1 properties of matter chapter 4 hein and arena eugene passer chemistry department bronx community...

Post on 04-Jan-2016

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Properties of Matter Chapter 4

Properties of Matter Chapter 4

Hein and Arena Eugene Passer Chemistry Department Bronx Community College© John Wiley and Sons, Inc

Version 2.0

12th Edition

2

Chapter Outline

4.1 Properties of Substances

4.2 Physical Changes

4.3 Chemical Changes

4.4 Conservation of Mass

4.5 Energy

4.6 Heat: Quantitative Measurement

4.7 Energy in Chemical Changes

4.8 Conservation of Energy

3

4.14.1

Properties of Properties of SubstancesSubstances

4.14.1

Properties of Properties of SubstancesSubstances

4

• A property is a characteristic of a substance.

• Each substance has a set of properties that are characteristic of that substance and give it a unique identity.

Properties of a Substance

5

Physical PropertiesPhysical Properties

6

• The inherent characteristics of a substance that are determined without changing its composition.

• Examples: taste color physical state melting point boiling point

7

• 2.4 times heavier than air

• color is yellowish-green

• odor is disagreeable

• melting point –101oC

• boiling point –34.6oC

Physical Properties of Chlorine

8

Chemical PropertiesChemical Properties

9

Describe the ability of a substance to form new substances, either by reaction with other substances or by decomposition.

10

• It will not burn in oxygen.

• It will support the combustion of certain other substances.

• It can be used as a bleaching agent.

• It can be used as a water disinfectant.

• It can combine with sodium to form sodium chloride.

Chemical Properties of Chlorine

11

12

4.24.2

Physical ChangesPhysical Changes4.24.2

Physical ChangesPhysical Changes

13

tearing of paper change of ice into water change of water into steam heating platinum wire

• Changes in physical properties (such as size, shape, and density) or changes in the state of matter without an accompanying change in composition.

• Examples:

Physical Changes

• No new substances are formed.

14

4.34.3

Chemical ChangesChemical Changes4.34.3

Chemical ChangesChemical Changes

15

In a chemical change new substances are formed that have different properties and composition from the original material.

16

Heating a copper wire in a Bunsen burner causes the copper to lose its original appearance and become a black material.

Formation of Copper(II) Oxide

Heating a copper wire in a Bunsen burner causes the copper to lose its original appearance and become a black material.

The black material is a new substance called copper(II) oxide.

Copper is 100% copper by mass.

Copper (II) oxide is: 79.94% copper by mass

20.1% oxygen by mass.

The formation of copper(II) oxide from copper and oxygen is a chemical change. The copper (II) oxide is a new substance with properties that are different from copper.

17

Formation of Copper(II) Oxide

Copper(II) oxide is made up of Cu2+ and O2-

4.2

Neither Cu nor O2 contains Cu2+ or O2-A chemical change has occurred.

18

Water is decomposed into hydrogen and oxygen by passing electricity through it.

Decomposition of Water

The composition and physical appearance of hydrogen and oxygen are different from water.The hydrogen explodes with a pop upon the addition of a burning splint.The oxygen causes the flame of a burning splint to intensify.

They are both colorless gases.But the burning splint is extinguished when placed into the water sample.

19

Chemical EquationsChemical Equations

20

Water decomposes into hydrogen and oxygen when electrolyzed.

reactant productsyields

21

Chemical symbols can be used to express chemical reactions

22

Water decomposes into hydrogen and oxygen when electrolyzed.

reactant yields

2H2O 2H2 O2

products

23

Copper plus oxygen yields copper(II) oxide.

yield productreactants

heat

24

Copper plus oxygen yields copper(II) oxide.

yield productreactants

heat

2Cu O2 2Cu2O

25

26

4.44.4

ConservationConservationof Massof Mass

4.44.4

ConservationConservationof Massof Mass

27

No change is observed in the total mass of the substances involved in a chemical change.

28

sodium + sulfur sodium sulfide

46.0 g 32.1 g 78.1 g

78.1 g product

mass productsmass products

78.1 g reactant →

mass reactantsmass reactants ==

29

4.54.5

EnergyEnergy4.54.5

EnergyEnergy

30

Energy is the capacity to do work

31

Types of Energy

• mechanical

• chemical

• electrical

• heat

• nuclear

• radiant

32

Potential Energy

Energy that an object possesses due to its relative position.

33

increasing potential energy

50 ft

20 ft

The potential energy of the ball increases with increasing height.

increasing potential energy

34

Potential Energy

Stored energy

35

• The heat released when gasoline burns is associated with a decrease in its chemical potential energy.

• The new substances formed by burning have less chemical potential energy than the gasoline and oxygen.

• Gasoline is a source of chemical potential energy.

36

Kinetic Energy

Energy matter possesses due to its motion.

37

Moving bodies possess kinetic energy.

• The flag waving in the wind.

38

Moving bodies possess kinetic energy.

• A bouncing ball.

• The running man.

39

• The runner

Moving bodies possess kinetic energy.

40

• The soccer player.

Moving bodies possess kinetic energy.

41

4.64.6

Heat: Heat: Quantitative MeasurementQuantitative Measurement

4.64.6

Heat: Heat: Quantitative MeasurementQuantitative Measurement

42

Heat• A form of energy associated with

small particles of matter.

Temperature • A measure of the intensity of heat, or of how hot or cold a system is.

43

Units of Heat EnergyUnits of Heat Energy

44

• The SI unit for heat energy is the joule (pronounced “jool”).

• Another unit is the calorie.

4.184 J = 1 cal

(exactly) 4.184 Joules = 1 calorie

This amount of heat energy will raise the temperature of 1 gram of water 1oC.

45

A form of energy associated with small particles of matter.

A measure of the intensity of heat, or of how hot or cold a system is.

An Example of the Difference Between Heat and Temperature

46

Twice as much heat energy is required to raise the temperature of 200 g of water 10oC as compared to 100 g of water.

200 g water

20oC

A

100 g water

20oC

B

100 g water

30oC

200 g water

30oC

heat beakers 4184 J 8368 Jtemperaturerises 10oC

47

Specific HeatSpecific Heat

48

The specific heat of a substance is the quantity of heat required to change the temperature of 1 g of that substance by 1oC.

49

50

The units of specific heat in joules are:

o

Joulesgram Celcius

o

Jg C

51

The units of specific heat in calories are:

o

caloriesgram Celcius

o

calg C

52

The relation of mass, specific heat, temperature change (Δt), and quantity of heat lost or gained is expressed by the general equation:

Δt = heatmass of substance)(specific heat

of substance)(

53

Example 1Example 1

54

o

1638 J125 g x 27.6 C

Calculate the specific heat of a solid in J/goC and in cal/ goC if 1638 J raise the temperature of 125 g of the solid from 25.0oC to 52.6oC.

(mass of substance)(specific heat of substance)Δt = heat

(g)(specific heat of substance)Δt = heatheat

specific heat = g x Δt

heat = 1638 J

mass = 125 g

Δt = 52.6oC – 25.0oC = 27.6oC

specific heat = o

0.475 J=

g C

55

Calculate the specific heat of a solid in J/goC and in cal/ goC if 1638 J raise the temperature of 125 g of the solid from 25.0oC to 52.6oC.

o

0.114 cal=

g Co

0.475 Jg C

1.000 cal4.184 J

specific heat =

Convert joules to calories using 1.000 cal/4.184 J

56

Example 2Example 2

57

A sample of a metal with a mass of 212 g is heated to 125.0oC and then dropped into 375 g of water at 24.0oC. If the final temperature of the water is 34.2oC, what is the specific heat of the metal?

When the metal enters the water, it begins to cool, losing heat to the water. At the same time, the temperature of the water rises. This process continues until the temperature of the metal and the temperature of the water are equal, at which point (34.2oC) no net flow of heat occurs.

58

A sample of a metal with a mass of 212 g is heated to 125.0oC and then dropped into 375 g of water at 24.0oC. If the final temperature of the water is 34.2oC, what is the specific heat of the metal?

• Calculate the heat gained by the water.

• Calculate the final temperature of the metal.

• Calculate the specific heat of the metal.

59

A sample of a metal with a mass of 212 g is heated to 125.0oC and then dropped into 375 g of water at 240.0oC. If the final temperature of the water is 34.2oC, what is the specific heat of the metal?

Δt = 34.2oC – 24.0oC = 10.2oCtemperature rise of the water

Heat Gained by the Water

o(10.2 C) = (375 )g o

4.184 Jg C

heat gained by the water

= 41.60 x 10 J

60

A sample of a metal with a mass of 212 g is heated to 125.0oC and then dropped into 375 g of water at 240.0oC. If the final temperature of the water is 34.2oC, what is the specific heat of the metal?

Δt = 125.0oC – 34.2oC = 90.8oCtemperature drop of the metal

Once the metal is dropped into the water, its temperature will drop until it reaches the same temperature as the water (34.2oC).

Heat Lost by the Metal

heat lost by the metal

heat gained by the water

= = 41.60 x 10 J

61

A sample of a metal with a mass of 212 g is heated to 125.0oC and then dropped into 375 g of water at 240.0oC. If the final temperature of the water is 34.2oC, what is the specific heat of the metal?

heatspecific heat =

mass x Δ t

4

o

1.60 x 10 J(212g)(90.8 C)

o

0.831 Jg C)

specific heatof the metal

=

The heat lost or gained by the system is given by:

(mass) (specific heat) (Δt) = energy change

rearrange

62

4.74.7

Energy in Energy in Chemical ChangesChemical Changes

4.74.7

Energy in Energy in Chemical ChangesChemical Changes

63

In all chemical changes, matter either absorbs or releases energy.

64

Energy Release From Chemical Sources

Type of Energy

Energy Source

Electrical Storage batteries

Light A lightstick. Fuel combustion.

Heat and Light Combustion of fuels.

BodyChemical changes occurring within body cells.

65

Chemical Changes Caused byAbsorption of Energy

Type of Energy

Chemical Change

ElectricalElectroplating of metals. Decomposition of water into hydrogen and oxygen

Light Photosynthesis in green plants.

66

4.84.8

ConservationConservationof Energyof Energy

4.84.8

ConservationConservationof Energyof Energy

67

An energy transformation occurswhenever a chemical change occurs.

• If energy is absorbed during a chemical change, the products will have more chemical potential energy than the reactants.

• If energy is given off in a chemical change, the products will have less chemical potential energy than the reactants.

68

4.3

H2 + O2 have higher potential energy than H2O

energy is given offenergy is absorbed

Electrolysis of Water Burning of Hydrogen in Air

higher potential energy lower potential energy

69

Law of Conservation of Energy

Energy can be neither created nor destroyed, though it can be transformed from one form of energy to another form of energy.

70

top related