1 d. a. evans’ asymmetric synthesis — from 80’s chiral auxiliary to 90’s copper complexes...

Post on 18-Dec-2015

224 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

D. A. Evans’ Asymmetric Synthesis

— From 80’s Chiral Auxiliary to 90’s Copper Complexes and Their Applications in Total Synthesis

Supervisor: Professor Yang Zhen Chen Jiahua

Reporter: Lin Guang

2

Introduction

CV of David A. EvansDavid A. Evans was born in Washington D.C, He received his A.B. degree from Oberlin College in 1963. He obtained Ph.D. at the California Institute of Technology in 1967, where he worked under the direction of Professor Robert E. Ireland. In that year he joined the faculty at the University of California, Los Angeles. In 1973 he was promoted to the rank of Full Professor and shortly there after returned to Caltech where he remained until 1983. He then joined the Faculty at Harvard University and in 1990 he was appointed as the Abbott and James Lawrence Professor ofChemistry.

3

Part 1: Enantioselective reactions using chiral auxiliary

Part 2: Catalysis of enantioselective reactions using chiral copper complexes

Part 3: The application of Evans’ asymmetric methodologies in his total syntheses

Outline

4

Part 1:Enantioselective Reactions Induced by Chiral Auxiliary

The Optimization of the Chiral Imide Auxiliary

Asymmetric Aldol Reaction

Asymmetric Alkylation

Asymmetric Diels-Alder Reaction

Initial reports of asymmetric induction from chiral imides

5

Initial Reports of Asymmetric Induction from Chiral Imides

6

The Optimization of the Chiral Imide Auxiliary

Stereoselective Aldol Condensation via Boron Enolates (1979)Stereoselective Aldol Condensation via Boron Enolates (1979)

Stereoselective Aldol Condensation via Stereoselective Aldol Condensation via ZZirconium Enolates (1980)irconium Enolates (1980)

O

MO

L

L

R1

R2

H3C

Why boron? M = Li, MgL, ZnL, AIL2 Metal-oxygen bond lengths: (1.9-2.2Å ) M-L bond lengths: ( 2-2.2Å ) M = BR2

Metal-oxygen bond lengths:(1.36-1.47Å) M-L bond lengths:(1.5-1.6Å)

Result: the boron enolates are superior to the corresponding lithium enolates in stereoselective bond construction.

Zr OEN

Cl

O

H R

1. From Li to Zr the loss of enolate geometry was not significant2. Product selective aldol condensations independent of enolate geometry3. Pseudo-boat VS pseudo-chair

D. A. Evans et al, J. Am. Chem. Soc., 1979,101,6120D. A. Evans et al, Tetrahedron Lett., 1980, 21,7975

7

Transition states and relative products:

O

MO

L

L

R1R2

H3C

H

O

MO

L

L

R1R2

CH3H

O

MO

L

L

R1

R2

H3C

H

O

MO

L

L

R1

R2CH3

H

R2CHO

O

R1

H

H3C

M

R2CHO

O

R1

H

H3C

M

R1 R2

O OH

±

R1 R2

O OH

±

syn

anti

Favor

Favor

The Optimization of the Chiral Imide Auxiliary

D. A. Evans et al, J. Am. Chem. Soc., 1979, 101, 6120

8

Approach to enatioselective alkylation via initial chiral auxiliary (1980)Approach to enatioselective alkylation via initial chiral auxiliary (1980)

R1N

O OH

R1N

O OHLi

H

R1N

O OR2

R1N

O OR2

E

E

R2=Li

R2=alkyl

R2=Li Major product is 3; 3:4 high selective ratioR2=alkyl Major product is 4;

4:3 moderate selective ratio

R1N

O OR2

E

R1

O

E H2N

O

R1OH

O

E

H3O

Easy to Easy to hydrolysishydrolysis

The Optimization of the Chiral Imide Auxiliary

D. A. Evans et al, Tetrahedron Letters, 1980, 31, 7975

3

4

9

Approach to enatioselective aldol condensation via initial chiral auxiliary (1980)Approach to enatioselective aldol condensation via initial chiral auxiliary (1980)

RL R1

O

RSH

RL R1

OM

RSH

RL

R1

O

RSH

R2

OH

Seebach: M=Li, RL=Et, RS=Me, R1=H (1976)Heathcock: M=Li, RL=t-Bu, RS=OSiMe3, R1=Me (1979) Evans: M=B, RL=Et, Rs=Me, R1=H or Me (1980)

N R1

OMTsH

N R1

OTsH

R2CHON

R1

OTsH

R2

OHN

R1

OTsH

R2

OH

HO

R1

O

R2

OH

M=BBu2; R1=Me or H;R2=Ph or i-Pr,

O

BO

Bu

BuR2

HRL

Rs

R1

O

BO

Bu

Bu

R1

RS

H

RL

R2

R1

O

R2

OH

RL(R)

RSH R1

O

R2

OH

RL(R)

RSH

The Optimization of the Chiral Imide Auxiliary

D.A Evans et al, Tetrahedron Lett., 1980, 21, 4675

10

The completion of the Evans’ auxiliary (1981)The completion of the Evans’ auxiliary (1981)

D. A. Evans et al, Pure and Applied Chemistry, 1981,53,1109

NO

O

NO

O

Ph

O

BO

L

L

CH3

N

R

O

OR2

O

BO

L

L

H3C

N

R

O

O

R2

B

OO

N

O

O

R2

L

L

RCH3

B

OO

N

L

L

RCH3

O

R2

N

O

N

OO

R

OH

R

OH

O

R2

R2

The Optimization of the Chiral Imide Auxiliary

N O

O

R1

O

N O

O

R1

O

N O

O

R1

O

N

O

R1O

N O

O

R1

O

O

N

O

R1O

O

BB

BBO O

OO

B

L

L

L

L

L

L

L

L

LL

R2

H

R2

H

R2 R2

L2BOTf

EtN(i-Pr)2

-78°C

R2CHO

-face -faceA B

DC

11

NO

O

R

Ph

NO

O

R

1 2

O

N

O

R1

OH

O

O

N

O

R1

OH

O

Ph

O

R1

OH O

R1

OH

MeO MeO

MeOH/ MeO-MeOH/ MeO-3 4

5b 6b

Asymmetric Aldol Reaction

D. A. Evans et al, J. Am. Chem. Soc., 1981,103, 8

Metal=B(Bu)2

a, R=H b, R=C(O)Etc, R=C(O)Me d, R=C(O)CH2SMe

12D. A. Evans et al, J. Am. Chem. Soc., 1990, 112, 866

Asymmetric Aldol Reaction

N

OO O

Me

Me

Bn

Sn(OTf)2

TiCl4

Et3N

i-PrNEt

N

OO O

Me MeBn

N

OO O

Me MeBn

R

R

OH

OH

O

TiO

OHMe

ClCl

Cl

Me

H

Xp

Sn

OO

R

H

Me

H

Xp

OHMe

L

L

N

OO O

Me MeBn

R

OH

N

OO O

Me MeBn

R

OH

Anti-Syn

Syn-Syn

Sn(II) Aldol and Ti(IV) AldolSn(II) Aldol and Ti(IV) Aldol

13

Asymmetric Aldol Reaction

D. A. Evans et al, J. Am. Chem. Soc., 2002, 124, 392

14

Asymmetric Aldol Reaction

15

Asymmetric Aldol Reaction

D.A. Evans et al, Org. Lett., 2002, 4, 1127

16

Asymmetric Alkylation

NOR

OO

NOR

OO

Ph

NOR

OO

Ph

E

NOR

OO

E

Major

Major

Minor

NOR

OO

NOR

OOM

D. A. Evans et al, J. Am. Chem. Soc., 1982, 104, 1737

17

Asymmetric Diels-Alder Reaction

O

N

OAl

O

R

RH

Me

Ca-si Face

Ca-re Face

R2AlHCl2

Endo Ca-Si FaceMe

COXv

COXv

Me

COOH

Me

LiOBnH2 Pd/C

N O

O O

N O

O O

R2

Major

Major

Minor

Ph

R1

R1

COX

R1

COX

R1

D. A. Evans et al, J. Am. Chem. Soc., 1984, 106, 4261

D. A. Evans et al, J. Am. Chem. Soc., 1988, 110, 1238

18

Conclusion of Part 1

The gradual approach to the enantioselectivity

The variety of aldol reactions

Applications in other reactions such as alkylation and D-A reaction

Transition states

19

Enantioselective Cycloaddition

Enantioselective Aldol

Enantioselective Michael Addition

Enantioselective Carbonyl Ene Reactions

Part 2: Catalysis of Enantioselective Reactions Using Chiral Copper Complexes

20

N

O

N

O

R R

N

O

N

O

R R

N

O

N

O

R R

N

O

N

O

R R

N

Metal center: Cu, Mg, Zn, Sc, Ni……

Why copper?Why copper?1.Cu(II) forms the most stable ligand-metal complexes (Mn < Fe < Co <Ni < Cu > Zn)2.The exchange rate is greater than those of other first row divalent transition metalSome Bis(oxazo1ines) Ligands

D.A.Evans et al, Acc. Chem. Res. 2000, 33, 325

Basic Knowledge

21

A, R=Ph B, R=α-NpC, R=CHMe2 D, R=CMe3

D R=CMe3 is the best: 1. endo:exo=98:2 2. Endo e.e.>98%

Enantioselective Cycloaddition

N

O

N

O

R R

CuOTf22OTf-

N

O

N

O

R R

O

N

OO

Cu

2

N

O

N

O

CMe3 CMe3Cu

2

2X-

O

N

OO

-78oC

1%mol 1N

OO

OH

X=SbF6, PF6 , BF4 , OTf--

X=SbF6 is the best

Diels-Alder Reactions

Cu: Square-planarZn & Mg: Tetrahedral

D. A. Evans et al, J. Am. Chem. Soc., 1999, 121, 7559

22

Enantioselective Cycloaddition

Hetero Diels-Alder Reactions

D.A. Evans et al, J. Am. Chem. Soc., 2000, 122, 1635D.A. Evans et al, J. Am. Chem. Soc., 1998, 120, 4895

23

Ene Reactions of Glyoxylate Esters

Enantioselective Carbonyl Ene Reactions

N

O

N

O

Me3C CMe3

Cu

2

2OT f

1a

Low catalyst loading (0.2-10 mol %)

Moderate temperatures (0-25 )℃

Practical utility:

Commercially available undistilled glyoxylate

D.A. Evans et al, J. Am. Chem. Soc., 2000, 122, 7936

24

Ene Reaction of Pyruvate Esters

N

O

N

O

Me3C CMe3

Cu

2

2OT f

a

Enantioselective Carbonyl Ene Reactions

D.A. Evans et al, J. Am. Chem. Soc., 2000, 122, 7936

25

Enantioselective Aldol Reactions

Some incorporate additional stabilizing interactions: hydrogen, bonding, chelation

D.A. Evans, et al, J. Am. Chem. Soc., 1999, 121, 669

26

Enantioselective Aldol Reactions

D. A. Evans et al, J. Am. Chem. Soc., 1999, 121, 686

27

Alkylidene Malonates

D. A. Evans et al, J. Am. Chem. Soc., 2001, 123, 4480

Enantioselective Michael Addition

28

Enantioselective Michael Addition

D.A. Evans et al, J. Am. Chem. Soc., 2001, 123, 4480

Alkylidene Malonates

29David A. Evans et al, Org. Lett., 1999, 1, 865

Enantioselective Michael Addition

Fumaroyl Oxazolidinone

30

Conclusion of Part 2

The character and advantage of catalytic reactions

The character of these Cu(II) complexes

Different reactions catalyzed by Cu(II) complexes

31

Part 3:The applications of Evans’ asymmetric methodologies in his total synthesis

6-Deoxyerythronolide B (1998)

Cytovaricin (1990)

Callipeltoside A (2002)

Oasomycin A (2006)

32

OO

OH

O

H

Me

OH

Me

O

Me

OH

H

OHHO

O

Me

OH

OH

Me

H

H

MeH

O

H

Me

H

OH

HH

OOH

OH

HMe

OH

Me

H

H

MeH

HO

OH

CHO

OH

Me

Me OH

HO

O

MeHO

OH

O

H

Me

H

OH

HHO2SPh

+

14

1

4

16 17

2417

4

8

14

A B

Me

OH

HOOC

Cytovaricin (1990)

D.A. Evans et al, J. Am. Chem. Soc., 1990, 112, 7001

33

Me

OPMB OTES

Me

O NHNMe2

Me

O O

OPMB OH

Me

O

MeMe

O

Me

O O

X

N

OMe

O

O

Ph +O

OH

OH

H

Me

H

MeH

HO

OH

CHO

2417

A

1

2

3

4

H

Me

OH

Cytovaricin (1990)

D.A. Evans et al, J. Am. Chem. Soc., 1990, 112, 7001

34

OH

Me

X

Me OH

HO

O

MeHO

OH

O

H

Me

H

OH

HH

PhSO2

H

4

8

14

MeO

SiO

OH

t-Bu

t-BuMe

O NOPMB

OO

Ph

12

+

MeO

SiO

OH

t-Bu

t-BuMe

PMBO

OXN

MeO

SiO

OH

t-Bu

t-BuMe

PMBO

OXN

A B

Cytovaricin (1990)

D.A. Evans et al, J. Am. Chem. Soc., 1990, 112, 7001

35

6-Deoxyerythronolide B (1998)

OMe

Me

Me

O

OO

Et

Me

Me

O

R

Me

OH

O

O

HOH

NMe2

Me

OH

Me

MeOMe

Erythromycins A R=OHErythromycins B R=H

D.A. Evans et al, J. Am. Chem. Soc., 1990, 112, 7001

36

Et

Me

O

Me

O

Me Me

O

Me

O

Me

OTBSOH

O N

OO O O O

H

Bn

Me Me

EtMe

Me

OPMB

Me

OTBSOTMS

O N

OO

Ph

O

MeMe

Ti Evans aldol

O N

OO

Ph

O

MeMe

Sn Evans aldol

A

B

A+B

Deoxyerythronolide B

Mukaiyama aldol

Xp

O

MeOPh

Et

Me

O

Me

O

Me Me

O

Me

O

Me

OTBS

Xp

O

MeOPh

6-Deoxyerythronolide B (1998)

D.A. Evans et al, J. Am. Chem. Soc., 1990, 112, 7001

37

Callipeltoside A (2002)

O

O

OHH

O

Me

Me

MeO

Me

O

Cl

O

NH

O

O

MeO

MeH O

O

OHH

Me

Me

MeO

Me

O

OPMB

OH

Me

O O

MeMe

OTBS

OPMB

O

Me Me

EtO

O

Me

O O

MeMe

OTBS

OPMB

OH

N

O

Bn

5b 6

7

D. A. Evans et al, J. Am. Chem. Soc., 2002, 124, 5654

38

EtO

OTMS Me

H

OPMB

O

+

NO

N N

O

Ph Ph

CuH2O OH2

2+

2SbF6-2

1

a, 93%, 95% e.e.EtO

Me

OH

OPMB

O

H

Me

OTBS

OPMB

O

3 4

a

R

H

Me

OTBS

OPMB

O

R

H

Me

OTBS

OPMB

O

4b S

N

Me

OO O

BnMe

5

Xp

Me

O O

MeMe

OTBS

OPMB

OH

R

Xp

Me

O O

MeMe

OTBS

OPMB

OH

S

R:Diastereselection 55:45

S:Diastereselection 92:8

4a 5a

5b

Callipeltoside A (2002)

D. A. Evans et al, J. Am. Chem. Soc., 2002, 124, 5654

39

O

OHMe

Me

HO

OH

Me

OH OH OH OH OH OH

O

OOOH

Me

OH

Me Me

MeMeOH

OH

Me

29

46

D. A. Evans et al, Angew. Chem. Int. Ed., 2007, 46, 537

Oasomycin A (2006)

40

RO

H

O OR OR OR O

O

MeMe

OR

Me29

46

38

39

RO

S

O

O

Me

4639NN

N

NH

RO

OR OR OR

MeMe

OR29 38

O

H+

O N

OO

Bn

O

MeMe HOR

O OR OR

Sn(II) Aldol

1

2 3

45

OO

D. A. Evans et al, Angew. Chem. Int. Ed., 2007, 46, 537

Oasomycin A (2006)

41

O N

OO

Bn

O

MeMe

t-Bu

OTMS OTMS

HOBn

O

1 2t-Bu

OBn

O O OH

3

NO

N N

O

Ph Ph

Cu

2+

2SbF6-

a

HOBn

O OTBS OTBS

45

+

O N

OO

Bn

O

MeMe

OBn

OH OTBS OTBS

Sn(II) Aldol

a

D. A. Evans et al, Angew. Chem. Int. Ed., 2007, 46, 537

Oasomycin A (2006)

42

Summary

NO

O

R

Ph

NO

O

R

N

O

N

O

Me3C CMe3

Cu

2

O

OHMe

Me

HO

OH

Me

OH OH OH OH OH OH

O

OOOH

Me

OH

Me Me

MeMeOH

OH

Me

46

1.Chiral auxiliary

2.Copper complexes

3. Total syntheses

The Key Point:How to How to control control

the the transition transition states!!!states!!!

43

Acknowledgement

Professor Yang Zhen and Chen Jiahua

All the members in our group

Professor Yu and Shi

All the members of IOC

top related