1 1 enzymes in organic media tahir rana university of ottawa september 25th 2008

Post on 16-Dec-2015

217 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

TRANSCRIPT

11

Enzymes in Organic Media

Tahir RanaUniversity of Ottawa September 25th 2008

22

Outline

Structure and Function Applications of Enzymes Limitations of Enzymes in Aqueous Media Concerns Applications of Enzymes in Organic Media Total Synthesis of Fredericamycin A

33

What are Enzymes ?

Enzymes are proteins

Enzymes catalyze reactions

H2N CH C

R

OH

O

H2N CH C

R

OH

O

R= amino acid side chain

-Phe-Ala-Gly-Tyr-Lys-Ala-

Structure And Function

44

Enzyme Structure

Primary Structure – order of amino acids

Secondary Structure - α-helix, β-sheet

Tertiary Structure - arrangement in 3D

Quaternary Structure- interaction of subunits

-Gly-Ala-Phe-Gly-His-Tyr-

Sakuraba, H. et al. J. Biol. Chem. 2003, 361, 278, 10799-10806.

Structure And Function

55

Catalytic Scheme

Structure And Function

66

Factors Involved in Enzymatic Catalysis

Increase in local concentration

Positioning and enhancement of active site functional groups

Specificity

Introduction of strain into substrate

OH O

O

OH1 000 000 000

Faster

O O

OH

O

+ OH

O

25Cys

159His

S HN NH

Cys His

SHN NH

Thiol Protease

HydrophobicBindng Pocket

Chymostrypsin

NH

OR

RActive Site

Structure And Function

77

Examples: Asymmetric Aldol

Wong, C,H.; Gilsen, H. J. Am. Chem Soc. 1994, 164, 8422-8423.Wong, C.H. Liu, J. J. Angewantde Chemie. 2001, 114, 1462-1465.

O+

O

HO

DERA OH

HO

O

S

N

O

O R

OH

OO OHEpothilone A

O+

O DERA OHO+

OH O

Applications of Enzymes

DERA – Deoxyribose Aldolase

88

Industrial Examples

O

OO

O

OOH

alcohol-NADHoxidoreductase N

RiboseADP

H H NH2

O

NADHO

O NN

H2N

O

Eli Lilly - LY 300164

Anderson, B. et al. J. Am. Chem. Soc. 1995, 117, 12358-12359.Liese, A.; Seelbach, K.; Wandrey, C. Industrial Biotransformations. Wiley-VCH, 2005, 117-121.

Applications of Enzymes

99

Industrial Examples

O

O

NH2

subtilisin OH

O

NH2

Coca-Cola - AspartameO

NH

H3N

O

O

O

O

Ricks, E.; Estrada-Valdes, M; Iacobucci, G. Biotech. Prog. 1992. 8, 197-203.Liese, A.; Seelbach, K.; Wandrey, C. Industrial Biotransformations, Wiley-VCH. 2005.

Applications of Enzymes

1010

Amide Hydrolysis

O

NH2REnzyme in H2O

PhysiologicalpH and Temp.

O

OHR

O

NH2R

80 % H2SO4

100 °C, 12-18 hrs

O

OHR

O

NH2R

25 % NaOH

100 °C, 9-12 hrsAq. workup

O

OHR

Applications of Enzymes

1111

Limitations of Aqueous Enzymology

Solubility of non-polar substrates

Polymerization of phenols

R = alkyl

horseradishperoxidase

H2O2

Aqueous

Dimers/Trimers

R

OH

R

OH R

HO

Bruno, F.; Ayyagari, S.; Akkara, J. Trends in Biotechnology. 1999, 17, 67-73. Reihmann, M.; Ritter, H. Syn. Of Pol. Using Peroxidases. Adv. Poly. Sci. Springer-Verlag. 2006, 194, 1-49.

1212

Thermal Inactivation in Aqueous Media

Reversible:

Changes in higher order structure

Irreversible: Molecular AggregationDeamidation

R NH

HN

NH

O

O

OR

NH2

O

R NH

NH

OO

RN

O

O

NH3

R NH

HN

NH

O

O

OR

OH

O

H2O H2O

R NH

O

O

OH

NH

O

O

HN

R

Klibanov, A.; Ahern, T. Methods of Biochemical Analysis, 1988, 33, 91-128.

Limitations

1313

Domination of Hydrolysis

Water is in excess

Cannot use other nucleophiles

O

R' OR''

O

R' OH

Enzymes

Aqueous

O

R' OR''

O

R' NR2

Enzymes

Aqueous,NHR2

X

O

R' OR''

O

R' OR

Enzymes

Aqueous,ROH

X

O

R' OR''

O

R' SR

Enzymes

Aqueous,RSH

X

Limitations

1414

The Solution – Organic Solvents

Increased solubility of non-polar substrates

Bruno, F.; Ayyagari, S.; Akkara, J. Trends in Biotechnology. 1999, 17, 67-73. Reihmann, M.; Ritter, H. Syn. Of Pol. Using Peroxidases. Adv. Poly. Sci. Springer-Verlag. 2006, 194, 1-49.

Overcoming Limitations

R = alkyl

horseradishperoxidase

H2O2

Aqueous

High molecularweight polymers

R

OH

R

OH R

HO

n

15

0

20

40

60

80

100

0 20 40 60

Time (min)

% A

ctiv

ity

Enzyme in Heptanol

Enzyme in Water

15

Suppression of Thermal Inactivation in Organic Sol.

% Activity of Lipase at 100 °C

Klibanov, A.; Zaks, A. Science. 1984, 224, 1249-1251.

Overcoming Limitations

O

Oheptanol

Lipase

O

ORn=5

O

OWater

Lipase

O

OHR

1616

Opportunity for Synthesis

O

R' OR''

O

R' OR

Enzymes

Organic Sol.ROH

O

R' OR''

O

R' NR2

Enzymes

Organic Sol.NHR2

O

R' OR''

O

R' SR

Enzymes

Organic Sol.RSH

Overcoming Limitations

1717

Recap - Advantages of Organic Solvents

Increased solubility of non-polar substrates

Suppression of Thermal Inactivation

Opportunity for synthesis

Overcoming Limitations

1818

Outline

Structure and Function Applications of Enzymes Limitations of Aqueous Enzymology Concerns Regarding Enzymes in Organic

Solvents Applications of Enzymes in Organic Media Total Synthesis of Fredericamycin A

1919

Concerns

Structural Integrity

Mechanistic Integrity

Diminished Activity

2020

Structural Integrity

% Alpha Helix Content of Subtilisin

Klibanov, A.; Griebenow, K. J. Am. Chem. Soc. 1996, 118, 11965-119700.

Concerns Addressed

0

5

10

15

20

25

30

60 % MeCN + 40 % Water (v/v) Water Neat MeCN

Solvent

Alp

ha-

Hel

ix C

on

ten

t (%

)

2121

Structure of Subtilisin in Water and Acetonitrile C Backbone Trace Active Site (Asp-32,His-64,Ser-221)

Heavy lines = MeCNLight lines = water Klibanov, A. et al. Proc. Nat. Acad. Sciences. 1993, 90, 8653-8657.

Concerns Addressed

2222

Mechanism of Transesterification

O

R'O RChymotrypsin +

Organic

Solvent

Chaterjee, S.; Russell, A. Enzyme Microb. Technol. 1993, 15, 1022-1029.

R'OH

Concerns Addressed

2323

Mechanism of Transesterification

Chaterjee, S.; Russell, A. Enzyme Microb. Technol. 1993, 15, 1022-1029.

Concerns Addressed

2424

Mechanistic Integrity

Ping Pong Mechanism

Transesterification in Organic Solvents Ester Hydrolysis in Water

Conclusion: Mechanism is the same

(1) Chaterjee, S.; Russell, A. Enzyme Microb. Technol. 1993, 15, 1022-1029.(2) Klibanov, A. Trends Biochem. Sci. 1989, 14, 141-144.

Concerns Addressed

2525

Diminished Activity

Enzymes have reduced activity in dry organic solvents

Due to lack of: a) conformational mobility

b) transition state stabilization

c) entropy

Klibanov, A. Trends In Biotech. 1997. 15, 97-101.

Concerns Addressed

26

0.0001

0.001

0.01

0.1

1

10

0.1 1 10 100

% Water (v/v)

Ra

te (

mM

/min

)

Ether tAmyl Alcohol

Ethyl Acetate

26

Effect of Water on Activity Activity can be recovered

Klibanov, A. J. Biol. Chem. 1987. 263, 8017-8021.

Enzyme Activity as a Function of Water Content

Concerns Addressed

OHSolvent

Oxidase H

O

2727

Concerns Addressed

Structurally intact

Act by the same mechanism

Activity can be recovered

2828

Applications

(1) Wong, C-H.; Koeller, K. Nature. 2001. 409, 232-241(2) Klibanov, A.; Kirchner, G.; Scollar, P. J. Am. Chem. Soc. 1985. 107, 2072-2076.

Problem: Max Conversion = 50 %

O

R1 O H+

R2 R3

OH O

R1 O

R2 R3

O

R1 O

R2 R3

Lipase

Resolution R2 R3

OH

+

Traditonal Resolution

Aqueous

O

R1 O

R2 R3

+

R1, R2 and R3 = different alkyl groups

Resolution in Organic Media

O

R1 O H+

R2 R3

OH OH

R2 R3

O

R1 O

R2 R3

+Lipase

ResolutionEther

Applications in Org. Media

2929

Resolution: Meso Diols

OAc

OAc

LiOH·H2O

MeOH

OH

OH

% Yield: 19

% ee: >97

OH

OH

(±) + meso

(48:52)

OO

H

OAc

OAc

OAc

OH

OH

OH

% Yield: 22 48 22

% ee: >98 >96 >98

Lipase

Hexanes,RT. 10 hrs

Kim, M.J.; Lee, S. Synlett. 1993. 767-768.

Applications in Org. Media

3030

60 % OverallYield

Kim, M.J.; Lee, S. Synlett. 1993. 767-768.

OAc

OH

OAc

OO

O2N

DEAD, PPh3,

pNBA

OAc

OO

O2N

LiOH·H2O

MeOH

OH

OH

% Yield: 40

% ee: >95

Applications in Org. Media

3131

Applications: Desymmetrization

Loss of one or more symmetry elements

Potential for 100 % conversion

Gotor, V. et al. Organic Letters. 2007. 9, 4203-4206.

O O

OLipase

Dioxane

NH2 NH2 N HN O

O

72 % yield and 96 % ee

H2

+

Applications in Org. Media

32

Applications: Total Synthesis of Epoxyquinols A and B

O

O

O

OH

CH3

HO O

OO

CH3

(-) Epoxyquinol A

O

O

O

OH

CH3

HO O

OO

CH3

(-) Epoxyquinol B

Applications in Org. Media

33

Retrosynthesis

O

OH

O

O

O O

OAc

O O

O

O

O

AcOHO

O

O

O

HOHO

H O

O

H

Mehta, G.; Islam, K. Tett. Lett. 2004. 45, 3611-3615.

Applications in Org. Media

O

O

O

OH

CH3

HO O

OO

CH3

O

O

O

OH

CH3

HO O

OO

CH3

+

34

Desymmetrization Step

O

O

O

AcOHO

O

O

O

HOHO

Lipase PS 30, vinyl acetate

tBuOMe, 0 C, 6 h

82 % yield> 99 % ee

Applications in Org. Media

Mehta, G.; Islam, K. Tett. Lett. 2004. 45, 3611-3615.

3535

Outline

Structure and Function Applications of Enzymes Limitations of Aqueous Enzymology Concerns Applications of Enzymes in Organic Media Total Synthesis of Fredericamycin A

3636

Total Synthesis of Fredericamycin A

Isolated from Streptomyceus griseus Antitumor activity 7 Total Syntheses; 5 Racemic, 2 Asymmetric

HN

O

O

O

HO

OMe

OH

HO

O

O

AB

CDEF

3737

Retrosynthesis of 1st Asymmetric Synthesis

HN

O

OO

HO

OMe

OHHO

O

O

HN

O

MeOOMe

MeO

OHC

OMe

OMeHO

O

O

O

MeOOMe

OMe

OO +

MeO

N

MeO MeO

O

O SPhO

AB

CDEF

N

MeO MeO

O

CpCOO

N

OMeCO2Et

Kita. Y. et al. J. Am. Chem. Soc. 2001. 123, 3214-3222.

Total Synthesis of Fredericamycin A

3838

Installation of Spiro Center

NB

O

H PhPh

N

MeO MeOO

BH3Me2SN

MeOMeOHO

92 % 74 % ee

tBuO2HVO(acac)2 N

MeOMeOHO

O

75 % 74 % ee

N

MeOMeO

O

CpCOO

1(S) CpCOOH

PPh3, DEAD

95 % 74 % de

N

MeO MeO

OBF3

BF3OEt

CH2Cl20 °C

CpCOO

N

MeOMeO

O

CpCOO

80 %, 95 % de

Fredericamycin A

33 Steps0.075 % Overall Yield

F E D

Kita. Y. et al. J. Am. Chem. Soc. 2001. 123, 3214-3222.

Total Synthesis of Fredericamycin A

N

MeO MeO

O

CpCOO

3939

Retrosynthesis of 2nd Asymmetric Synthesis

HN

O

OO

HO

OMe

OHHO

O

O

N

MeO

OOMe

MeO

OMe

O

OO

Si

SPh

AB

DEF

N

MeOMeO OHHO

HN

OCO2Et

Kita, Y. et al. European J. of Chem. 2005. 11, 6286-6297.

F E D

C

B

A

N

MeOMeO

O

O

F E D

Total Synthesis of Fredericamycin A

4040

Synthesis of DEF Ring System

HN

OCOOEt

OCH3

H3C CH3

BF4

DCMN

MeOCOOEt

10 % NaOH 70 %

LDA

O

N

MeOCOEt

OO

72 %

NaH

THF

N

MeO O O

75 %

DDQ

Benzene

N

MeO OH O

76 %

N

MeO MeO OMe2SO4

NaOHBu4N+ Br-

F E D

65 %

Total Synthesis of Fredericamycin A

Clive, D. J. of Heterocyclic Chemistry. 1987, 9, 804-807.

4141

Synthesis of DEF Ring System

N

MeO MeO O

Ph3P+Me Br-, tBuOK N

MeO MeO

THF

83 %

NaOH, H2O2

N

MeO MeO OH

92 %

BH3-THF

OI

O

AcO OAcOAc

N

MeO MeO O

61 %

N

MeOMeO NN

MeON

OMe

NH2

1:1 mixture ofdiastereomers

Total Synthesis of Fredericamycin A

Kita, Y. et al. European J. of Chem. 2005. 11, 6286-6297.

4242

Synthesis of DEF Ring System

N

MeO MeO NN

MeO

COMe

35 %95 % de(2 steps)

Difficult separation of acyl hydrazone 4.5 % overall yield (from pyridone) Approach abandoned

N

MeO MeO NN

MeO

LDA

AcCl

Total Synthesis of Fredericamycin A

Kita, Y. et al. European J. of Chem. 2005. 11, 6286-6297.

4343

Synthesis of DEF Ring System- 2

HN

O O1. MeI, Ag2CO3

2. Me3SiOTf, Et3NNBS

N

MeO OBr

83 %

1. NaOMe, MeOH

2. Me2SiCl2, ImidazoleBenzene

HN

O OH R R

87 %

Lipase

Aqueous

HN

O OH R CO2H

HN

O HOCHO

O

X HN

O OH CO2Me

1. NaH

Me3Si

CO2MeCO2Me

2. NaBr, pTSA

HN

O O R R

TMS

81 % R=CO2Me

Total Synthesis of Fredericamycin A

R=CO2Me

Kita, Y. et al. European J. of Chem. 2005. 11, 6286-6297.

4444

Solution ?

Use the synthetic ability of enzymes in organic solvents

Total Synthesis of Fredericamycin A

4545

Synthesis of DEF Ring System - 2

OOO

EtO

N

MeOMeO O OH

N

MeOMeO OHO

OOO

O

X86 % Yield97 % ee

DEF

1. MeI, Ag2CO3

2. LiAlH4

N

MeOMeOHO OH

61 %

HN

O OH R R

R=CO2Me

Total Synthesis of Fredericamycin A

Kita, Y. et al. European J. of Chem. 2005. 11, 6286-6297.

N

MeOMeO OHO

O

4646

Total Synthesis – Fredericamycin A

N

MeOMeO O OH

OO

N

MeOMeO OHOTBS1. TBSOTf, Na2CO3

2. K2CO3, MeOH

N

MeOMeO OTBS

DMP

O

1. MeLi

2. TBAF

N

MeOMeO

OH

HO

N

MeOMeO

OOxalyl Chloride

DMSO, Et3N

O

96 % (from alcohol)

30 % Yield (from pyridone)

Total Synthesis of Fredericamycin A

Kita, Y. et al. European J. of Chem. 2005. 11, 6286-6297.

4747

Total Synthesis – Fredericamycin A

N

MeOMeO OO

SPh

LiHMDS

OBn

OMeOMe

Cl

O

-78 °C

N

MeOMeO OO

SPh

O OBn

OMeOMe

F E D

67 %

A

1. Co2(CO)8

2. BCl3N

MeO MeO OO

O

SPh

HO

OMe

85 %

OMe

N

MeOMeO

OMe

OMe

SPh

O

O

OSiO

tButBu1.Me2SiCl2, Et3N,

Chloranil

2. (tBu)2Si(OTf)2

Et3N, DMF

81 %

BC

DEF

A

1. LiHMDS

2. DMP

N

MeOMeO OO

O

SPh

BnO

OMe

73 %

F E D

A OMe

Total Synthesis of Fredericamycin A

Kita, Y. et al. European J. of Chem. 2005. 11, 6286-6297.

4848

Total Synthesis – Fredericamycin A

N

MeO MeO

OMe

OMe

SPh

O

O

OSiO

tButBu

mCPBA

O

76 %

N

MeO MeO

OMe

OMe

O

O

OSiO

tButBu

OCOCH2Clcat. pTSOH

OEtOCl

O

86 %

PPh3Br

1. SeO2

2. BuLi, -78 °C

3. BBr3, H2OHN

O

OO

OMe

OHHO

O

OHO

35 %

Et3N; (tBu)2Si(OTf)2;

MeI

HN

OMeO

OMe

OMe

O

O

OSiO

tButBu

OCOCH2Cl

69 %

28 Linear Steps0.75 % Overall Yield

Total Synthesis of Fredericamycin A

Kita, Y. et al. European J. of Chem. 2005. 11, 6286-6297.

4949

Comparison of Syntheses

Lewis Acid: 4 steps to establish chirality at spiro center

Enzymatic: 1 step to establish chirality at spiro center

Enzymatic: 28 yield steps, 0.75 % yield, Lewis Acid: 33 steps, 0.075 %

Total Synthesis of Fredericamycin A

5050

Summary

Enzymes are valuable tools for organic synthesis

Enzymes can be used in organic solvents

There are clear advantages to using enzymes in organic media

Application to the total synthesis of Fredericamycin A

5151

AcknowledgementsDr. Robert BenTaz CheemaPawel CzechuraLiz von MoosJohn TrantJennifer ChaytorSandra FerreiraWendy CampbellRuoying GongRoger TamJackie TokarewTaline BoghossianDr. Michael SouwehaDr. Mathieu Leclere

5252

Enzyme Preparations

Enzymes are insoluble in organic solvents

Enzyme powders

Suspension of enzymes in bulk solvent or on solid supports

Covalent modifications, e.g. PEG; surfactants

5353

pH Memory Affect

Rate of transesterification with pH adjusted subtilisin 75x that of bottled enzyme

Enzymatic activity in organic solvent depends upon pH of the last aqueous solution enzyme was exposed to.

5454

Structural Integrity of Enzymes

Explanation ? Enzymes possess reduced mobility in pure organic media

Evidence: Structurally rigid e.g. decrease in motion of lipase Tyr 123

acetonitrile than in water

Conclusion: Denaturation is thermodynamically favourable, yet

conformational flexibility is lacking

Ref. Burke + Klibanov

5555

Total Synthesis of Fredericamycin A

5 Racemic

1. Kelly 1986

2. Clive 1992

3. Rao 1993

4. Julia 1993

5. Boger 1995

2 Asymmetric

1. Kita 2001

2. Kita 2005

5656

Reversal of Chemoselectivity

Ref. Ebert

Conditions Ratio of Products A B

Benzene, tAmyl Alcohol 7 1

Pyridine 8 1

tAmyl Alcohol w/lipase 10 1

Pyridine w/ lipase 1 10

Benzene w/ lipase 3 1

Benzene (2 % pyridine) w/ lipase

3 1

NH

O

H2N

OHNH

O

HN

OHO

Cl

O

NH

O

H2N

O

O

A B

++

Conditions

5757

Reversal of Regioselectivity

Conditions Ratio of Products

A B

Acetonitrile w/ KCN 2 1

Toluene w/ lipase and nBuOH

2 1

Acetonitrile w/ lipase and nBuOH

1 2

O

OO

O

n=5

HO

O

O

n=5

O

HOO

n=5

Conditions

A B

+

Ref.

5858

Reversal of Regioselectivity

OO

O

O

SerOH

Toluene

SerOHOO

O

O

Acetonitrile

top related