1 department of physics terahertz imaging and detection of suicide bombers* j. f. federici, d. gary,...

Post on 22-Dec-2015

215 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Department of Physics

TERAHERTZ IMAGING and DETECTION OF SUICIDE BOMBERS*

J. F. Federici, D. Gary, B. Schulkin, F. Huang, H. Altan Department of Physics

R. Barat Department of Chemical Engineering

K. Walsh

Picatinny Arsenal

*Funded by US Army and NSF

Federici@adm.njit.edu

http://physics.njit.edu/~federici

2

Department of Physics

Outline

• THz Basics

• Basics of Interferometric Imaging

— Spectral Information

— Spatial information

• Simulated Images

— cm resolution at 100m distances

— Spectral Resolution of Explosives and Metals

— Analysis of Images

• Current and Future Work

3

Department of Physics

What is Terahertz (THz)?

1 THz frequency = 300 m wavelengthor 33 cm-1 or 4.1 meV or T = 48 K

Radio Microwave T-rays Infrared UV X-rays

Frequency (Hz)

108 109 1010 1011 1012 1013 1014 1015 1016 1017

Visible

Also known as Far-Infrared or sub-millimeter

4

Department of Physics

THz at NJIT

• 1997-2001 Developed various THz sources, detectors, and imaging techniques

Two PhD students graduated, 9+ publications in THz technology

• 2000-2001 Developed concept for Detection of explosives, chemical and biological weapons using new THz imaging methodology.

• Spring 2001 - Proposal for cargo screening submitted to FAA

• Post 9/11 - National Science Foundation and US Army Funding

8 publications since 2002, 2 patents pending

5

Department of Physics

Wide Area Surveillance

NJIT Team is developing THz imaging techniques for Stand-Off Detection of concealed Explosives, Chemical/Biological Agents

• Development of Technique/ Hardware for Imaging

• Development of Image Analysis

6

Department of Physics

Comparison with Other Techniques

X-Ray, Neutron Scattering - Uses high energy radiation

• damages biological systems - eg. damages DNA/ tissues

• permissible exposure limited - more difficult for use on people.

THz - low energy radiation - “non-ionizing”

• no damage to biological tissue

• differentiation of target compounds based on THz “color”

• Imaging and “color” information combination will reduce false alarm rate.

7

Department of Physics

Disadvantages of THz for Scanning for Explosives / BioAgents

• Metals are opaque to THz– will reflect the THz

• THz strongly absorbed by water– will not detect explosives inside the body

• THz scanners will likely be used in conjunction with other detection techniques.

• Not a forensic technique - looking for 1cm2 size blocks of material

8

Department of Physics

Application of High-Resolution X-Ray Raman Scattering to Homeland SecurityT. A. Tyson, Q. Qian (NJIT), Z. Zhong, C.-C. Kao and W. Caliebe (NSLS)

X-ray absorption spectroscopy of is one method that can be used to identify chemical systems by threshold spectra. The resonance features in x-ray absorption spectra are uniquely related with the molecular structure enabling rapid chemical identification. Utilizing 100 KeV x-rays with high penetration power and a transmission x-ray analyzer system based on a working design (left), we will develop a system for detecting explosives and chemical weapons by fingerprinting their spectra.

260 280 300 320 340 360

0.75

0.80

0.85

0.90

0.95

1.00

Inte

nsity

Energy(eV)

Carbon K-Edge of Graphite (X-Ray Raman)

The upper and lower left panels show the full spectrometer and blow up of the analyzer array, respectively. Each of the nine x-ray focusing mirrors can be independently aligned with micro radian precision in the horizontal and vertical planes. The lower left panel show the carbon K-edge spectrum of graphite measured in energy loss mode (x-ray Raman spectrum) with a resolution of ~ 0.5 eV.

Tyson@adm.njit.edu

9

Department of Physics

Advantages of THz for Scanning for Explosives / Bio and Chemical Agents

• THz transmits through most non-metallic materials: plastic, paper , clothing

• THz yields transmission / reflection spectra of targets*

ExplosivesKemp (2003)

Transmissive Bas.Sub. SpectraWoolard et al (2003)

* See papers from Proc. SPIE 5070, (2003)

10

Department of Physics

Interferometric Imaging - Motivation

Therefore

• To image in the THz, one must generate images using only a few to a few hundred detector elements.

Possible Solution: Interferometric imaging

A THz digital camera would be ideal for THz imaging:

However

• consumer digital cameras imaging arrays of 1024 by 768 pixels or 780,000 individual detector elements in the array.

• That high density of detectors in THz range not technologically possible.

11

Department of Physics

Sample Array Geometry

)1( nobradDetector Distance

to Origin:

Exponential Distances Ensure Non-redundant Spacing of Detector Pairs

66 detector pair combinations

Rotation of 90o with data acquired every 1o:

66*90 = 5940 points in u-v plane

12

Department of Physics

Estimated Angular Resolution

b (meters)

10 1 0.1 0.01 0.001

0.1 62" 10' 1.7o 17o 170o

1.0 6.2" 62" 10' 1.7o 17o

(THz)

10.0 0.6" 6.2" 62" 10' 1.7o

Field-of-View determined by either Field-of-View of individual Detectors or Bandwidth of Detectors.

Angular (Spatial) Resolution determined by spacing between Detector Pairs.

A 1m baseline array has a spatial resolution of 3cm at 100m!

Scaling down to cargo unit or hand-held size of smoke detector!

13

Department of Physics

Simulation of THz Imaging Array

Detection of RDX and Metal at a distance of 30m

Objects 1.5cm in size

Composite Image combination of THz images taken at 5 different frequencies

Spectral and Spatial Images

Objects with spectral content of RDX colored Red

Objects reflecting all THz radiation colored white

RDX Metal

Sidelobes

14

Department of Physics

Focusing of Image

ImagingArray

Object

Focal Length

Single frequency, uncleaned image

15

Department of Physics

Image Analysis - Neural Networks

U A A A A U A A A U A A U A F A S S A S S U A A U U A S S U A A A A U A S F U U F U A A A A F F F A A U S U U S F F F F F F F A U M M M M M S A A U F F F A M M M M M M S U U U M M M M M M U U M M M M M U S M M M M U A A S S U

BLUE = metal coinPINK = bioagentGREEN = flourORANGE = starch

THz Image at 1 frequency

Neural Network Analysis

U U U U S S A S S A S S F A F F A F F U F F A U F A A U U A U A A U A A A U U A A A A A A A U U A A U U A A

16

Department of Physics

Present and Future Work

• Development of Benchtop model underway to demonstrate key technological components

• Detect C4 versus peanut butter hidden in clothing.• Scale up to imaging system for suicide bombers

(system size about 1m)• Scale to hand-held/ cargo container unit (10cm size,

battery operated unit)

top related