* dong-hyawn kim: graduate student, kaist ju-won oh: professor, hannam university ju-won oh:...

Post on 17-Jan-2016

221 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

** Dong-Hyawn Kim: Graduate Student, KAIST Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam UniversityJu-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAISTIn-Won Lee: Professor, KAIST Kyu-Hong Shim: Postdoctoral Researcher, KAIST Kyu-Hong Shim: Postdoctoral Researcher, KAIST

STRUCTURAL CONTROL USING CMAC NEURAL NETWORK

Nha Trang 2000Nha Trang 2000Nha Trang, Vietnam, Aug. 14-18, 2000Nha Trang, Vietnam, Aug. 14-18, 2000

2 2Structural Dynamics & Vibration Control Lab., KAIST, Korea

1 INTRODUCTION

2 CMAC FOR VIBRATION CONTROL

3 NUMERICAL EXAMPLES

4 CONCLUSIONS

CONTENTS

3 3Structural Dynamics & Vibration Control Lab., KAIST, Korea

1 INTRODUCTION1 INTRODUCTION

- mathematical model is not required in

designing controller

• Features of neural network control• Features of neural network control Background

• Application areas• Application areas

- control of structures with uncertainty or nonlinearity

4 4Structural Dynamics & Vibration Control Lab., KAIST, Korea

structure

external load

neural networkneural

network

sensor

• Structural control using neural network• Structural control using neural network

5 5Structural Dynamics & Vibration Control Lab., KAIST, Korea

• Multilayer neural network (MLNN)• Multilayer neural network (MLNN)

training is too slowtraining is too slow

control forcecontrol force

state ofstructurestate of

structure

weights to be adjustedweights to be adjusted

6 6Structural Dynamics & Vibration Control Lab., KAIST, Korea

1) H. M. Chen et al. (1995). ASCE J. Comp. in Civil Eng.

2) J. Ghaboussi et al. (1995). ASCE J. Eng. Mech.

3) K. Nikzad et al. (1996). ASCE J. Eng. Mech.

4) K. Bani-Hani et al. (1998). ASCE J. Eng. Mech.

5) J. T. Kim et al. (2000). ASCE J. Eng. Mech.

Previous studies

- All methods are based on multilayer neural network whose learning speed is too slow- A new neural network with fast learning speed is required

7 7Structural Dynamics & Vibration Control Lab., KAIST, Korea

Objective and Scope- apply CMAC* neural network to structural con

trol to reduce learning time.

- compare performance of CMAC with multilayer neural network.

*Cerebellar Model Articulation Controller

8 8Structural Dynamics & Vibration Control Lab., KAIST, Korea

Introduction

2 CMAC FOR VIBRATION CONTROL2 CMAC FOR VIBRATION CONTROL

- proposed by J. S. Albus(1975)- a neural network with fast learning speed- mainly used for manipulator control

• CMAC• CMAC

9 9Structural Dynamics & Vibration Control Lab., KAIST, Korea

input space output

space

x

memory space

W1

W2

W3

Wn-1

Wn

u

Procedure of CMAC

weight

displacementvelocity

control signal

10 10Structural Dynamics & Vibration Control Lab., KAIST, Korea

x2

x1

W13 W14 W15 W16

W9 W10 W11 W12

W5 W6 W7 W8

W1 W2 W3 W4

x1

x2

(quantization mesh)

• Block quantization of input space• Block quantization of input space

W37 W38 W39 W40 W41

W32 W33 W34 W35 W36

W27 W28 W29 W30 W31

W22 W23 W24 W25 W26

W17 W18 W19 W20 W21

(made by shifting left mesh)

block sizeblock size shiftingshifting

11 11Structural Dynamics & Vibration Control Lab., KAIST, Korea

x2

x1

W13 W14 W15 W16

W9 W10 W11 W12

W5 W6 W7 W8

W1 W2 W3 W4

x1

x2

1st mesh

• Activation of weights-(1)• Activation of weights-(1)

W37 W38 W39 W40 W41

W32 W33 W34 W35 W36

W27 W28 W29 W30 W31

W22 W23 W24 W25 W26

W17 W18 W19 W20 W21x1*

x2*

x1*

x2*

2nd mesh

input: [x1*, x2

*]T output:[W11 + W34]

12 12Structural Dynamics & Vibration Control Lab., KAIST, Korea

x2

x1

W13 W14 W15 W16

W9 W10 W11 W12

W5 W6 W7 W8

W1 W2 W3 W4

x1

x2

• Activation of weights-(2)• Activation of weights-(2)

W37 W38 W39 W40 W41

W32 W33 W34 W35 W36

W27 W28 W29 W30 W31

W22 W23 W24 W25 W26

W17 W18 W19 W20 W21x1^

x2^

x1^

x2^

input: [ , ]Tx1^ x2

^ output:[W11 + W30]

x2*

x1*x1

*

x2*

1st mesh 2nd mesh

13 13Structural Dynamics & Vibration Control Lab., KAIST, Korea

Weights [W11, W34] [W11, W30] Weights [W11, W34] [W11, W30]

no. of meshes: 2 no. of meshes: 2

3411 WW Output Output

• Summary• Summary

no. of weights: 41 no. of weights: 41

no. of division: 4, 5/variable no. of division: 4, 5/variable

Input [x1*, x2

*]T Input [x1*, x2

*]T x1^ x2

^[ , ]T[ , ]T

3011 WW

14 14Structural Dynamics & Vibration Control Lab., KAIST, Korea

CMAC MLNN

memory size Large Small

learning speed Fast Slow

computing mode Local Global

• CMAC vs. MLNN• CMAC vs. MLNN

items

real-time application Feasible Impossible

15 15Structural Dynamics & Vibration Control Lab., KAIST, Korea

Vibration Control using CMAC

structure

external load

CMACCMAC

learning rule

sensor

16 16Structural Dynamics & Vibration Control Lab., KAIST, Korea

• Control criterion: cost function• Control criterion: cost function

1

0112

1 fN

kk

Tkk

TkJ RuuQzz (1)

fNk

RQuz,, : state, control vector

: relative weighting matrix: time step: final time step

: state, control vector: relative weighting matrix: time step: final time step

17 17Structural Dynamics & Vibration Control Lab., KAIST, Korea

kTkk

TkkJ RuuQzz 112

1

: learning rate: learning rate

kikiki WWW ,,1,

(2)

(3)

(5)

Ru

u

zQz T

kk

kTkkiW

11,

• Learning rule• Learning rule

i

kki W

JW

, (4)

18 18Structural Dynamics & Vibration Control Lab., KAIST, Korea

3. NUMERICAL EXAMPLES3. NUMERICAL EXAMPLES

Model structure

Three-story building with Active Mass DriverThree-story building with Active Mass Driver

19 19Structural Dynamics & Vibration Control Lab., KAIST, Korea

: Mass matrix: Damping matrix: Restoring force : Location vector

: displacement vector: ground acceleration: control force

(6) gxLf 1M)xK(x,xCxM

L

K

C

M

f

xgx

• Equation of motion• Equation of motion

20 20Structural Dynamics & Vibration Control Lab., KAIST, Korea

dykxkxk 00 )1()(

)(1 1 pp

yxyyxxd

y

0k : linear stiffness

: contribution of k0

• Nonlinear restoring force (Bouc-Wen, 1981)• Nonlinear restoring force (Bouc-Wen, 1981)

(7)

(8)

21 21Structural Dynamics & Vibration Control Lab., KAIST, Korea

mass

pump

• Active Mass Driver (AMD)• Active Mass Driver (AMD)

piston

22 22Structural Dynamics & Vibration Control Lab., KAIST, Korea

mass : 200kg (story)stiffness : 2.25105 N/m(inter-story)damping : 0.6, 0.7, 0.3% (modal)

mass : 18kg (3% of building mass)stiffness : 3.71103 N/mdamper : 8.65%

Structure

AMD

• Parameters• Parameters

23 23Structural Dynamics & Vibration Control Lab., KAIST, Korea

CMAC structure

input: 2 (disp., vel. of 3rd floor)

output: 1 (control signal)

no. of division: 3/variable

no. of meshes: 200

no. of weights: 1800

input: 2 (disp., vel. of 3rd floor)

output: 1 (control signal)

no. of division: 3/variable

no. of meshes: 200

no. of weights: 1800

24 24Structural Dynamics & Vibration Control Lab., KAIST, Korea

integration time: 0.25msec

sampling time: 5.0msec

delay time: 0.5msec

Simulation

25 25Structural Dynamics & Vibration Control Lab., KAIST, Korea

• Learning during El Centro earthquake (linear case)• Learning during El Centro earthquake (linear case)

※1 Epoch = 0.005sec × 2000 steps ※1 Epoch = 0.005sec × 2000 steps

CMAC

MLNN

0 100 200 300 400 500Epoch

0.0

0.1

0.2

0.3

Cos

t fun

ctio

n

26 26Structural Dynamics & Vibration Control Lab., KAIST, Korea

• Minimum costs • Minimum costs

neural network Jmin (ratio) neural network Jmin (ratio)

MLNN 1.77 10-2 (1.00) MLNN 1.77 10-2 (1.00)

CMAC 1.94 10-2 (1.09) CMAC 1.94 10-2 (1.09)

• Epochs• Epochs

neural network epoch (ratio)neural network epoch (ratio)

MLNN 478 (1.00) MLNN 478 (1.00)

CMAC 65 (0.14) CMAC 65 (0.14)

27 27Structural Dynamics & Vibration Control Lab., KAIST, Korea

Dis

plac

emen

t (m

)

w/o controlw/ control

0 5 10 15 20-0.10-0.050.000.050.10

Time (sec)

• Northridge earthquake (3rd floor)• Northridge earthquake (3rd floor)

0 5 10 15 20-1.00-0.500.000.501.00

Vel

ocity

(m/s

ec)

28 28Structural Dynamics & Vibration Control Lab., KAIST, Korea

0 5 10 15 20-20.0-10.0

0.010.020.0

Acc

eler

atio

n (

m/s

ec2 )

w/o controlw/ control

Time (sec)

• Northridge earthquake (3rd floor) - continued• Northridge earthquake (3rd floor) - continued

29 29Structural Dynamics & Vibration Control Lab., KAIST, Korea

• Kern County earthquake (3rd floor)• Kern County earthquake (3rd floor)

Time (sec)

0 5 10 15 20-0.10-0.050.000.050.10

Dis

plac

emen

t (m

)

0 5 10 15 20-1.00-0.500.000.501.00

w/o controlw/ control

Vel

ocity

(m/s

ec)

30 30Structural Dynamics & Vibration Control Lab., KAIST, Korea

0 5 10 15 20-20.0-10.0

0.010.020.0

Acc

eler

atio

n (

m/s

ec2 )

w/o controlw/ control

Time (sec)

• Kern County earthquake (3rd floor) - continued• Kern County earthquake (3rd floor) - continued

31 31Structural Dynamics & Vibration Control Lab., KAIST, Korea

5.0

0 100 200 300 400 500Epoch

0.0

0.1

0.2

0.3

Cos

t fun

ctio

n

• Learning during El Centro earthquake (nonlinear case, )• Learning during El Centro earthquake (nonlinear case, )

CMAC

MLNN

32 32Structural Dynamics & Vibration Control Lab., KAIST, Korea

• Minimum costs• Minimum costs

neural network Jmin (ratio) neural network Jmin (ratio)

MLNN 1.91 10-2 (1.00) MLNN 1.91 10-2 (1.00)

CMAC 2.02 10-2 (1.06) CMAC 2.02 10-2 (1.06)

• Epochs• Epochs

neural network epoch (ratio)neural network epoch (ratio)

MLNN 484 (1.00) MLNN 484 (1.00)

CMAC 34 (0.07) CMAC 34 (0.07)

33 33Structural Dynamics & Vibration Control Lab., KAIST, Korea

w/o control

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0D isp lacem ent (cm )

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

Res

torin

g fo

rce

(kN

)

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0D isp lacem ent (cm )

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

Res

torin

g fo

rce

(kN

)

w/ control

• Northridge earthquake (1st floor)• Northridge earthquake (1st floor)

34 34Structural Dynamics & Vibration Control Lab., KAIST, Korea

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0D isp lacem ent (cm )

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

Res

torin

g fo

rce

(kN

)

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0D isp lacem ent (cm )

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

Res

torin

g fo

rce

(kN

)

• Kern County earthquake (1st floor)• Kern County earthquake (1st floor)

w/o control w/ control

35 35Structural Dynamics & Vibration Control Lab., KAIST, Korea

• Performance comparison (El Centro, 3rd floor)• Performance comparison (El Centro, 3rd floor)

0 5 10 15 20-0.04-0.020.000.020.04

CMAC

MLNN

Dis

plac

emen

t (m

)

Time (sec)

36 36Structural Dynamics & Vibration Control Lab., KAIST, Korea

4. CONCLUSIONS4. CONCLUSIONS

• Response controlled by CMAC is almost

same as that by MLNN.

• Learning speed of CMAC is much faster

than that of MLNN.

• Response controlled by CMAC is almost

same as that by MLNN.

• Learning speed of CMAC is much faster

than that of MLNN.

37 37Structural Dynamics & Vibration Control Lab., KAIST, Korea

Thank you for your attention.Thank you for your attention.

38 38Structural Dynamics & Vibration Control Lab., KAIST, Korea

utqgg

tqgg

)(1

)(2121

21, gg

u

q

: oil flow rate: control signal: time constant: valve gains

• Pump dynamics• Pump dynamics

(9)

39 39Structural Dynamics & Vibration Control Lab., KAIST, Korea

qfa

Vf

a

cxa

rr

lrr

2

: displacement of ram

: area of ram

: compression coefficient

: volume of cylinder

: leakage coefficientl

r

r

c

V

a

x

• Piston dynamics• Piston dynamics

(10)

40 40Structural Dynamics & Vibration Control Lab., KAIST, Korea

BuAzz

B

A

u

z : state vector

: control force vector

: system matrix

: control matrix

: state vector

: control force vector

: system matrix

: control matrix)(

)(

)1(

)1(

mn

nn

m

n

(s-1)

• Sensitivity Evaluation• Sensitivity Evaluation

• State equation• State equation

41 41Structural Dynamics & Vibration Control Lab., KAIST, Korea

kkk HuGzz 1

sTeAG

(s-2)

(s-3)

(s-4)

sT : sampling time: sampling time

BAH A 1 Ie sT

Hu

z

k

k 1 (s-5)

• Discretized equation using ZOH• Discretized equation using ZOH

• Sensitivity matrix• Sensitivity matrix

42 42Structural Dynamics & Vibration Control Lab., KAIST, Korea

kkk HuGzz 1

][0z k

mjijif

ijifkj ~1

)(0

)(1,

u

ik hz 1

initial condition:initial condition:

loading condition:loading condition:

measurement: measurement:

(s-6)

(s-7)

(s-8)

(s-9)

• Computation of H• Computation of H

43 43Structural Dynamics & Vibration Control Lab., KAIST, Korea

Method Time Method Time

Emulator minutes ~ hours Emulator minutes ~ hours

Proposed m sampling time Proposed m sampling time

Evaluation timeEvaluation time

mi hhhhH 21 (s-10)

44 44Structural Dynamics & Vibration Control Lab., KAIST, Korea

1

1

2

1

1n

i

n

j

eji

ji

ee WW

JJJ

1

0,

fN

k

ekji

eji WW

(c-1)

(c-2)

(c-3)

1

0

fN

kkJJ

1

0

fN

k ji

k

ji W

J

W

J

ji

kekji

W

JW

,

(c-4)

(c-5)

• Convergence of learning rule• Convergence of learning rule

45 45Structural Dynamics & Vibration Control Lab., KAIST, Korea

(c-6)

(c-7)

(c-8)

1

1

2

1

21

1

1n

i

n

j

N

k ji

keef

W

JJJ

eee JJJ 1

)0(1

1

2

1

21

1

n

i

n

j

N

k ji

kef

W

JJ

minlim JJ ee

(c-9)

Inserting (3), (4) into (2)

top related