2 scheiben und träger - eth z...• simple method for efficient, code-compliant design and...

Post on 25-Jul-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

2 Scheiben und Träger

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 1

2.6 Kontinuierliche Spannungsfelder

Kontinuierliche Spannungsfelder

Overview and nomenclature

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 2

2. Scheiben und Träger

2.1 Spannungsfelder = Stress fields (discontinuous)Equilibrium considerations: Lower bound solutions

2.2 Bruchmechanismen = Failure mechanismsKinematic considerations: Upper bound solutions

2.3 Träger – Verformungsvermögen= Beams – Deformation capacity

2.4 Scheibenelemente – Fliessbedingungen= Membrane elements – Yield conditions

2.5 Scheibenelemente – Last-Verformungsverhalten= Membrane elements – Load deformation behaviour

2.6 Kontinuierliche Spannungsfelder = Continuous stress fieldsEquilibrium & kinematic considerations:Exact solutions (simultaneously lower + upper bound)

Tedious hand calculations (iterations, many load cases)

Digitalisation required!

Concepts only developed for particular elements Deformation capacity? Serviceability checks

(deformations, crack widths)?

Computer-aided tool for a general plane stress element Implements same mechanical concepts Overcomes the stated limitations

Application to real-life structures

Kontinuierliche Spannungsfelder

Real-life structuresB Continuity/Bernouilli regionsD Discontinuity regions: static and geometric discontinuities are always present

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 3

[Tjhin & Kuchma, 2002]

Kontinuierliche Spannungsfelder

Dimensioning/assesment of real-life structures

B Continuity/Bernouilli regions• Classic tools: hand calculations feasible; cover all verifications• Computer-aided tools:

− Many available applications for member design: direct implementation of code verifications/mechanical models

D Discontinuity regions• Classic tools (discontinuous stress fields…): deformation capacity?; serviceability aspects?; hand calculations non-

feasible/productive• Computer aided-tools:

a) Linear elastic FE-calculations: Non-symmetric strength of concrete only accounted for in the last step (dimensioning based on yield conditions); unable to predict realistic capacity in existing structures, nor cracking in new ones

b) Non-linear FE-calculations: complex, typically consider tensile strength for equilibrium (differ from classic mechanical models), code compliant?

c) Gap between a & b for simple but realistic, code-compliant tool, consistent with classic mechanical models Continuous stress fields = Computer-aided stress fields = Simplified non-linear FE-calculation

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 4

Kontinuierliche Spannungsfelder

Dimensioning/assesment of Discontinuity Regions: Existing computer-aided tools

[HanGil, 2017]

Idea StatiCa for specific details(corbels, piles caps…)

AStrutTie (HanGil) (strut-and-tie → fc=? Realistic results?)

[IDEA, 2017]

CAST (Tjhin & Kutchma, 2002)(strut-and-tie → fc=? Realistic results?)

[Mata-Falcón & Sánchez-Sevilla, 2006]

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 5

Kontinuierliche Spannungsfelder

Dimensioning/assesment of Discontinuity Regions: Existing computer-aided tools

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 6

Stringer-Panel Models (Nielsen, 1971; Blaauwendraad & Hoogenboom, 1996; Marti & Heinzmann, 2012)

[Blauwendraad, 2006]

Kontinuierliche Spannungsfelder

Experimental crack pattern

Hand-calculated stress fields

Numerical results EPSF

Dimensioning/assesment of Discontinuity Regions: Existing computer-aided tools

[Mata-Falcón, 2015]

[Mata-Falcón et al., 2014]

[Muttoni & Fernandez Ruiz, 2007]

EPSF elastic plastic stress fields (Fernández Ruiz & Muttoni, 2007)

Maintains advantages of hand calculations (transparent, safedesign with fct = 0, consistent detailing)

Compressive strength fcdetermined automatically fromstrain state

Limited user-friendliness Limited use for serviceability

… no tension stiffening… no crack width calculation

No check of deformationcapacity (perfectly plastic material)

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 7

Kontinuierliche Spannungsfelder

DRD (discontinuity region design) method - Implemented in commercial software IdeaStatiCa DetailContinuous stress fields = Computer-aided stress fields

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 8

Scope• Simple method for efficient, code-compliant design and assessment of discontinuity concrete regions• Including serviceability and deformation capacity verifications• Direct link to conventional RC design: standard material properties, concrete tensile strength totally neglected for

equilibrium (only its influence to the stiffness is accounted)

Inspirations• EPSF FE-implementation (strain compatibility, automatic determination of concrete reduction factor from strain state)• Tension Chord Model TCM and Cracked Membrane Model CMM (tension stiffening, ductility and serviceability checks)

Development / Credits

This project has received partial funding from Eurostars-2 joint programme, with co-funding from the European Union

Horizon 2020 research and innovation programme

Kontinuierliche Spannungsfelder

DRD: design process

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 9

1) Definition of geometry, loads and load combinationsa) BIM connections: export data from a global model for the analysis of a detailb) Standalone application:

Full definition in standalone user-friendly application

Kontinuierliche Spannungsfelder

DRD: design process

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 10

2) Reinforcement designa) Location of reinforcement: definition by user. Several design tools are provided to identify where the

reinforcement is required (for complex regions):

b) Amount of reinforcement: can be automatically designed for all or part of the reinforcement. Not yet released in current version (Idea Statica Detail 9.1)

3) Verification models to check all code requirementsa) Load-bearing capacityb) Serviceability verifications (deformations, crack width…)

Linear elastic stress flow

Topological optimization

Kontinuierliche Spannungsfelder

DRD verification model: main assumptions

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 11

• AStruTie (HanGil)

based on [Kaufmann and Marti, 1998]

Main assumptions:

• Fictitious rotating-stress-free cracks (σc1,r=0) without slip

• Average strains

• Equilibrium at cracks:

i. Maximum stresses: -σc3,r / σs,r

ii. Concrete tensile strength neglected except for tension-stiffening: εm

Suitable for elements with minimum transversal reinforcement. Slender elements without shear reinforcement would lead to conservative results.

Kontinuierliche Spannungsfelder

DRD verification model: concrete

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 12

• AStruTie (HanGil)

Strain limitations of concrete specified by codes (explicitly considers the increasing brittleness of concrete with strength). Imposed to the average strain over a characteristic

crushing band length.

kc discrete values for hand calculations

Kontinuierliche Spannungsfelder

DRD verification model: concrete

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 13

• AStruTie (HanGil)

kc (compression softening) automatically computed based on the transversal strain state. Use of fib MC 2010 / SIA 262:213 proposal for shear

verifications (consistent with considered max. stresses) extended for general cases.

Strain limitations of concrete specified by codes (explicitly considers the increasing brittleness of concrete with strength). Imposed to the average strain over a characteristic

crushing band length.

Kontinuierliche Spannungsfelder

DRD verification model: bond and reinforcement

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 14

Bond model used exclusively for bond verifications

Tension-stiffening: Does not affect the

strength of thereinforcement Increases the stiffness Reduces the ductility

(can reduce the strength of the member)

explicit failure criteria *Bilinear naked steel input for design. More

realistic laws for assessment & experimental validation.

Kontinuierliche Spannungsfelder

DRD verification model: tension stiffeningStabilized crack pattern

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 15

Implementation of Tension Chord Model(TCM) [Alvarez, 1998; Marti et al., 1998]

Average crack spacing: assumed λ=0.67

for ρ>ρcr≈0.6% Reinforcement is able to carry the cracking load without yielding 0

1 1sr y ctmcr

f f n

σ = = + − ρ

Kontinuierliche Spannungsfelder

DRD verification model: tension stiffeningNon-stabilized crack pattern

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 16

for ρ<ρcr≈0.6% Reinforcement is NOT able to carry the cracking load without yielding. Cracks are controlled by other reinforcement.

Independent cracks are assumed + bond model of Tension Chord Model.

Crack localization (size effect): stiffness of the whole rebar embedded in concrete > local stiffness near the crack(considered average strain over lavg).

Kontinuierliche Spannungsfelder

DRD verification model: effective area of concrete in tension→ suitable for numerical implementation and valid for automatic definition of ρc,eff in any region

Maximum concrete area each rebar can activate (concrete at fct)

(illustrated for rebars 3 and 4) Areas used in calculation

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Eurostars – DR-Design 18

Kontinuierliche Spannungsfelder

DRD verification model: crack width – stabilized crack pattern

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 19

WT4

[Walther, 1967]

Kontinuierliche Spannungsfelder

DRD verification model: crack width – non-stabilized crack pattern

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 20

[Zhu et al., 2003]

Assumed independent cracks at SLS Considered for:a) Regions with ρ<0.6%b) Cracks triggered by geometric

discontinuities at low loads

T6

Kontinuierliche Spannungsfelder

DRD verification model: crack width – crack kinematic

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 21

Kontinuierliche Spannungsfelder

DRD & IdeaStatiCa Detail implementation: additional information

Theoretical description of DRD method & experimental validation

• “Computer-aided stress field analysis of discontinuity concrete regions”, J. Mata-Falcón, D. T. Tran, W. Kaufmann, J. Navrátil; Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), 641-650, London: CRC Press, 2018.

Use and installation of Idea StatiCa Detail software:

• Installation of the software: https://www.ideastatica.com/downloads/

Free educational license might be ordered in https://www.ideastatica.com/free-trial/

• Idea StatiCa Resource Center (tutorials, sample projects…): https://resources.ideastatica.com/Content/Home.htm

• Practical workshop will be organised for those students interested

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 22

Kontinuierliche Spannungsfelder

DRD: practical examples in Idea StatiCa DetailDeep beam with distributed top load

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 23

Problem definition Design of reinforcement

x

z

tF

cF

A

B C

D

E

a

( )w cqa b f

Gqa

Fq

Kontinuierliche Spannungsfelder

DRD: practical examples in Idea StatiCa DetailDeep beam with distributed top load

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 24

Continuous stress fields Discontinuous stress fields

Kontinuierliche Spannungsfelder

DRD: practical examples in Idea StatiCa DetailDeep beam with distributed load

18.10.2018 ETH Zürich | Prof. Dr. W. Kaufmann | Vorlesung Stahlbeton III 25

Top load: fan mechanism Suspended load: arch mechanism

Arch mechanism requires enough capacity of flexural reinforcement; otherwise, the load is suspended until top & fan action is generated

top related