17 empty lattice approximation - binghamton...

Post on 11-Mar-2021

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Empty lattice approximation

Masatsugu Sei Suzuki

Department of Physics, SUNY at Binghamton

(Date: March 21, 2018)

1. Empty lattice approximation

Actual band structures are usually exhibits as a plot of energy vs wavevector in the first

Brillouin zone.

When band energies are approximated fairly well by electron energies

2

2

2k

m k

It is advsable to start a calculation by carrying the free electron energies back into the first zone.

We look for a reciprocal lattice vector G such that

' k k G

where k' is unrestricted and is the true wavevector in the empty lattice,

2

2

22

22 2 2

( ) '2

( )2

[( ) ( ) ( ) ]2

G

x x y y z z

m

m

k G k G k Gm

k k

k G

.

with k in the first Brillouin zone and G allowed to run over the appropriate reciprocal lattice

points.

2

Fig. The Brillouin zone for the 2D square lattice. k' = k + G.

2. SC (simple cubic)

2( , , )

a

k , (Cartesian coordinate)

with , , and, are between -1/2 and 1/2, and

1 2 3

2 2( , , ) ( , , )h k l n n n

a a

G (Cartesian coordinate)

with h = n1, k = n2, and, l = n3 are integers.

2

2

222 2 2

1 2 3

( ) ( )2

2[( ) ( ) ( ) ]

2

Gm

n n nm a

k k Gℏ

1 2

3

3

4

4

4

5

56

7

1

23

3

4

4

4

5

5

6

7

12

3

3

4

4

4

5

56

7

1

23

3

4

4

4

5

5

6

7

k'k

G

3

Fig. First Brillouin zone for the simple cubic lattice.

(a) M

= , and = 0. 2

10 .

2

2

222 2 2

1 2 3

( ) ( )2

2[( ) ( ) ]

2

Gm

n n nm a

k k Gℏ

4

with

22

0

2

2

am

Eℏ

.

(b) MX

= 1/2, = 0, and changes from 1/2 to 0.

2

2

222 2 2

1 2 3

( ) ( )2

2 1[( ) ( ) ]

2 2

Gm

n n nm a

k k Gℏ

(c) X

= = 0, and changes from 1/2 to 0.

2

2

222 2 2

1 2 3

( ) ( )2

2[( ) ]

2

Gm

n n nm a

k k Gℏ

4. Numerical calculation (sc)

5

EêE0

G MM XX G0.5 1.0 1.5

1

2

3

4

5

6

Fig. Energy band of the empty sc lattice along the M, MX, and X line of the first Brillouin

zone .

5. fcc (face-centered cubic) lattice

2( , , )

a

k , (Cartesian coordinate)

with , , and, are between -1/2 and 1/2, and

1 2 3

2( , , )

2( , , )

h k l h k l h k la

n n na

G

(Cartesian coordinate)

with h, k, and, l are integers.

2

2

222 2 2

1 2 3

( ) ( )2

2[( ) ( ) ( ) ]

2

Gm

n n nm a

k k Gℏ

7

Fig. First Brillouin zone for the fcc lattice. X = (0,0,1), W=(1/2, 0, 1), L = (1/2, 1/2, 1/2),

K = (1/4, 1/4, 1) or K = (3/4, 3/4, 0) in the units of 2/a. bx, by, bz are the reciprocal

lattice vectors of the conventional unit cell. . bx = (2/a) (1, 0, 0). by = (2/a) (0, 1,

0). bz= (2/a) (0, 0, 1).

(a) (0,0,0) →X(0,0,1)

2( , , )

a

k ,

where

= 0 and = 0. 10 .

8

2

2

2 2 2

0 1 2 3

( ) ( )2

[( ) ]

Gm

E n n n

k k Gℏ

with

22

0

2

2

am

Eℏ

.

(b) X(0,0,1)→W(1/2,0,1)

2( , , )

a

k ,

where

= 0 and = 1. 2/10 .

2

2

2 2 2

0 1 2 3

( ) ( )2

[( ) (1 ) ]

Gm

E n n n

k k Gℏ

(c) W(1/2,0,1)→L(1/2,1/2,1/2)

2( , , )

a

k ,

where

= 1 - and = 1/2. 2/10 .

2

2

2 2 2

0 1 2 3

( ) ( )2

[(1/ 2 ) ( ) (1 ) ]

Gm

E n n n

k k Gℏ

(d) (0,0,0)→L(1/2,1/2,1/2)

9

2( , , )

a

k ,

where

= = . 2/10 .

2

2

2 2 2

0 1 2 3

( ) ( )2

[(1/ 2 ) ( ) (1 ) ]

Gm

E n n n

k k Gℏ

(e) (0,0,0)→K(3/4,3/4,0)

2( , , )

a

k ,

where

= , =0. 4/30 .

2

2

2 2 2

0 1 2 3

( ) ( )2

[( ) ( ) ( ) ]

Gm

E n n n

k k Gℏ

(f) K(1/4,1/4,1)→X(0,0,1)

2( , , )

a

k ,

where

, =1, = 1/4 to 0.

2

2

2 2 2

0 1 2 3

( ) ( )2

[( ) ( ) (1 ) ]

Gm

E n n n

k k Gℏ

6. Numerical calculation (fcc)

10

G XX WW LL GG KK X

fcc

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

1

2

3

4

5

11

__________________________________________________________________________

7. bcc (body-centered cubic) lattice

EêE0

G XX WW LL GG KK X

fcc

0.5 1.0 1.5 2.0 2.5 3.0 3.5

2

4

6

8

10

12

2( , , )

a

k , (Cartesian coordinate)

with , , and, are between -1/2 and 1/2, and

1 2 3

2( , , )

2( , , )

k l l h h ka

n n na

G

(Cartesian coordinate)

with h, k, and, l are integers.

2

2

222 2 2

1 2 3

( ) ( )2

2[( ) ( ) ( ) ]

2

Gm

n n nm a

k k Gℏ

13

Fig. First Brillouin zone for the bcc lattice. = (0,0,0), H = (1,0,0), N = (1/2, 1/2, 0), P = (1/2,

1/2, 1/2), in the units of 2/a. bx, by, bz are the reciprocal lattice vectors of the conventional

cubic unit cell. bx = (2/a) (1, 0, 0). by = (2/a) (0, 1, 0). bz= (2/a) (0, 0, 1).

(a) (0,0,0) →H(1,0,0)

2( , , )

a

k ,

where

14

= 0 and = 0. 10 .

2

2

2 2 2

0 1 2 3

( ) ( )2

[( ) ]

Gm

E n n n

k k Gℏ

with

22

0

2

2

am

Eℏ

.

(b) H(1,0,0)→P(1/2,1/2,1/2)

2( , , )

a

k ,

where

= = . 2/10 .

2

2

2 2 2

0 1 2 3

( ) ( )2

[(1 ) ( ) ( ) ]

Gm

E n n n

k k Gℏ

(c) P(1/2,1/2,1/2)→ (0,0,0)

2( , , )

a

k ,

where

= = , where changes from 1/2 to 0

2

2

2 2 2

0 1 2 3

( ) ( )2

[( ) ( ) ( ) ]

Gm

E n n n

k k Gℏ

15

(d) (0,0,0)→N(1/2,1/2,0)

2( , , )

a

k ,

where

= , = 2/10 .

2

2

2 2 2

0 1 2 3

( ) ( )2

[( ) ( ) ( ) ]

Gm

E n n n

k k Gℏ

(e) N (1/2,1/2,0)→ H (1,0,0)

2( , , )

a

k ,

where

+ = 1, =0. 12/1 .

2

2

2 2 2

0 1 2 3

( ) ( )2

[( ) (1 ) ( ) ]

Gm

E n n n

k k Gℏ

8. Numerical calculation for bcc

16

EêE0 bcc

G HH PP GG NN H0.0 0.5 1.0 1.5 2.0 2.5 3.00

1

2

3

4

5

17

EêE0 bcc

G HH PP GG NN H0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

18

9. Radius of Fermi sphere for the fcc lattice

Fermi wavenumber kF:

nV

Vk

V

c

F 3

3 3

4

)2(2

,

where

n: electrons per primitive cell (fcc), or number of electrons per atom.

Vc: volume of primitive cell (fcc)

3

4

1aVc .

Then we get

na

kF 3

3

3

4

3

4

)2(

12

or

na

kF 3

23 12

or

3/1

2

32

n

akF

The Fermi energy is

3/2

0

3/2222

2

2

3

2

32

22

nE

n

amk

mFF

ℏℏ

with

19

22

0

2

2

am

Eℏ

.

In summary,

3/2

0 2

3

n

E

F

Table

10. Radius of Fermi sphere for the bcc lattice

Fermi wavenumber kF:

nV

Vk

V

c

F 3

3 3

4

)2(2

,

where

n: electrons per primitive cell (bcc), or number of electrons per atom.

Vc: volume of primitive cell (fcc)

3

2

1aVc .

n H 3 n

2 πL2ê3

1 0.610887

2 0.969723

3 1.2707

4 1.53934

5 1.78624

6 2.0171

7 2.23542

8 2.44355

9 2.64315

10 2.83549

11 3.0215

12 3.20195

13 3.37746

14 3.54851

15 3.71554

20

Then we get

na

kF 3

3

3

2

3

4

)2(

12

or

na

kF 3

23 6

or

3/1

4

32

n

akF

The Fermi energy is

3/2

0

3/2222

2

4

3

4

32

22

nE

n

amk

mFF

ℏℏ

with

22

0

2

2

am

Eℏ

.

In summary,

3/2

0 4

3

n

E

F

Table

21

11. Energy band of real systems: comparison with the empty lattice approximation

(i) Na (bcc)

Fig. Energy dispersion of Na (bcc). J. Yamashita, The theory of Electrons in Metals (Asakura,

1973, in Japanese)

n H 3 n

4 πL2ê3

1 0.384835

2 0.610887

3 0.800488

4 0.969723

5 1.12526

6 1.2707

7 1.40823

8 1.53934

9 1.66508

10 1.78624

11 1.90343

12 2.0171

13 2.12766

14 2.23542

15 2.34064

22

Fig. Energy dispersion (the empty lattice approximation) for thr bcc metal. J. Yamashita, The

Theory of Electrons in Metals (Asakura, 1973, in Japanese)

23

Fig. Energy dispersion of bcc from the empty lattice approximation (the present result).

(ii) Al (fcc)

EêE0 bcc

G HH PP GG NN H0.0 0.5 1.0 1.5 2.0 2.5 3.00

1

2

3

4

5

24

Fig. Energy dispersion of Al (fcc, full lines) compared with the free electron fcc metal (broken

lines) [After Segal (1961), Phys. Rev.124, 1797]. R.G. Chambers, Electrons in Metals and

Semiconductors (Chapman and Hall, 1990).

25

Fig. Energy dispersion of free electron fcc metal (empty lattice approximation) [Herman (1967),

in An Atomic Approach to the Nature and Properties of Materials (ed. Pask), Wiley, New

York]. R.G. Chambers, Electrons in Metals and Semiconductors, Chapman and Hall, 1990.

26

Fig. Energy dispersion of fcc from the empty lattice approximation (the present result).

APPENDIX

2D square lattice

2

2 22 2[( ) ( ) ]

2x yk h k k

m a a

Here we put

2 2, ,x yk k

a a

G XX WW LL GG KK X

fcc

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

1

2

3

4

5

27

Thus we have the resulting energy dispersion as

2 2

22,

1( , ) [( ) ( ) ]

2

2

h k

E h k

m a

where 0, 1, 2,....h , and 0, 1, 2,....k

(a) Energy dispersion along the ( ,0)xk direction (denoted by red arrow)

We make a plot of ( ,0)E as s function of for 1

2

28

(b) Energy dispersion along the ( , )x xk k direction (denoted by blue arrow)

We make a plot of ( , )E as s function of for 2

2

E

0.4 0.2 0.0 0.2 0.4

2

4

6

8

29

E

0.6 0.4 0.2 0.0 0.2 0.4 0.6

2

4

6

8

top related