2NH3 BASE COMP=6, HEAT=-45.108 EQUI -32.975, 22930.4 $ LN(K) = A + B / DEG R APPR DT=20

The reference condition for heat of reaction data is given as vapor at 800 F and the stoichiometry representsthe well-known ammonia synthesis reaction. The heat of reaction is given as -45.18 thousand energy unitsper mole of base component reacted, in this case nitrogen. The equilibrium constant is a function oftemperature according to the Arrhenius equation:

Ln(Keq) = A + B/T

15

Page 16: Ammonia

The equilibrium constant is computed at a temperature equal to the reaction temperature minus the approachtemperature difference given.

The feed to the reactor has to contain 12 mole% of inerts (argon and methane). This is achieved by varyingthe rate of the recycle stream 31R using a controller (CTL1). Because this stream is also the recycle streamfor the main loop, the action of the controller could conflict with the recycle convergence. This is avoided bysolving the recycle before the controller is invoked.

In order to maintain the inerts material balance, a purge stream is taken off the recycle stream. The rate ofthis stream is calculated in a calculator (BD-1).

CALCULATOR UID=BD1, NAME=PURGE RATE DEFINE P(1) AS STREAM=28,COMP=7,RATE DEFINE P(2) AS STREAM=32A,COMP=7,RATE DEFINE P(3) AS STREAM=37A,COMP=7,RATE SEQUENCE STREAM=31X PROCEDURE V(1) = P(1) - P(2) - P(3) IF (V(1) .LE. 0.001) V(1) = 0.001 CALL SRXSTR(SMR, V(1), 31X) RETURN

SPLIT UID=SP1, NAME=PURGE FEED 31 PROD V=31P, V=31R SPEC STRE=31P, COMP=7, RATE, RATIO, STRE=31X, VALUE=1

The calculator builds a dummy stream 31X consisting of stream 28, the dry syngas feed to the loop, minusthe products from the loop, streams 32 and 37. The splitter SP1 operates such that the argon rate in thepurge stream 31P is equal to the argon rate in the dummy stream 31X - in other words equal to the net argoncoming in to the loop. Thus there is an exact argon balance in the loop and there will be no build up of inertsas the flowsheet recycle solves.

Results

The synthesis loop solves with a production of 1546 lb mole/hr of 99.66% purity ammonia. The productcompositions are shown in Table 3.

The overall conversion to ammonia is 99% with a reactor conversion per pass of 27%.

The recycle stream rate is 10618 lb mole/hr giving a recycle:feed ratio of 3.2:1. The purge stream is73 lb mol/hr which is 0.69% of the recycle flowrate.

16

Page 17: Ammonia

Table 3Ammonia Plant Product Streams

NH3 Product Let Down Gas Purge

H2 1.46 21.25 41.7089

N2 0.43 6.07 14.3781

A 1.36 3.26 4.9649

C1 1.95 7.52 5.9786

NH3 1540.35 31.98 6.2537

Rate (Lb mole/hr) 1545.55 70.08 73.3

Temperature (o F) 78.9 78.9 85.0

Pressure (psig) 350.0 350.0 4660.0

USE OF THE MODEL IN PROCESS CONTROL

Very clear benefits of using a computer model of a Kellogg Ammonia plant were demonstrated in a paperpublished in Hydrocarbon Processing, November 1980. The paper focuses on the design of control strategiesand uses a simulation model to derive the responses of the plant to different settings of various parameters.

The parameters that were examined were:

The ratio of synthesis loop recycle rate to fresh syngas In many plants the fresh syngas feed to the synthesis loop is limited by front-end restric-tions such as insufficient synthesis compressor power or absorber capacity.

The ratio of nitrogen to hydrogen in the syngasAt constant syngas make-up rates, ammonia production increased as H/N decreased, butsynthesis compressor loadings increased.

Synthesis loop pressureProduction of ammonia increases with increased loop pressure. The design pressure,constrained by mechanical considerations, is the limiting factor and the purge systemshould be operated the keep the operating pressure just below the design pressure.

The temperature of the synthesizer feedProduction is extremely sensitive to this parameter and an optimum temperature can befound. The control of this parameter is critical to the profitability of the plant.

Methane content in syngasAmmonia production decreases with increasing methane. Improved primary reformertemperature control can alleviate this problem.

The results of these simulations have been put into practice in a number of installations and these haveconsistently led to improved productivity and higher conversion efficiency.

17

Page 18: Ammonia

APPENDIX A - Complete Ammonia Plant Flowsheet

18

Page 19: Ammonia

WATER

CONDENSATESEPARATOR

SYN GAS COMPRESSORS

DRIER

WATER WATER WATER

AMMONIA CONVERTER

PURGE

SPLITTERRECYCLE

RECYCLECOMPRESSOR

PRIMARYSEPARATOR

DRY SYNGAS

REACTOR FEED

SECONDARYSEPARATOR

NH3

LETDOWNGAS

PRODUCT

GAS

PRIMARY REFORMER SECONDARY

INTERCHANGER

REFORMER

WASTE

BOILERHEAT

MEA

PLANT

CO2

SHIFT REACTORS

CONDENSATESEPARATOR

METHANATOR

HIGH

WASTE

REBOILER

COOLER

WATER

TEMPSHIFT

LOWTEMPSHIFT

HEATBOILER

INTERCHANGER

COOLERINTERCHANGER

AIRDESULFURIZER

AIR COMPRESSOR

STEAM

AIR

GAS

NATURAL

GAS

HEATER

19

Page 20: Ammonia

APPENDIX B - PRO/II Input File

TITLE PROJ=NH3 PLANT,PROB=AMMONIA,USER=SIMSCI,DATE=JAN 1992 PRINT INPUT=SEQUENCE, STREAM=PART, RATE=M, MBAL DIMEN ENGLISH, PRES=PSIG CALCU TRIAL=100, RECYCLE=TEAR TOLER STREAM=5.0e-4,-1.0,0.0001,0.01 SEQUENCE & HTR , X-1A , RX-1 , S1 , RX-2 , RX-3 , & H-1 , RX-4 , RX-5 , REB1 , CW-1 , D-1 , & T-1 , SAT , RX-6 , CT1 , X-3 , X-2 , & WHB2 , WHB1 , X1-B , CW2 , D-2 , CP-1 , & CP-2 , CP-3 , SEP1 , & REFC , CP-4 , X-4 , D-7 , DM2, , DM1, & RX-7 , FDEF , D-6 , DM3, DM4, BD1 , SP1 ,& DUM1 , CAL1 , DUM2 , CTL1 , D-8 COMPONENT DATA LIBID 1,H2O / 2,O2 / 3,CO / 4,CO2 / 5,H2 / 6,N2 / 7,A / & 8,C1 / 9,C2 / 10,C3 / 11,NC4 / 12,NC5 / 13,NH3 THERMO DATA METHOD SYSTEM=SRK, DENS(L)=RACKETT, SET=1, DEFAULT METHOD SYSTEM=SRK, DENS(L)=RACKETT, SET=2 $ TEMPERATURE DEPENDENT KIJ’S FOR THE NH3 SEPARATORS KVALUE SRK(R) 5, 6, 0.0850 / & $ H2 - N2 5, 7, 0.0004 / & $ H2 - A 5, 8, -0.2079 / & $ H2 - C1 7, 8, 0.0204 / & $ A - C1 5, 13, 0.2760 / & $ H2 - NH3 6, 13, 0.3100 / & $ N2 - NH3 7, 13, 0.3383 / & $ A - NH3 8, 13, 0.1800 $ C1 - NH3 STREAM DATA OUTPUT FORMAT=1, NSTREAM=4 FORMAT IDNO=1, NAME, PHASE, CRATE, LINE, RATE(M), MW, RATE(W), LINE, & TEMP, PRES, ENTH, LINE, VAPOR, RATE (G,FT3/D), & DENS (LB/FT3), LINE, LIQUID, ARATE(V,GAL/M), DENS(LB/GAL) PROP STRM=1, TEMP=60, PRES=340, & COMP=4,2.95 / 6,3.05 / 8,80.75 / 7.45 / 3.25 / 2.31 / 0.24,& RATE(G)=250000 $ 6.0 MMSCFD PROP STRM=5, TEMP=950, PRES=334, COMP=1,1000 PROP STRM=7, TEMP=330, PRES=289, & COMP=2,21.0 / 6,78.05 / 7,0.95 / & RATE(G)=375000 $ GUESS OF RATE - ACTUAL RATE IS CALCULATED PROP STRM=WAT, TEMP=100, PRES=271, COMP=1,1000 $ WATER STREAM $ REFERENCE STREAMS FOR LOOP CALCULATIONS PROP STRM=13, REFS=11, TEMP=400, PRES=274 $ LTS SHIFT FEED PROP STRM=21, REFS=19, TEMP=675, PRES=254 $ METHANATOR FEED $ RECYCLE GUESS PROP STRM=31R, TEMP=85, PRES=4660, & COMP=5,6000 / 6,2000 / 7,300 / 8,1000 / 13,700 PROP STRM=31X, TEMP=85, PRES=4660, & COMP= 7,7

20

Page 21: Ammonia

$ REFERENCE STREAM TO ELIMINATE THERMAL RECYCLE PROP STRM=38B, REFS=38, TEMP=575, PRESS=4780 $$ FEED-EFFLUENT XCHG NAME 1, NAT GAS / 5, STEAM / 6, PR REF OUT / 7, AIR / & 8, SEC REF OUT / 11, HTS OUT / 14, LTS OUT / 17, MEA FEED / & 19, TRTD GAS / 22, METH PROD / 25, SYN GAS / 31R, RECYCLE / & 31P, PURGE / 31, PRI SEP / 36, SEC SEP / 38, RX FEED / & 39, LET DWN GAS / 40, NH3 PROD UNIT OPS DATA $ ---------------------------------------------------------------- $ REFORMING SECTION $ ---------------------------------------------------------------- FLASH UID=HTR, NAME=GAS HEATER FEED 1 PROD V=2 ADIA DP=2, DUTY=1.6, TEST=200 HX UID=X-1A COLD FEED=2, V=3, DP=2 SPEC COLD, TEMP=750 FLASH UID=RX-1, NAME=DESULFURIZER FEED 3 PROD V=4 ISOTHERMAL DP=2, TEMP=740 CALC UID=S1, NAME=STM-GAS FLOW SEQU STREAM=1,5 PROCEDURE R(1) = 6.0 * SMR(1) $ SET STEAM RATE CALL SRXSTR(SMR,R(1),5) $ STEAM/GAS RATIO = 6:1 RETURN GIBBS UID=RX-2, NAME=PRI REFORMER FEED 4,5 PROD V=6 OPER TEMP=1360, DP=45 CONV APPROACH=-35 ELEM REACTANTS=1/3/4/5/8/9/10/11/12 GIBBS UID=RX-3, NAME=SEC REFORMER FEED 6,7 PROD V=8 OPER ADIA, DP=5 CONV APPROACH=-35 ELEM REACTANTS=1/2/3/4/5/8/9/10/11/12 HX UID=H-1, NAME=COOL REFGAS HOT FEED=8, M=10, DP=4 SPEC HOT, TEMP=675 $ ---------------------------------------------------------------- $ SHIFT AND METHANATION SECTION $ ---------------------------------------------------------------- REACT UID=RX-4, NAME=H T SHIFT FEED 10 PROD V=11 RXCA MODEL=SHIFT, EQUILIBRIUM OPER ADIA, DP=2 REACT UID=RX-5, NAME=L T SHIFT FEED 13 PROD V=14

21

Page 22: Ammonia

RXCA MODEL=SHIFT, EQUILIBRIUM OPER ADIA, DP=2 FLASH UID=REB1, NAME=REBOILER FEED 14 PROD V=15 ADIA DUTY=-45, DP=4 HX UID=CW-1 HOT FEED=15, V=16, DP=2 SPEC HOT, TEMP=100 FLASH UID=D-1, NAME=COND SEP FEED 16 PROD W=18, V=17 ADIA STCALC UID=T-1, NAME=MEA COLUMN FEED 17 OVHD V=CO2, DEWT BTMS L=19A, TEMP=100, DP=12 FOVHD 1,3,0 / 4,4,0.9992 / 5,13,0 FLASH UID=SAT, NAME=H2O SAT FEED 19A, WAT PROD V=19, W=XS ISOTHERMAL TEMP=100 REACT UID=RX-6, NAME=METHANATOR FEED 21 PROD V=22 RXCA MODEL=METHAN, EQUILIBRIUM OPER ADIA, DP=2 $ CONTROL AIR TO HAVE STOICHIOMETRIC H2 TO N2 RATIO (3:1) CONTROL UID=CT1 SPEC STRM=22, COMP=5, RATE(M), RATIO, COMP=6, RATE(M), VALUE=3.0 VARY STRM=7, RATE $ ---------------------------------------------------------------- $ NOW COMPLETE HEAT EXCHANGER CALCULATIONS $ ---------------------------------------------------------------- HX UID=X-3 HOT FEED=22, M=23, DP=2 COLD FEED=19, V=20, DP=2 CONFIG U=90, AREA=1025 HX UID=X-2 HOT FEED=11, V=12, DP=2 COLD FEED=20, V=21X, DP=2 SPEC COLD, TEMP=675 HX UID=WHB2 HOT FEED=12, V=13X, DP=2 SPEC HOT, TEMP=400 HX UID=WHB1 HOT FEED=8, V=9, DP=2 DEFI DUTY, AS, HX=H-1, DUTY, MINUS, HX=X-1A, DUTY HX UID=X1-B HOT FEED=9, V=10X, DP=1 DEFI DUTY, AS, HX=X-1A, DUTY, MULTIPLY, -1.0 FLASH UID=CW2 FEED 23 PROD M=24 ISO TEMP=100

22

Page 23: Ammonia

FLASH UID=D-2, NAME=COND SEP FEED 24 PROD W=24W, V=25 ADIA $ ---------------------------------------------------------------- $ SYNTHESIS LOOP COMPRESSORS $ ---------------------------------------------------------------- COMP UID=CP-1, NAME=1ST STAGE FEED 25 PROD V=26, W=WA1 OPER POUT=700, EFF=95 COOL TOUT=95, DP=5 COMP UID=CP-2, NAME=2ND STAGE FEED 26 PROD V=27, W=WA2 OPER POUT=1950, EFF=95 COOL TOUT=95, DP=5 COMP UID=CP-3, NAME=3RD STAGE FEED 27 PROD V=28A OPER POUT=4960, EFF=95 COOL TOUT=95, DP=5 STCA UID=SEP1, NAME=WATER REMOVL FEED 28A,1.0 OVHD TEMP=95 L=WA3 BTMS TEMP=95 V=28 FOVHD 1,1,1/2,13,0 $ ---------------------------------------------------------------- $ START OF SYNTHESIS LOOP $ ---------------------------------------------------------------- CALC UID=REFC NAME=REF_RATE SEQUENCE STREAM=31R DEFINE P(1) AS STREAM=31R, RATE(M) PROCEDURE IF (R(1) .GT. 0) GOTO 100 R(1) = P(1) 100 CALL SRXSTR(SMR,R(1),31R) RETURN COMP UID=CP-4, NAME=RECYCLE COMP FEED 31R PROD V=33 OPER POUT=4950, EFF=95 , WTOL=0.00001 HX UID=X-4 COLD FEED=36A, V=38, DP=50 HOT FEED=28,33, M=34, DP=50 OPER CTEM=85 FLASH UID=D-7, NAME=SEC SEP FEED 34 PROD L=37, V=36 ISOTHERMAL TEMP=40, PRES=4840 METH SET=2

23

Page 24: Ammonia

FLASH UID=DM1 FEED 37 PROD L=37A ISOT TEMP=40 FLASH UID=DM2 FEED 36 PROD V=36A ISOT TEMP=40 $ SIMULATE THE REACTOR WITH AN EQUILIBRIUM MODEL REAC UID=RX-7, NAME=CONVERTER FEED 38B PROD V=29A OPER PHASE=V, ADIA, DP=30, TEMP=900 $ TEMP ESTIMATE RXCA EQUIL, REFTEMP=800 STOI 5,-3 / 6,-1 / 13,2 $ 3H2 + N2 = 2NH3 BASE COMP=6, HEAT=-45.108 EQUI -32.975, 22930.4 $ LN(K) = A + B / DEG R APPR DT=20 HX UID=FDEF, NAME=RX EFFL EXCH HOT FEED=29A, V=29, DP=30 COLD FEED=38, V=38B, DP=30 OPER HTEM=430 FLASH UID=D-6, NAME=PRI SEP FEED 29 PROD V=31, L=32 ISOTHERMAL TEMP=85, PRES=4660 METH SET=2 FLASH UID=DM3 FEED 31 PROD V=31A ISOT TEMP=85 FLASH UID=DM4 FEED 32 PROD L=32A ISOT TEMP=85 CALCULATOR UID=BD1, NAME=PURGE RATE DEFINE P(1) AS STREAM=28,COMP=7,RATE DEFINE P(2) AS STREAM=32A,COMP=7,RATE DEFINE P(3) AS STREAM=37A,COMP=7,RATE SEQUENCE STREAM=31X PROCEDURE V(1) = P(1) - P(2) - P(3) IF (V(1) .LE. 0.001) V(1) = 0.001 CALL SRXSTR(SMR, V(1), 31X) RETURN SPLIT UID=SP1, NAME=PURGE FEED 31A PROD V=31P, V=31RA SPEC STRE=31P, COMP=7, RATE, RATIO, STRE=31X, VALUE=1 , RTOL=0.00001 $ PURGE FLASH UID=DUM1 FEED 31RA PROD M=31RB ADIA CALC UID=CAL1 NAME=SET_RATE

24

Page 25: Ammonia

SEQUENCE STREAM=31RB DEFINE P(1) AS CALC=REFC, R(1) PROCEDURE CALL SRXSTR(SMR,P(1),31RB) RETURN FLASH UID=DUM2 FEED 31RB PROD M=31R ADIA $ END RECYCLE LOOP CONTR UID=CTL1 SPEC STRE=38, COMP=7,8, FRAC, VALUE=0.12,ATOL=1.0E-3 $ 12% INERTS IN RX FEED VARY CALC=REFC, R(1), EST2=10500,STEPSIZE=3.0E-4 $ ADJUST RECYCLE CPARA ITER=200, IPRINT FLASH UID=D-8, NAME=LETDOWN FEED 32A,37A PROD L=40, V=39 ADIA PRES=350 RECYCLE DATA LOOP NO=1, START=X-4, END=DM2,TOLE=0.000002 LOOP NO=2, START=CP-4, END=DUM2 , TOLE=0.0015 ACCEL TYPE=WEGS, STREAM=36A,31R

$ CASE STUDY TO CHANGE INERT MOLE % IN RECYCLE TO 14%

CASESTUDY OLDCASE=BASECASE,NEWCASE=14PT CHANGE CONTROLLER=CTL1,SPEC,VALUE=0.14

25

Page 26: Ammonia

APPENDIX C - PRO/II® Output

The following pages show selected parts of the output file from the ammonia plant simulation. A completecopy of the output can be obtained from SimSci.

The order of the output is shown below:

Plant material balanceCompressor CP-3Reactors

RX-4RX-5RX-6RX-7RX-2RX-3

Heat exchanger X-3Stream calculator T-1 (MEA Column)User defined output for all streams in the simulation

26

Page 27: Ammonia

SIMULATION SCIENCES INC. R PAGE P-1 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE PLANT MATERIAL BALANCE MAR 1992 ============================================================================== FEED STREAMS: 1 5 7 WAT 13 21 8 19A 28 PRODUCT STREAMS: 17 31P 39 40 18 XS 21X 13X 10X 24W WA1 WA2 28A OVERALL PLANT MOLAR BALANCE -------------------------------- LB-MOL/HR ----------------------------- PERCENT COMPONENT FEED +REACTION -PRODUCT =DEVIATION DEV -------------------------------------------- -------------------- ----------------- ----------------- ----------------- ---------------- 1 H2O 11121.489 -1072.243 10049.246 0.000 0.00 2 O2 211.874 -211.874 0.000 0.000 0.00 3 CO 408.041 0.000 408.041 0.000 0.00 4 CO2 1164.029 747.995 1912.024 0.000 0.00 5 H2 11784.837 57.594 11849.259 -6.828 -0.06 6 N2 4845.337 -788.920 4058.665 -2.248 -0.06 7 A 57.509 0.000 57.509 0.000 0.00 8 C1 589.934 -516.825 73.404 -0.295 -0.40 9 C2 49.080 -49.080 0.000 0.000 0.00 10 C3 21.411 -21.411 0.000 0.000 0.00 11 NC4 15.218 -15.218 0.000 0.000 0.00 12 NC5 1.581 -1.581 0.000 0.000 0.00 13 NH3 0.000 1577.793 1578.581 -0.788 -0.05 TOTAL 30270.340 -293.769 29986.727 -10.156 -0.03 OVERALL PLANT MASS BALANCE -------------------------------- LB-MOL/HR ----------------------------- PERCENT COMPONENT FEED +REACTION -PRODUCT =DEVIATION DEV -------------------------------------------- -------------------- ----------------- ----------------- ----------------- ---------------- 1 H2O 200353.63 -19316.46 181037.16 0.00 0.00 2 O2 6779.74 -6779.74 0.00 0.00 0.00 3 CO 11429.63 0.00 11429.63 0.00 0.00 4 CO2 51228.94 32919.26 84148.20 0.00 0.00 5 H2 23758.23 116.11 23888.11 -13.76 -0.06 6 N2 135732.44 -22100.02 113695.38 -62.96 -0.06 7 A 2297.35 0.00 2297.35 0.00 0.00 8 C1 9464.32 -8291.43 1177.63 -4.74 -0.40 9 C2 1475.83 -1475.83 0.00 0.00 0.00 10 C3 944.15 -944.15 0.00 0.00 0.00 11 NC4 884.53 -884.53 0.00 0.00 0.00 12 NC5 114.08 -114.08 0.00 0.00 0.00 13 NH3 0.00 26871.40 26884.81 -13.42 -0.05 TOTAL 444462.84 0.53 444558.22 -94.85 -0.02

27

Page 28: Ammonia

SIMULATION SCIENCES INC. R PAGE P-5 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE COMPRESSOR SUMMARY MAR 1992 ============================================================================== UNIT 24, ’CP-1’, ’1ST STAGE’ FEEDS 25 PRODUCTS VAPOR 26 WATER WA1 OPERATING CONDITIONS INLET ISENTROPIC OUTLET ---------------- -------------------- -------------------- TEMPERATURE, F 100.00 283.71 293.34 PRESSURE, PSIG 250.00 700.00 700.00 ENTHALPY, MM BTU/HR -5.9524 -1.7168 -1.4938 ENTROPY, BTU/LB-MOL-F 31.0928 31.0928 31.1840 CP, BTU/LB-MOL-F 6.9731 7.0889 CV, BTU/LB-MOL-F 4.9419 5.0481 CP/(CP-R) 1.3982 1.3892 CP/CV 1.4110 1.4043 MOLE PERCENT VAPOR 100.0000 100.0000 100.0000 MOLE PERCENT LIQUID 0.0000 0.0000 0.0000 MOLE PERCENT H/C LIQUID 0.0000 0.0000 0.0000 MOLE PERCENT WATER 0.0000 0.0000 0.0000 ACT VAP RATE, M FT3/MIN 1.2463 ADIABATIC EFF, PERCENT 95.0000 POLYTROPIC EFF, PERCENT 95.6409 ISENTROPIC COEFFICIENT, K 1.3993 POLYTROPIC COEFFICIENT, N 1.4253 HEAD, FT ADIABATIC 116241.85 POLYTROPIC 117026.06 ACTUAL 122359.84 WORK, HP THEORETICAL 1664.67 POLYTROPIC 1675.90 ACTUAL 1752.28 AFTERCOOLER DUTY, MM BTU/HR -4.73 TEMPERATURE, F 95.00 PRESSURE, PSIG 695.00 NOTE: POLYTROPIC AND ISENTROPIC COEFFICIENTS CALCULATED FROM HEAD EQUATION

28

Page 29: Ammonia

SIMULATION SCIENCES INC. R PAGE P-9 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 8, ’RX-4’, ’H T SHIFT’ OPERATING CONDITIONS REACTOR TYPE ADIABATIC SHIFT CONVERTER DUTY, MM BTU/HR -1.49948E-04 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -5.2517 INLET OUTLET -------------------- -------------------- FEED 10 VAPOR PRODUCT 11 TEMPERATURE, F 675.00 758.58 PRESSURE, PSIG 280.0000 278.0000 REACTION DATA -------------------- RATES, LB-MOL/HR -------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ----------------------------------------- --------------------- -------------------- --------------------- -------------------- 1 H2O 3220.2144 -296.8296 2923.3848 0.0922 2 O2 1.77822E-08 0.0000 1.77822E-08 3 CO 348.6051 -296.8295 51.7756 0.8515 4 CO2 423.2684 296.8296 720.0980 5 H2 2093.5256 296.8296 2390.3552 6 N2 807.5563 0.0000 807.5563 7 A 9.5848 0.0000 9.5848 8 C1 10.7034 0.0000 10.7034 9 C2 6.41714E-07 0.0000 6.41714E-07 10 C3 1.29036E-08 0.0000 1.29036E-08 11 NC4 9.78961E-09 0.0000 9.78961E-09 12 NC5 7.88639E-09 0.0000 7.88639E-09 TOTAL 6913.4580 0.0000 6913.4580 LB-MOL/HR FRACTION BASE COMPONENT REACTION CONVERTED CONVERTED(1) -------------------------------------------- ---------------- -------------------- ------------------------- 3 CO SHIFT 296.8295 0.8515 (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED

29

Page 30: Ammonia

SIMULATION SCIENCES INC. R PAGE P-10 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 8, ’RX-4’, ’H T SHIFT’ (CONT) REACTOR MASS BALANCE ------------------------ RATES, LB/HR --------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ----------------------------------------- --------------------- --------------------- --------------------- ----------------- 1 H2O 58012.1563 -5347.3789 52664.7773 0.0922 2 O2 5.69011E-07 0.0000 5.69011E-07 3 CO 9764.7783 -8314.4922 1450.2860 0.8515 4 CO2 18628.0430 13063.4707 31691.5137 5 H2 4220.5479 598.4082 4818.9561 6 N2 22622.0742 0.0000 22622.0742 7 A 382.8918 0.0000 382.8918 8 C1 171.7144 0.0000 171.7144 9 C2 1.92963E-05 0.0000 1.92963E-05 10 C3 5.69011E-07 0.0000 5.69011E-07 11 NC4 5.69011E-07 0.0000 5.69011E-07 12 NC5 5.69011E-07 0.0000 5.69011E-07 TOTAL 113802.2110 0.0000 113802.2110

30

Page 31: Ammonia

SIMULATION SCIENCES INC. R PAGE P-11 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 9, ’RX-5’, ’L T SHIFT’ OPERATING CONDITIONS REACTOR TYPE ADIABATIC SHIFT CONVERTER DUTY, MM BTU/HR 6.16452E-05 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -0.8483 INLET OUTLET -------------------- -------------------- FEED 13 VAPOR PRODUCT 14 TEMPERATURE, F 400.00 413.61 PRESSURE, PSIG 274.0000 272.0000 REACTION DATA --------------------- RATES, LB-MOL/HR ----------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ---------------------------------------- --------------------- -------------------- ------------------------ --------------------- 1 H2O 2923.3848 -47.9456 2875.4392 0.0164 2 O2 1.77822E-08 0.0000 1.77822E-08 3 CO 51.7756 -47.9456 3.8300 0.9260 4 CO2 720.0980 47.9456 768.0436 5 H2 2390.3552 47.9456 2438.3008 6 N2 807.5563 0.0000 807.5563 7 A 9.5848 0.0000 9.5848 8 C1 10.7034 0.0000 10.7034 9 C2 6.41714E-07 0.0000 6.41714E-07 10 C3 1.29036E-08 0.0000 1.29036E-08 11 NC4 9.78961E-09 0.0000 9.78961E-09 12 NC5 7.88639E-09 0.0000 7.88639E-09 TOTAL 6913.4580 0.0000 6913.4580 LB-MOL/HR FRACTION BASE COMPONENT REACTION CONVERTED CONVERTED(1) ------------------------------------- -------------------- --------------------- ------------------------ 3 CO SHIFT 47.9456 0.9260 (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED

31

Page 32: Ammonia

SIMULATION SCIENCES INC. R PAGE P-12 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 9, ’RX-5’, ’L T SHIFT’ (CONT) REACTOR MASS BALANCE --------------------- RATES, LB-MOL/HR ----------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ---------------------------------------- --------------------- -------------------- ------------------------ --------------------- 1 H2O 52664.7773 -863.7422 51801.0352 0.0164 2 O2 5.69011E-07 0.0000 5.69011E-07 3 CO 1450.2860 -1343.0044 107.2816 0.9260 4 CO2 31691.5137 2110.0879 33801.6016 5 H2 4818.9561 96.6582 4915.6143 6 N2 22622.0742 0.0000 22622.0742 7 A 382.8918 0.0000 382.8918 8 C1 171.7144 0.0000 171.7144 9 C2 1.92963E-05 0.0000 1.92963E-05 10 C3 5.69011E-07 0.0000 5.69011E-07 11 NC4 5.69011E-07 0.0000 5.69011E-07 12 NC5 5.69011E-07 0.0000 5.69011E-07 TOTAL 113802.2110 0.0000 113802.2110

32

Page 33: Ammonia

SIMULATION SCIENCES INC. R PAGE P-13 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 15, ’RX-6’, ’METHANATOR’ OPERATING CONDITIONS REACTOR TYPE ADIABATIC METHANATOR DUTY, MM BTU/HR -4.16521E-06 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -0.3832 INLET OUTLET -------------------- -------------------- FEED 21 VAPOR PRODUCT 22 TEMPERATURE, F 675.00 692.54 PRESSURE, PSIG 254.0000 252.0000 REACTION DATA

--------------------- RATES, LB-MOL/HR ----------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ---------------------------------------- --------------------- -------------------- ------------------------ --------------------- 1 H2O 11.5273 5.0588 16.5861 2 O2 1.77822E-08 0.0000 1.77822E-08 3 CO 3.8300 -3.8300 4.61974E-07 1.0000 4 CO2 0.6144 -0.6144 0.0000 1.0000 5 H2 2438.3010 -13.9478 2424.3533 5.72028E-03 6 N2 807.5562 0.0000 807.5562 7 A 9.5848 0.0000 9.5848 8 C1 10.7034 4.4444 15.1478 9 C2 6.41714E-07 0.0000 6.41714E-07 10 C3 1.29036E-08 0.0000 1.29036E-08 11 NC4 9.78961E-09 0.0000 9.78961E-09 12 NC5 7.88639E-09 0.0000 7.88639E-09 TOTAL 3282.1172 -8.8889 3273.2283 LB-MOL/HR FRACTION BASE COMPONENT REACTION CONVERTED CONVERTED(1) ------------------------------------- --------------------- -------------------- ------------------------ 3 CO METHANATION 4.4444 1.1604 3 CO SHIFT 1.5903 0.4152 (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED

33

Page 34: Ammonia

SIMULATION SCIENCES INC. R PAGE P-14 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 15, ’RX-6’, ’METHANATOR’ (CONT) REACTOR MASS BALANCE --------------------- RATES, LB-MOL/HR ----------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ---------------------------------------- --------------------- -------------------- ------------------------ --------------------- 1 H2O 207.6640 91.1342 298.7982 2 O2 5.69011E-07 0.0000 5.69011E-07 3 CO 107.2816 -107.2816 1.29403E-05 1.0000 4 CO2 27.0402 -27.0402 0.0000 1.0000 5 H2 4915.6152 -28.1187 4887.4966 5.72027E-03 6 N2 22622.0723 0.0000 22622.0723 7 A 382.8918 0.0000 382.8918 8 C1 171.7144 71.3013 243.0157 9 C2 1.92963E-05 0.0000 1.92963E-05 10 C3 5.69011E-07 0.0000 5.69011E-07 11 NC4 5.69011E-07 0.0000 5.69011E-07 12 NC5 5.69011E-07 0.0000 5.69011E-07 TOTAL 28434.2813 0.0000 28434.2754

34

Page 35: Ammonia

SIMULATION SCIENCES INC. R PAGE P-15 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 34, ’RX-7’, ’CONVERTER’ OPERATING CONDITIONS REACTOR TYPE ADIABATIC REACTOR DUTY, MM BTU/HR -2.29920E-04 TOTAL HEAT OF REACTION AT 800.00 F, MM BTU/HR -35.5866 INLET OUTLET ---------------------------- ----------------------------- FEED 38B VAPOR PRODUCT 29A TEMPERATURE, F 568.10 924.35 PRESSURE, PSIG 4759.9995 4729.9995 REACTION DATA ------------------------ RATES, LB-MOL/HR ------------------------ FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ---------------------------- ---------------------------- 2 O2 6.29842E-07 0.0000 6.29842E-07 3 CO 3.25999E-05 0.0000 3.25999E-05 5 H2 8465.1299 -2366.7593 6098.3706 0.2796 6 N2 2890.1084 -788.9202 2101.1882 0.2730 7 A 727.6616 0.0000 727.6615 8 C1 879.5477 0.0000 879.5477 9 C2 2.47163E-05 0.0000 2.47163E-05 10 C3 4.81262E-07 0.0000 4.81262E-07 11 NC4 3.61721E-07 0.0000 3.61721E-07 12 NC5 3.25164E-07 0.0000 3.25164E-07 13 NH3 528.3845 1577.7932 2106.1777 TOTAL 13490.8320 -1577.8857 11912.9463 LB-MOL/HR FRACTION BASE COMPONENT REACTION CONVERTED CONVERTED(1) ------------------------------------------------ ------------------------ ------------------------ -------------------------------- 6 N2 1 788.9198 0.2730 (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED REACTOR MASS BALANCE --------------------- RATES, LB/HR ------------------------ FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ---------------------------- ---------------------------- 2 O2 2.01543E-05 0.0000 2.01543E-05 3 CO 9.13156E-04 0.0000 9.13156E-04 5 H2 17065.7012 -4771.3857 12294.3154 0.2796 6 N2 80960.6094 -22100.0195 58860.5898 0.2730 7 A 29068.6211 0.0000 29068.6211 SIMULATION SCIENCES INC. R PAGE P-16 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE REACTOR SUMMARY MAR 1992

35

Page 36: Ammonia

============================================================================== UNIT 34, ’RX-7’, ’CONVERTER’ (CONT) ---------------------------- RATES, LB/HR ---------------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ---------------------------- ------------------------ 8 C1 14110.5830 0.0000 14110.5820 9 C2 7.43220E-04 0.0000 7.43220E-04 10 C3 2.12222E-05 0.0000 2.12222E-05 11 NC4 2.10247E-05 0.0000 2.10247E-05 12 NC5 2.34609E-05 0.0000 2.34609E-05 13 NH3 8998.9170 26871.3984 35870.3164 TOTAL 150204.4380 0.0000 150204.4220

36

Page 37: Ammonia

SIMULATION SCIENCES INC. R PAGE P-17 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE GIBBS REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 5, ’RX-2’, ’PRI REFORMER’ OPERATING CONDITIONS REACTOR TYPE ISOTHERMAL DUTY, MM BTU/HR 65.7106 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR 37.5384 MINIMUM DIMENSIONLESS GIBBS FREE ENERGY (G/RT) -12.1943 INLET OUTLET ---------------------------- ---------------------------- FEED 4 5 VAPOR PRODUCT 6 TEMPERATURE, F 901.01 1360.00 PRESSURE, PSIG 334.0000 289.0000 REACTION DATA ------------------------ RATES, LB-MOL/HR ------------------------ FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ---------------------------- ------------------------ 1 H2O 3952.7412 -907.2722 3045.4690 0.2295 3 CO 0.0000 171.4357 171.4357 4 CO2 19.4343 367.9181 387.3524 5 H2 0.0000 1842.1045 1842.1045 6 N2 20.0931 0.0000 20.0931 8 C1 531.9731 -308.1938 223.7794 0.5793 9 C2 49.0799 -49.0751 4.735E-03 0.9999 10 C3 21.4107 -21.4107 3.199E-07 1.0000 11 NC4 15.2181 -15.2181 7.276E-09 1.0000 12 NC5 1.5811 -1.5811 5.861E-09 1.0000 TOTAL 4611.5313 1078.7075 5690.2388 REACTOR MASS BALANCE ---------------------------- RATES, LB/HR ---------------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ---------------------------- ------------------------ 1 H2O 71208.6250 -16344.5039 54864.1211 0.2295 3 CO 0.0000 4802.0845 4802.0845 4 CO2 855.3041 16192.0771 17047.3809 5 H2 0.0000 3713.6829 3713.6829 6 N2 562.8681 0.0000 562.8680 8 C1 8534.4453 -4944.3535 3590.0920 0.5793 9 C2 1475.8319 -1475.6895 0.1424 0.9999

37

Page 38: Ammonia

SIMULATION SCIENCES INC. R PAGE P-18 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE GIBBS REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 5, ’RX-2’, ’PRI REFORMER’ (CONT) ---------------------------- RATES, LB/HR ---------------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ------------------------ ---------------------------- 10 C3 944.1470 -944.1470 1.41070E-05 1.0000 11 NC4 884.5342 -884.5342 4.22899E-07 1.0000 12 NC5 114.0777 -114.0777 4.22899E-07 1.0000 TOTAL 84579.8281 0.5391 84580.3672

38

Page 39: Ammonia

SIMULATION SCIENCES INC. R PAGE P-19 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE GIBBS REACTOR SUMMARY MAR 1992 ============================================================================== UNIT 6, ’RX-3’, ’SEC REFORMER’ OPERATING CONDITIONS REACTOR TYPE ADIABATIC DUTY, MM BTU/HR 4.678E-03 TOTAL HEAT OF REACTION AT 77.00 F, MM BTU/HR -25.8425 MINIMUM DIMENSIONLESS GIBBS FREE ENERGY (G/RT) -12.0010 INLET OUTLET ---------------------------- ------------------------ FEED 6 7 VAPOR PRODUCT 8 TEMPERATURE, F 1232.12 1634.44 PRESSURE, PSIG 289.0000 284.0000 REACTION DATA ------------------------ RATES, LB-MOL/HR ------------------------ FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ---------------------------- ---------------------------- 1 H2O 3045.4690 174.7454 3220.2144 2 O2 211.8735 -211.8735 1.778E-08 1.0000 3 CO 171.4357 177.1695 348.6051 4 CO2 387.3524 35.9160 423.2684 5 H2 1842.1046 251.4210 2093.5256 6 N2 807.5563 0.0000 807.5563 7 A 9.5848 0.0000 9.5848 8 C1 223.7793 -213.0760 10.7034 0.9522 9 C2 4.735E-03 -4.735E-03 6.417E-07 0.9999 10 C3 3.199E-07 -3.070E-07 1.290E-08 0.9597 11 NC4 7.276E-09 2.514E-09 9.790E-09 12 NC5 5.861E-09 2.025E-09 7.886E-09 TOTAL 6699.1602 214.2979 6913.4580 REACTOR MASS BALANCE ---------------------------- RATES, LB/HR ---------------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ---------------------------- ------------------------ 1 H2O 54864.1211 3148.0352 58012.1563 2 O2 6779.7397 -6779.7397 5.69011E-07 1.0000 3 CO 4802.0840 4962.6943 9764.7783 4 CO2 17047.3809 1580.6621 18628.0430 5 H2 3713.6829 506.8650 4220.5479 6 N2 22622.0742 0.0000 22622.0742 7 A 382.8917 0.0000 382.8918 8 C1 3590.0918 -3418.3774 171.7144 0.9522 9 C2 0.1424 -0.1424 1.92963E-05 0.9999 SIMULATION SCIENCES INC. R PAGE P-20 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE GIBBS REACTOR SUMMARY MAR 1992 ==============================================================================

39

Page 40: Ammonia

UNIT 6, ’RX-3’, ’SEC REFORMER’ (CONT) ---------------------------- RATES, LB/HR ---------------------------- FRACTION COMPONENT FEED CHANGE PRODUCT CONVERTED ------------------------------------------------ ------------------------ ---------------------------- ---------------------------- ------------------------ 10 C3 1.41070E-05 -1.35380E-05 5.69011E-07 0.9597 11 NC4 4.22899E-07 1.46112E-07 5.69011E-07 12 NC5 4.22899E-07 1.46112E-07 5.69011E-07 TOTAL 113802.2030 0.0000 113802.2110

40

Page 41: Ammonia

SIMULATION SCIENCES INC. R PAGE P-23 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE HEAT EXCHANGER SUMMARY MAR 1992 ============================================================================== UNIT 17, ’X-3’ OPERATING CONDITIONS DUTY, MM BTU/HR 10.961 LMTD, F 118.819 F FACTOR (FT) 1.000 MTD, F 118.819 U*A, BTU/HR-F 92250.070 U, BTU/HR-FT2-F 90.000 AREA, FT2 1025.000 HOT SIDE CONDITIONS INLET OUTLET ---------------------------- ---------------------------- FEED 22 VAPOR PRODUCT 23 VAPOR, LB-MOL/HR 3273.228 3273.228 M LB/HR 28.434 28.434 CP, BTU/LB-F 0.820 0.809 TOTAL, LB-MOL/HR 3273.228 3273.228 M LB/HR 28.434 28.434 CONDENSATION, LB-MOL/HR 0.000 TEMPERATURE, F 692.535 219.255 PRESSURE, PSIG 252.000 250.000 COLD SIDE CONDITIONS INLET OUTLET ---------------------------- ---------------------------- FEED 19 VAPOR PRODUCT 20 VAPOR, LB-MOL/HR 3282.117 3282.117 M LB/HR 28.434 28.434 CP, BTU/LB-F 0.805 0.818 TOTAL, LB-MOL/HR 3282.117 3282.117 M LB/HR 28.434 28.434 CONDENSATION, LB-MOL/HR 0.000 TEMPERATURE, F 100.000 574.152 PRESSURE, PSIG 254.000 252.000

41

Page 42: Ammonia

SIMULATION SCIENCES INC. R PAGE P-29 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE STREAM CALCULATOR SUMMARY MAR 1992 ============================================================================== UNIT 13, ’T-1’, ’MEA COLUMN’ NET DUTY, MM BTU/HR -0.99927 FEEDS STREAM ID FACTOR 17 1.000 TOTAL RATE, LB-MOL/HR 4051.640 TEMPERATURE, F 100.000 PRESSURE, PSIG 266.000 MOLECULAR WEIGHT 15.3633 MOL FRAC VAPOR 1.00000 MOL FRAC TOTAL LIQUID 0.00000 MOL FRAC H/C LIQUID 0.00000 MOL FRAC WATER 0.00000 ENTHALPY, MM BTU/HR -1.49300 PRODUCTS OVERHEAD BOTTOMS ALTERNATE PRODUCT MIXED 19A VAPOR CO2 TOTAL RATE, LB-MOL/HR 767.429 3284.211 N/A TEMPERATURE, F -4.876 100.000 N/A PRESSURE, PSIG 266.000 254.000 N/A PRESSURE DROP, PSI 0.000 12.000 N/A ENTHALPY, MM BTU/HR 3.49010 -5.98237 N/A

42

Page 43: Ammonia

SIMULATION SCIENCES INC. R PAGE P-32 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET JAN 1992 ============================================================================== STREAM ID CO2 WAT WA1 WA2 NAME PHASE DRY VAPOR WATER WATER WATER NAME PHASE DRY VAPOR WATER WATER WATER COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 999.9999 7.9296 2.3755 2 O2 0.0000 0.0000 0.0000 0.0000 3 CO 0.0000 0.0000 0.0000 0.0000 4 CO2 767.4293 0.0000 0.0000 0.0000 5 H2 0.0000 0.0000 0.0000 0.0000 6 N2 0.0000 0.0000 0.0000 0.0000 7 A 0.0000 0.0000 0.0000 0.0000 8 C1 0.0000 0.0000 0.0000 0.0000 9 C2 0.0000 0.0000 0.0000 0.0000 10 C3 0.0000 0.0000 0.0000 0.0000 11 NC4 0.0000 0.0000 0.0000 0.0000 12 NC5 0.0000 0.0000 0.0000 0.0000 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 767.4293 999.9999 7.9296 2.3755 MOLECULAR WEIGHT 44.0100 18.0150 18.0150 18.0150 RATE, LB/HR 33774.5625 18014.9980 142.8509 42.7943 TEMPERATURE, F -4.88 100.00 95.00 95.00 PRESSURE, PSIG 266.000 271.000 695.000 1945.000 ENTHALPY, M BTU/LB-MOL 4.5478 1.2387 1.1699 1.2290 *** VAPOR PHASE *** RATE, M FT3/DAY 6989.4463 N/A N/A N/A DENSITY, LB/M FT3 3118.8838 N/A N/A N/A *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A 36.2343 0.2870 0.0860 DENSITY, LB/GAL N/A 8.2864 8.2944 8.2944

43

Page 44: Ammonia

SIMULATION SCIENCES INC. R PAGE P-33 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET JAN 1992 ============================================================================== STREAM ID WA3 XS 1 2 NAME NAT GAS PHASE WATER WATER DRY VAPOR DRY VAPOR NAME NAT GAS PHASE WATER WATER DRY VAPOR DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 1.3472 1002.0942 0.0000 0.0000 2 O2 0.0000 0.0000 0.0000 0.0000 3 CO 0.0000 0.0000 0.0000 0.0000 4 CO2 0.0000 0.0000 19.4343 19.4343 5 H2 0.0000 0.0000 0.0000 0.0000 6 N2 0.0000 0.0000 20.0931 20.0931 7 A 0.0000 0.0000 0.0000 0.0000 8 C1 0.0000 0.0000 531.9731 531.9731 9 C2 0.0000 0.0000 49.0799 49.0799 10 C3 0.0000 0.0000 21.4107 21.4107 11 NC4 0.0000 0.0000 15.2181 15.2181 12 NC5 0.0000 0.0000 1.5811 1.5811 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 1.3472 1002.0942 658.7902 658.7902 MOLECULAR WEIGHT 18.0150 18.0150 20.2966 20.2966 RATE, LB/HR 24.2690 18052.7266 13371.2080 13371.2080 TEMPERATURE, F 95.00 100.00 60.00 282.86 PRESSURE, PSIG 4955.000 254.000 340.000 338.000 ENTHALPY, M BTU/LB-MOL 1.3705 1.2378 0.9590 3.3877 *** VAPOR PHASE *** RATE, M FT3/DAY N/A N/A 6000.0039 6000.0039 DENSITY, LB/M FT3 N/A N/A 1388.8752 910.5820 *** LIQUID PHASE *** ACT.RATE, GAL/MIN 0.0488 36.3102 N/A N/A DENSITY, LB/GAL 8.2944 8.2864 N/A N/A

44

Page 45: Ammonia

SIMULATION SCIENCES INC. R PAGE P-34 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 3 4 5 6 NAME STEAM PR REF OUT PHASE DRY VAPOR DRY VAPOR WATER VAPOR WET VAPOR NAME STEAM PR REF OUT PHASE DRY VAPOR DRY VAPOR WATER VAPOR WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 3952.7412 3045.4690 2 O2 0.0000 0.0000 0.0000 0.0000 3 CO 0.0000 0.0000 0.0000 171.4357 4 CO2 19.4343 19.4343 0.0000 387.3524 5 H2 0.0000 0.0000 0.0000 1842.1046 6 N2 20.0931 20.0931 0.0000 20.0931 7 A 0.0000 0.0000 0.0000 0.0000 8 C1 531.9731 531.9731 0.0000 223.7794 9 C2 49.0799 49.0799 0.0000 4.7355E-03 10 C3 21.4107 21.4107 0.0000 3.1991E-07 11 NC4 15.2181 15.2181 0.0000 7.2758E-09 12 NC5 1.5811 1.5811 0.0000 5.8613E-09 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 658.7902 658.7902 3952.7412 5690.2388 MOLECULAR WEIGHT 20.2966 20.2966 18.0150 14.8641 RATE, LB/HR 13371.2080 13371.2080 71208.6328 84580.3750 TEMPERATURE, F 750.00 740.00 950.00 1360.00 PRESSURE, PSIG 336.000 334.000 334.000 289.000 ENTHALPY, M BTU/LB-MOL 9.7143 9.5598 26.9699 21.2011 *** VAPOR PHASE *** RATE, M FT3/DAY 6000.0039 6000.0039 36000.0234 51824.4727 DENSITY, LB/M FT3 544.6247 546.1139 422.8545 231.2722 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

45

Page 46: Ammonia

SIMULATION SCIENCES INC. R PAGE P-35 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 7 8 9 10 NAME AIR SEC REF OUT PHASE DRY VAPOR WET VAPOR WET VAPOR WET VAPOR NAME AIR SEC REF OUT PHASE DRY VAPOR WET VAPOR WET VAPOR WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 3220.2144 3220.2144 3220.2144 2 O2 211.8735 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 0.0000 348.6051 348.6051 348.6051 4 CO2 0.0000 423.2684 423.2684 423.2684 5 H2 0.0000 2093.5256 2093.5256 2093.5256 6 N2 787.4632 807.5563 807.5563 807.5563 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 0.0000 10.7034 10.7034 10.7034 9 C2 0.0000 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 0.0000 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 0.0000 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 0.0000 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 1008.9215 6913.4580 6913.4580 6913.4580 MOLECULAR WEIGHT 28.9634 16.4610 16.4610 16.4610 RATE, LB/HR 29221.8379 113802.2030 113802.2030 113802.2030 TEMPERATURE, F 330.00 1634.44 747.58 675.00 PRESSURE, PSIG 289.000 284.000 282.000 280.000 ENTHALPY, M BTU/LB-MOL -0.2170 21.5924 13.8234 13.2206 *** VAPOR PHASE *** RATE, M FT3/DAY 9188.8633 62965.0781 62965.0781 62965.0781 DENSITY, LB/M FT3 1029.2030 218.6197 378.4246 400.5077 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

46

Page 47: Ammonia

SIMULATION SCIENCES INC. R PAGE P-36 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 10X 11 12 13 NAME HTS OUT PHASE WET VAPOR WET VAPOR WET VAPOR WET VAPOR NAME HTS OUT PHASE WET VAPOR WET VAPOR WET VAPOR WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 3220.2144 2923.3848 2923.3848 2923.3848 2 O2 1.7782E-08 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 348.6051 51.7756 51.7756 51.7756 4 CO2 423.2684 720.0980 720.0980 720.0980 5 H2 2093.5256 2390.3552 2390.3552 2390.3552 6 N2 807.5563 807.5563 807.5563 807.5563 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 10.7034 10.7034 10.7034 10.7034 9 C2 6.4171E-07 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 6913.4580 6913.4580 6913.4580 6913.4580 MOLECULAR WEIGHT 16.4610 16.4610 16.4610 16.4610 RATE, LB/HR 113802.2030 113802.2030 113802.2030 113802.2030 TEMPERATURE, F 675.02 758.58 718.17 400.00 PRESSURE, PSIG 281.000 278.000 276.000 274.000 ENTHALPY, M BTU/LB-MOL 13.2206 13.3591 13.0193 10.3592 *** VAPOR PHASE *** RATE, M FT3/DAY 62965.0781 62965.0781 62965.0781 62965.0781 DENSITY, LB/M FT3 401.8654 369.4207 379.7067 523.8746 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

47

Page 48: Ammonia

SIMULATION SCIENCES INC. R PAGE P-37 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 13X 14 15 16 NAME LTS OUT PHASE WET VAPOR WET VAPOR MIXED MIXED NAME LTS OUT PHASE WET VAPOR WET VAPOR MIXED MIXED COMP. MOLE RATES, LB-MOL/HR 1 H2O 2923.3848 2875.4390 2875.4390 2875.4390 2 O2 1.7782E-08 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 51.7756 3.8300 3.8300 3.8300 4 CO2 720.0980 768.0436 768.0436 768.0436 5 H2 2390.3552 2438.3008 2438.3008 2438.3008 6 N2 807.5563 807.5563 807.5563 807.5563 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 10.7034 10.7034 10.7034 10.7034 9 C2 6.4171E-07 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 6913.4580 6913.4580 6913.4580 6913.4580 MOLECULAR WEIGHT 16.4610 16.4610 16.4610 16.4610 RATE, LB/HR 113802.2030 113802.2030 113802.2030 113802.2030 TEMPERATURE, F 400.00 413.61 267.51 100.00 PRESSURE, PSIG 274.000 272.000 268.000 266.000 ENTHALPY, M BTU/LB-MOL 10.3592 10.3815 3.8725 0.2967 *** VAPOR PHASE *** RATE, M FT3/DAY 62965.0781 62965.0781 42818.0508 36900.7617 DENSITY, LB/M FT3 523.8745 511.0703 570.2701 718.6578 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A 85.2055 103.6961 DENSITY, LB/GAL N/A N/A 7.7951 8.2864

48

Page 49: Ammonia

SIMULATION SCIENCES INC. R PAGE P-38 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 17 18 19 19A NAME MEA FEED TRTD GAS PHASE WET VAPOR WATER WET VAPOR MIXED NAME MEA FEED TRTD GAS PHASE WET VAPOR WATER WET VAPOR MIXED COMP. MOLE RATES, LB-MOL/HR 1 H2O 13.6215 2861.8179 11.5273 13.6215 2 O2 1.7782E-08 0.0000 1.7782E-08 1.7782E-08 3 CO 3.8300 0.0000 3.8300 3.8300 4 CO2 768.0436 0.0000 0.6144 0.6144 5 H2 2438.3010 0.0000 2438.3010 2438.3010 6 N2 807.5563 0.0000 807.5562 807.5562 7 A 9.5848 0.0000 9.5848 9.5848 8 C1 10.7034 0.0000 10.7034 10.7034 9 C2 6.4171E-07 0.0000 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 0.0000 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 0.0000 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 0.0000 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 4051.6404 2861.8179 3282.1172 3284.2114 MOLECULAR WEIGHT 15.3633 18.0150 8.6634 8.6694 RATE, LB/HR 62246.5703 51555.6445 28434.2793 28472.0078 TEMPERATURE, F 100.00 100.00 100.00 100.00 PRESSURE, PSIG 266.000 266.000 254.000 254.000 ENTHALPY, M BTU/LB-MOL -0.3685 1.2384 -1.8235 -1.8216 *** VAPOR PHASE *** RATE, M FT3/DAY 36900.7617 N/A 29892.2422 29892.2422 DENSITY, LB/M FT3 718.6578 N/A 384.3220 384.3220 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A 103.6961 N/A 0.0759 DENSITY, LB/GAL N/A 8.2864 N/A 8.2864

49

Page 50: Ammonia

SIMULATION SCIENCES INC. R PAGE P-39 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 20 21 21X 22 NAME METH PROD PHASE WET VAPOR WET VAPOR WET VAPOR WET VAPOR NAME METH PROD PHASE WET VAPOR WET VAPOR WET VAPOR WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 11.5273 11.5273 11.5273 16.5861 2 O2 1.7782E-08 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 3.8300 3.8300 3.8300 4.6197E-07 4 CO2 0.6144 0.6144 0.6144 0.0000 5 H2 2438.3010 2438.3010 2438.3010 2424.3533 6 N2 807.5562 807.5562 807.5562 807.5562 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 10.7034 10.7034 10.7034 15.1478 9 C2 6.4171E-07 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 3282.1172 3282.1172 3282.1172 3273.2283 MOLECULAR WEIGHT 8.6634 8.6634 8.6634 8.6869 RATE, LB/HR 28434.2793 28434.2793 28434.2793 28434.2773 TEMPERATURE, F 574.15 675.00 675.00 692.54 PRESSURE, PSIG 252.000 254.000 250.000 252.000 ENTHALPY, M BTU/LB-MOL 1.5161 2.2320 2.2319 2.3955 *** VAPOR PHASE *** RATE, M FT3/DAY 29892.2422 29892.2422 29892.2422 29811.2871 DENSITY, LB/M FT3 206.8127 189.9177 187.1087 186.1654 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

50

Page 51: Ammonia

SIMULATION SCIENCES INC. R PAGE P-40 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 23 24 24W 25 NAME SYN GAS PHASE WET VAPOR MIXED WATER WET VAPOR NAME SYN GAS PHASE WET VAPOR MIXED WATER WET VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 16.5861 16.5861 4.9339 11.6522 2 O2 1.7782E-08 1.7782E-08 0.0000 1.7782E-08 3 CO 4.6197E-07 4.6197E-07 0.0000 4.6197E-07 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 2424.3533 2424.3533 0.0000 2424.3535 6 N2 807.5562 807.5562 0.0000 807.5562 7 A 9.5848 9.5848 0.0000 9.5848 8 C1 15.1478 15.1478 0.0000 15.1478 9 C2 6.4171E-07 6.4171E-07 0.0000 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 0.0000 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 0.0000 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 0.0000 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 3273.2283 3273.2283 4.9339 3268.2944 MOLECULAR WEIGHT 8.6869 8.6869 18.0150 8.6728 RATE, LB/HR 28434.2773 28434.2773 88.8840 28345.3926 TEMPERATURE, F 219.26 100.00 100.00 100.00 PRESSURE, PSIG 250.000 250.000 250.000 250.000 ENTHALPY, M BTU/LB-MOL -0.9532 -1.8166 1.2376 -1.8213 *** VAPOR PHASE *** RATE, M FT3/DAY 29811.2871 29766.3516 N/A 29766.3516 DENSITY, LB/M FT3 312.9745 379.0680 N/A 379.0680 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A 0.1788 0.1788 N/A DENSITY, LB/GAL N/A 8.2864 8.2864 N/A

51

Page 52: Ammonia

SIMULATION SCIENCES INC. R PAGE P-41 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 26 27 28 28A NAME PHASE WET VAPOR WET VAPOR DRY VAPOR MIXED NAME PHASE WET VAPOR WET VAPOR DRY VAPOR MIXED COMP. MOLE RATES, LB-MOL/HR 1 H2O 3.7226 1.3472 0.0000 1.3472 2 O2 1.7782E-08 1.7782E-08 1.7782E-08 1.7782E-08 3 CO 4.6197E-07 4.6197E-07 4.6197E-07 4.6197E-07 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 2424.3535 2424.3535 2424.3535 2424.3535 6 N2 807.5562 807.5563 807.5562 807.5563 7 A 9.5848 9.5848 9.5848 9.5848 8 C1 15.1478 15.1478 15.1478 15.1478 9 C2 6.4171E-07 6.4171E-07 6.4171E-07 6.4171E-07 10 C3 1.2904E-08 1.2904E-08 1.2904E-08 1.2904E-08 11 NC4 9.7896E-09 9.7896E-09 9.7896E-09 9.7896E-09 12 NC5 7.8864E-09 7.8864E-09 7.8864E-09 7.8864E-09 13 NH3 0.0000 0.0000 0.0000 0.0000 RATE, LB-MOL/HR 3260.3650 3257.9895 3256.6423 3257.9895 MOLECULAR WEIGHT 8.6501 8.6433 8.6394 8.6433 RATE, LB/HR 28202.5430 28159.7480 28135.4785 28159.7480 TEMPERATURE, F 95.00 95.00 95.00 95.00 PRESSURE, PSIG 695.000 1945.000 4955.000 4955.000 ENTHALPY, M BTU/LB-MOL -1.9132 -1.9287 -1.8808 -1.8764 *** VAPOR PHASE *** RATE, M FT3/DAY 29694.1328 29672.4961 29660.2266 29665.0645 DENSITY, LB/M FT3 1007.7769 2655.5073 5954.0464 5955.4702 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A 0.0295 DENSITY, LB/GAL N/A N/A N/A 8.2944

52

Page 53: Ammonia

SIMULATION SCIENCES INC. R PAGE P-42 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 29 29A 31 31A NAME PRI SEP PHASE DRY VAPOR DRY VAPOR DRY VAPOR DRY VAPOR NAME PRI SEP PHASE DRY VAPOR DRY VAPOR DRY VAPOR DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 6.2984E-07 6.2984E-07 6.1825E-07 6.1825E-07 3 CO 3.2600E-05 3.2600E-05 3.2391E-05 3.2391E-05 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 6098.3706 6098.3706 6079.1968 6079.1968 6 N2 2101.1882 2101.1882 2095.6528 2095.6528 7 A 727.6615 727.6615 723.6483 723.6483 8 C1 879.5476 879.5476 871.4004 871.4004 9 C2 2.4716E-05 2.4716E-05 2.4296E-05 2.4296E-05 10 C3 4.8126E-07 4.8126E-07 4.7263E-07 4.7263E-07 11 NC4 3.6172E-07 3.6172E-07 3.5508E-07 3.5508E-07 12 NC5 3.2516E-07 3.2516E-07 3.1995E-07 3.1995E-07 13 NH3 2106.1777 2106.1777 911.4990 911.4990 RATE, LB-MOL/HR 11912.9453 11912.9453 10681.3975 10681.3975 MOLECULAR WEIGHT 12.6085 12.6085 12.1120 12.1120 RATE, LB/HR 150204.4220 150204.4220 129373.1090 129373.1090 TEMPERATURE, F 430.00 924.35 85.00 85.00 PRESSURE, PSIG 4700.000 4730.000 4660.000 4660.000 ENTHALPY, M BTU/LB-MOL 2.8194 7.0395 -0.9457 -0.9726 *** VAPOR PHASE *** RATE, M FT3/DAY 108498.4690 108498.4690 97281.9922 97281.9922 DENSITY, LB/M FT3 5574.7974 3661.2556 8445.1504 8494.1504 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

53

Page 54: Ammonia

SIMULATION SCIENCES INC. R PAGE P-43 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 31P 31R 31RA 31RB NAME PURGE RECYCLE PHASE DRY VAPOR DRY VAPOR DRY VAPOR DRY VAPOR NAME PURGE RECYCLE PHASE DRY VAPOR DRY VAPOR DRY VAPOR DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 4.2418E-09 6.1460E-07 6.1401E-07 6.1460E-07 3 CO 2.2224E-07 3.2200E-05 3.2169E-05 3.2200E-05 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 41.7089 6043.2681 6037.4878 6043.2681 6 N2 14.3781 2083.2673 2081.2749 2083.2673 7 A 4.9649 719.3715 718.6834 719.3715 8 C1 5.9786 866.2504 865.4218 866.2504 9 C2 1.6670E-07 2.4153E-05 2.4130E-05 2.4153E-05 10 C3 3.2427E-09 4.6984E-07 4.6939E-07 4.6984E-07 11 NC4 2.4362E-09 3.5298E-07 3.5264E-07 3.5298E-07 12 NC5 2.1952E-09 3.1806E-07 3.1775E-07 3.1806E-07 13 NH3 6.2537 906.1120 905.2454 906.1120 RATE, LB-MOL/HR 73.2843 10618.2695 10608.1133 10618.2695 MOLECULAR WEIGHT 12.1120 12.1120 12.1120 12.1120 RATE, LB/HR 887.6198 128608.4920 128485.4920 128608.4920 TEMPERATURE, F 85.00 85.00 85.00 85.00 PRESSURE, PSIG 4660.000 4660.000 4660.000 4660.000 ENTHALPY, M BTU/LB-MOL -0.9726 -0.9726 -0.9726 -0.9726 *** VAPOR PHASE *** RATE, M FT3/DAY 667.4450 96707.0547 96614.5625 96707.0547 DENSITY, LB/M FT3 8494.1113 8494.1113 8494.1113 8494.1113 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A N/A N/A N/A DENSITY, LB/GAL N/A N/A N/A N/A

54

Page 55: Ammonia

SIMULATION SCIENCES INC. R PAGE P-44 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 31X 32 32A 33 NAME PHASE DRY VAPOR DRY LIQUID DRY LIQUID DRY VAPOR NAME PHASE DRY VAPOR DRY LIQUID DRY LIQUID DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 0.0000 1.1588E-08 1.1588E-08 6.1450E-07 3 CO 0.0000 2.0848E-07 2.0848E-07 3.2173E-05 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 0.0000 19.1734 19.1734 6044.3154 6 N2 0.0000 5.5356 5.5356 2083.5227 7 A 4.9649 4.0131 4.0131 718.6836 8 C1 0.0000 8.1472 8.1472 865.7172 9 C2 0.0000 4.1987E-07 4.1987E-07 2.4145E-05 10 C3 0.0000 8.6308E-09 8.6308E-09 4.6967E-07 11 NC4 0.0000 6.6437E-09 6.6437E-09 3.5283E-07 12 NC5 0.0000 5.2145E-09 5.2145E-09 3.1788E-07 13 NH3 0.0000 1194.6786 1194.6786 906.0308 RATE, LB-MOL/HR 4.9649 1231.5481 1231.5481 10618.2705 MOLECULAR WEIGHT 39.9480 16.9147 16.9147 12.1094 RATE, LB/HR 198.3378 20831.3164 20831.3164 128580.3440 TEMPERATURE, F 85.00 85.00 85.00 94.07 PRESSURE, PSIG 4660.000 4660.000 4660.000 4950.000 ENTHALPY, M BTU/LB-MOL -1.7133 1.0303 1.0093 -0.8987 *** VAPOR PHASE *** RATE, M FT3/DAY 45.2184 N/A N/A 96707.0625 DENSITY, LB/M FT3 30750.1934 N/A N/A 8759.1260 *** LIQUID PHASE *** ACT.RATE, GAL/MIN N/A 71.0096 71.0096 N/A DENSITY, LB/GAL N/A 4.8893 4.8893 N/A

55

Page 56: Ammonia

SIMULATION SCIENCES INC. R PAGE P-45 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 34 36 36A 37 NAME SEC SEP PHASE MIXED DRY VAPOR DRY VAPOR DRY LIQUID NAME SEC SEP PHASE MIXED DRY VAPOR DRY VAPOR DRY LIQUID COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 6.3229E-07 6.2984E-07 6.2984E-07 2.4445E-09 3 CO 3.2635E-05 3.2600E-05 3.2600E-05 3.4768E-08 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 8468.6689 8465.1289 8465.1289 3.5391 6 N2 2891.0789 2890.1082 2890.1082 0.9700 7 A 728.2684 727.6615 727.6615 0.6067 8 C1 880.8651 879.5476 879.5476 1.3171 9 C2 2.4787E-05 2.4716E-05 2.4716E-05 7.0651E-08 10 C3 4.8257E-07 4.8126E-07 4.8126E-07 1.3116E-09 11 NC4 3.6262E-07 3.6172E-07 3.6172E-07 9.0112E-10 12 NC5 3.2577E-07 3.2516E-07 3.2516E-07 6.0634E-10 13 NH3 906.0308 528.3845 528.3845 377.6484 RATE, LB-MOL/HR 13874.9131 13490.8311 13490.8311 384.0815 MOLECULAR WEIGHT 11.2949 11.1338 11.1338 16.9532 RATE, LB/HR 156715.8280 150204.4380 150204.4380 6511.4072 TEMPERATURE, F 54.90 40.00 40.00 40.00 PRESSURE, PSIG 4900.000 4840.000 4840.000 4840.000 ENTHALPY, M BTU/LB-MOL -1.4778 -1.7863 -1.7998 0.1345 *** VAPOR PHASE *** RATE, M FT3/DAY 125550.4450 122869.2340 122869.2340 N/A DENSITY, LB/M FT3 8538.7656 8499.6279 8525.0176 N/A *** LIQUID PHASE *** ACT.RATE, GAL/MIN 4.9682 N/A N/A 20.7735 DENSITY, LB/GAL 5.1201 N/A N/A 5.2241

56

Page 57: Ammonia

SIMULATION SCIENCES INC. R PAGE P-46 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 37A 38 38B 39 NAME RX FEED LET DWN GAS PHASE DRY LIQUID DRY VAPOR DRY VAPOR DRY VAPOR NAME RX FEED LET DWN GAS PHASE DRY LIQUID DRY VAPOR DRY VAPOR DRY VAPOR COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 0.0000 0.0000 0.0000 2 O2 2.4445E-09 6.2984E-07 6.2984E-07 9.7714E-09 3 CO 3.4768E-08 3.2600E-05 3.2600E-05 2.1355E-07 4 CO2 0.0000 0.0000 0.0000 0.0000 5 H2 3.5391 8465.1289 8465.1289 21.2506 6 N2 0.9700 2890.1082 2890.1082 6.0712 7 A 0.6067 727.6615 727.6615 3.2630 8 C1 1.3171 879.5476 879.5476 7.5173 9 C2 7.0651E-08 2.4716E-05 2.4716E-05 2.8712E-07 10 C3 1.3116E-09 4.8126E-07 4.8126E-07 4.9529E-09 11 NC4 9.0112E-10 3.6172E-07 3.6172E-07 3.1406E-09 12 NC5 6.0634E-10 3.2516E-07 3.2516E-07 2.2444E-09 13 NH3 377.6484 528.3845 528.3845 31.9782 RATE, LB-MOL/HR 384.0815 13490.8311 13490.8311 70.0804 MOLECULAR WEIGHT 16.9532 11.1338 11.1338 14.3904 RATE, LB/HR 6511.4072 150204.4380 150204.4380 1008.4857 TEMPERATURE, F 40.00 85.00 567.41 78.89 PRESSURE, PSIG 4840.000 4790.000 4760.000 350.000 ENTHALPY, M BTU/LB-MOL 0.1229 -1.4413 2.2853 3.4674 *** VAPOR PHASE *** RATE, M FT3/DAY N/A 122869.2340 122869.2340 638.2646 DENSITY, LB/M FT3 N/A 7779.4751 4269.7148 960.9985 *** LIQUID PHASE *** ACT.RATE, GAL/MIN 20.7735 N/A N/A N/A DENSITY, LB/GAL 5.2241 N/A N/A N/A

57

Page 58: Ammonia

SIMULATION SCIENCES INC. R PAGE P-47 PROJECT NH3 PLANT PRO/II VERSION 3.13 386/EM PROBLEM AMMONIA OUTPUT SIMSCI BASE CASE USER DEFINED PROPERTIES SET MAR 1992 ============================================================================== STREAM ID 40 NAME NH3 PROD PHASE DRY LIQUID NAME NH3 PROD PHASE DRY LIQUID COMP. MOLE RATES, LB-MOL/HR 1 H2O 0.0000 2 O2 4.2613E-09 3 CO 2.9692E-08 4 CO2 0.0000 5 H2 1.4619 6 N2 0.4344 7 A 1.3568 8 C1 1.9471 9 C2 2.0340E-07 10 C3 4.9894E-09 11 NC4 4.4042E-09 12 NC5 3.5765E-09 13 NH3 1540.3490 RATE, LB-MOL/HR 1545.5492 MOLECULAR WEIGHT 17.0388 RATE, LB/HR 26334.2402 TEMPERATURE, F 78.89 PRESSURE, PSIG 350.000 ENTHALPY, M BTU/LB-MOL 0.6775 *** VAPOR PHASE *** RATE, M FT3/DAY N/A DENSITY, LB/M FT3 N/A *** LIQUID PHASE *** ACT.RATE, GAL/MIN 87.5369 DENSITY, LB/GAL 5.0139

58