2. types of structures - tu dresden

Post on 28-Dec-2021

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fakultät Bauingenieurwesen, Institut für Massivbau, Prof. M. Curbach

2. Types of structures

Dresden, June 4th, 2018

Dr.-Ing. Patricia Garibaldi

TU Dresden, 04.06.2018 Structural Systems

Basic concepts for structures

Buch Leicht Weit, Schlaich J., Bergermann R.Folie 2 von 39

TU Dresden, 09.04.18 Structural Systems

Basic concepts for structures

• Conventional floating bridge, with joints

• Integral Bridge – (largely) free of joints and bearings

Foto 1: http://en.structurae.de/files/photos/1/imgp/imgp0287.jpg

Foto 2: Just, M.

Folie 3 von 39

TU Dresden, 09.04.18 Structural Systems

“The only good joint is no joint”

Henry Derthick, Tennessee Department of Transportation

Folie 4 von 46

TU Dresden, 09.04.18 Structural Systems

1. Beams

• Simply supported• Simply supported chain

• Continuous beam

• Gerber beam

Buch Vorlesungen über Massivbau, Teil 6b Massivbrücken, Leonhardt F.Folie 5 von 46

TU Dresden, 09.04.18 Structural Systems

1. Beams

Buch Brücken, David J. Brown, Callway, 2005

http://upload.wikimedia.org/wikipedia/commons/6/6c/Tarr_Steps_02.jpg

Tare steps, England

Folie 6 von 46

TU Dresden, 09.04.18 Structural Systems

1. Beams

Foto: Just, M.Folie 7 von 46

TU Dresden, 09.04.18 Structural Systems

1. Beams

Fotos 1-3: Just, M.

Foto 4: http://2.bp.blogspot.com/-R5gzvstJAqE/Tb2mVYHdRJI/AAAAAAAAE88/AnJP2F1khK8/s1600/Dresden_Carolabr%25C3%25BCcke_1921.jpg

Folie 8 von 46

TU Dresden, 09.04.18 Structural Systems

2. Truss

http://www.bergoiata.org/fe/ponts2/Dall61.JPG

http://www.geolocation.ws/v/P/37443150/brcke-alberthafen/en

• Single supported

Folie 9 von 46

TU Dresden, 09.04.18 Structural Systems

2. Truss

http://www.karl-gotsch.de/Bilder/Biesenbach2.jpg

• Chain of simply supported fish-belly beams

Folie 10 von 46

TU Dresden, 09.04.18 Structural Systems

2. Truss

http://de.academic.ru/pictures/technik/large/TL020653.jpg

• Continuous beam or Gerber beam

Folie 11 von 46

TU Dresden, 09.04.18 Structural Systems

2. Truss

Foto 1: http://www.karl-gotsch.de/Bilder/Forth_RW1.jpg

Foto 2: http://www.pre-engineering.com/resources/forth/images/Forth-Bridge2.jpg

• Cantilever bridge with suspended beam

Folie 12 von 46

TU Dresden, 09.04.18 Structural Systems

2. Truss

http://www.dresden-schillerplatz.de/Bilder/BlauesWunder.JPGFolie 13 von 46

TU Dresden, 09.04.18 Structural Systems

2. Truss made of concrete

Foto 1: http://www.efreyssinet-association.com/oeuvre/ouvrages.php

Foto 2: Brückenexkursion 2010

• Eugène Freyssinet

Pont Boutiron sur l’Allier 1913

Pont de Plougastel (Finistère) 1925 – 1930

Folie 14 von 46

TU Dresden 09.04.18 Structural Systems

2. Truss made of concrete

Foto: http://photos.planete-tp-plus.com/galleries/regards_de_photographes/auvergne/1018597.jpgFolie 15 von 39

TU Dresden, 09.04.18 Structural Systems

2. Truss made of concrete

Foto: http://upload.wikimedia.org/wikipedia/commons/d/d8/Mangfallbruecke_Jan_2008.jpgFolie 16 von 39

TU Dresden, 09.04.18 Structural Systems

3. Framework bridges

• Portal Frame

Schüller, M. - Konzeptionelles Entwerfen und Konstruieren von Integralen Betonbrücken, in Beton- & StahlbetonbauFolie 17 von 46

TU Dresden, 09.04.18 Structural Systems

3. Framework bridges

• Mulit-span framework

http://v1.cache6.c.bigcache.googleapis.com/static.panoramio.com/photos/original/47424648.jpg?redirect_counter=1Folie 18 von 46

TU Dresden, 09.04.18 Structural Systems

3. Framework bridges

• Semi-integral multi-span framework

http://www.cbing.de/pictures/pruefen/pruefen5.jpgFolie 19 von 46

TU Dresden, 09.04.18 Structural Systems

4. Arch bridges

• Redevelopment: Bridge over the Priesnitz, Stauffenbergallee, Dresden

Foto 1: http://vigil.antville.org/static/vigil/images/kam35.jpg

Foto 2: http://maps.google.de/maps?hl=de&ll=51.074209,13.762695&spn=0.000779,0.002575&t=h&z=20&vpsrc=6

Folie 20 von 46

TU Dresden, 09.04.18 Structural Systems

4. Arch bridges

http://farm4.static.flickr.com/3567/3613941887_d362dab8a1_o.jpg

• Elevated roadway

Folie 21 von 46

TU Dresden, 09.04.18 Structural Systems

4. Arch bridges

http://bilder.augsburger-allgemeine.de/img/15366991-1307095653000/topTeaser_crop_Lechbr-cke.jpg

• Suspended roadway

Folie 22 von 46

TU Dresden, 09.04.18 Structural Systems

4. Arch bridges

http://upload.wikimedia.org/wikipedia/commons/7/72/Old_Svinesund_Bridge.jpg

• Roadway carrier and arch go together in the vertex of the arch

Folie 23 von 46

TU Dresden, 09.04.18 Structural Systems

4. Arch bridges

http://www.stahlbau-kaiser.de/referenzen/0043829d5f09d1833/xl001.jpg

• Mixed type (s. also Waldschlösschenbrücke in Dresden)

Folie 24 von 46

TU Dresden, 09.04.18 Structural Systems

5. Suspended and tension stiffend structures

• Cable stayed bridges -> Vorlesung Herr Svensson• Over-or underspanned structures:

• Bending capacity of the beam is increased by outsourced tension members

Foto 1: http://upload.wikimedia.org/wikipedia/commons/6/65/BadSchandau-Strassebruecke2.jpg

Foto 2: http://www.skiclub-klosters.ch/images/content/bilder_nordic/start_sam.jpg

Folie 25 von 46

TU Dresden, 09.04.18 Structural Systems

6. Suspension structures

http://static.panoramio.com/photos/original/39983014.jpgFolie 26 von 46

TU Dresden, 09.04.18 Structural Systems

6. Modern suspension bridges

„real“ suspension bridge „fake“ suspension bridge

-> with rear anchorage -> self-anchoring+ only low forces in bridge deck + no (large) anchor blocks- Large Anchor blocks - massive bridge deck+ easy Installation - very complicated installation+ Large spans -> Superseded by:

Folie 27 von 46

TU Dresden, 09.04.18 Structural Systems

6. Modern suspension bridges

• Akashi-Kaikyo-Bridge, Kobe, Japan

http://upload.wikimedia.org/wikipedia/commons/f/f1/Akashi_Bridge.JPG

http://upload.wikimedia.org/wikipedia/commons/3/33/Akashi-Kaikyo_Bridge.svg

Folie 28 von 46

TU Dresden, 09.04.18 Structural Systems

6. Modern suspension bridges

• 2 typical types of bridge decks• very high, stiff (hollow) box (american system)

• Streamlined cross section

• Large Deformation requieres calculation with 2nd order theory• Aerodynamic stability has to be proofed, avoid wind-induced vibrations

Foto 1: http://de.wikipedia.org/w/index.php?title=Datei:Akashi-Kaikyo_Bridge_075.jpg&filetimestamp=20080520221018

Foto 2: http://www.deepblue-art.de/wp-content/uploads/2011/04/grosse_belt_bruecke.jpg

Folie 29 von 46

TU Dresden, 09.04.18 Structural Systems

6. Modern suspension bridges

• Tacoma-Narrows-Brücke (L=853m; B=11,9m; H=2,4m)

http://www.enm.bris.ac.uk/anm/tacoma/tac09.gifFolie 30 von 46

TU Dresden, 09.04.18 Structural Systems

6. Tension-band bridges

• Rope-like

http://www.holidaycheck.de/data/urlaubsbilder/images/41/1157645059.jpg?29561Folie 31 von 46

Fakultät Bauingenieurwesen, Institut für Massivbau, Prof. M. Curbach

4. Types of construction

Dresden, May 8th, 2016

Dr.-Ing. Patricia Garibaldi

Concrete bridges

History of Bridge building

Pont Valentré over river Lot in Cahor, 14th Century

Folie 33 von 47

Pont de Neuilly by Perronet, 1771-1772

1. Building on falsework

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

Folie 34 von 46

1. Building on falsework

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

Folie 35 von 46

1. Building on falsework

TU Dresden, 09.04.18 Structural SystemsMehlhorn, G.: Handbuch Brücken

Folie 36 von 46

2. Sliding formwork

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

Folie 37 von 46

2. Sliding formwork

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

Folie 38 von 46

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

3. Cantilever

Folie 39 von 46

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

3. Cantilever

Folie 40 von 46

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

4. Tact push-Launching system

Folie 41 von 46

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

4. Tact push

Folie 42 von 46

5. Precast

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

PE depending on length of bridge and of elements

(here) 4 precast elements (PE)

Longitudinal elements

Cross-section elements

Cross-section elements:

2 options:

Folie 43 von 46

5. Precast

TU Dresden, 09.04.18 Structural SystemsSchalungstechnik Brücken, Produktunterlagen PERI

Longitudinal elements

Prestressing:

Design of precast cross section:

Folie 44 von 46

5. Precast

TU Dresden, 09.04.18 Structural Systemshttp://www.gewerbeverein-alstaette.de/wp-content/uploads/2011/12/brücken.jpg

http://www.vde8.de/uploads/vde_pressemeldungen_bild1_4cc436ffdd10d/Unbenannt4.jpg

Folie 45 von 46

Exam Preparation

TU Dresden, 09.04.18 Structural Systemshttp://www.gewerbeverein-alstaette.de/wp-content/uploads/2011/12/brücken.jpg

http://www.vde8.de/uploads/vde_pressemeldungen_bild1_4cc436ffdd10d/Unbenannt4.jpg

Folie 46 von 46

Exam Preparation

TU Dresden, 09.04.18 Structural Systemshttp://www.gewerbeverein-alstaette.de/wp-content/uploads/2011/12/brücken.jpg

http://www.vde8.de/uploads/vde_pressemeldungen_bild1_4cc436ffdd10d/Unbenannt4.jpg

Folie 47 von 46

Part 1Theory Concrete bridges

Time: 17 Minutes

This Part consists of 3 pages, including cover page

• You have to do this without any transcripts, books, etc.• Write your name and matriculation number on every page• Write with blue or black ink-based pens ore fine liners. For

sketches you are allowed to use pencils.

TU Dresden, 08.04.2013 Concrete bridges Folie 48 von 47

TU Dresden, 08.04.2013 Concrete bridges Folie 49 von 47

Exam Preparation

TU Dresden, 09.04.18 Structural Systemshttp://www.gewerbeverein-alstaette.de/wp-content/uploads/2011/12/brücken.jpg

http://www.vde8.de/uploads/vde_pressemeldungen_bild1_4cc436ffdd10d/Unbenannt4.jpg

Folie 50 von 46

Concrete bridges

Notional lanes

In general, notional lanes have a width, we = 3 m.

For narrower roadway widths, the notional lanes width are defined according to Table 4.1, below.

Folie 51

Concrete bridges

Notional lanes

The number of notional lanes, „n“, is defined as:

n = integer (wo/we)

where:

wo: width of roadway (distance between curbs with h≥7 cm)We: width of nomimal lane = 3 m

The reamining area is called the „residual area.“

But, how is the roadway width actually defined?

Folie 52

Concrete bridges

Notional lanes Roadway width definition according to EC1-2, section 4.2.3, (page 32)

Folie 53

Concrete bridges

Notional lanes

Folie 54

Concrete bridges

Live loads – Example layout (UDL system)

Folie 55

Concrete bridges

Live loads – Example layout (Tandem system)

Folie 56

Concrete bridges

Live load models – Model 1Adjustment Factors with German national annex:

Tanden System 𝛼𝛼Q1

Lane 1 1.0Lane 2 1.0Lane 3 1.0Other lanes 0.0

Uniform Load 𝛼𝛼q1

Lane 1 1.33Lane 2 2.40Lane 3 or more 1.20Residual area 1.20

Folie 57

Concrete bridges

Live load models – Model 1

Arrangement of loads to investigate the local effect, for example the transverse analysis of structure.

Folie 58

Concrete bridges

Live load models –Tire distribution pressure

Folie 59

Concrete bridges Folie 60

Worst live load effects

Live load effects are ussually maximized (or minimized) by proper placement of live load to create maximum (or minimum) effects.

This is usually done with the help of influence lines

Concrete bridges Folie 61

Muller Breslau Principle

The influence line follows the profile of the deflected shape of a structure generated by releasing the restraint corresponding to the action and applying a unit displacement or rotation in the direction of the action.

Concrete bridges Folie 62

Design Example by Parsons and Brickerhoff , Proposed AASHTO-PCI-ASBI Standard Box Girder, 1996

Application and Live Load to Produce Maximum Positive Moment – Longitudinal Direction

Concrete bridges Folie 63

Application and Live Load to Produce Maximum Negative Moment – Longitudinal Direction

Design Example by Parsons and Brickerhoff , Proposed AASHTO-PCI-ASBI Standard Box Girder, 1996

Concrete bridges Folie 64

Worst live load effects

Live load effects are ussually maximized (or minimized) by proper placement of live load to create maximum or minimum effects.

Notice the difference between the following terms (as related for example to moment)

Moment Diagram – Moment at every point in the structure when a load is placed at a fixed location.

Influence line for maximum moment at a given point – Moment at a single pointcreated by a unit load moving along the length of the structure.

Moment envelope – Compilation of all maximum load effects along the length of the structure, created by various load combinations that maximize the effect at each point.

Concrete bridges Folie 65

Worst live load effectsMoment diagram, when a unit load is place at 0.4 L of span 1

Concrete bridges Folie 66

Worst live load effectsinfluence diagram at 0.4 L of span 1Example: Span 1= 12 m, Span 2 = 14.4 m

Concrete bridges Folie 67

Worst live load effectsMoment envelope for a uniform distributed unit lane load

Concrete bridges Folie 68

Worst live load effectsUsing influence charts to estimate the profile and value of influence ordinates.

Concrete bridges Folie 69

Worst live load effectsUsing influence charts to estimate the profile and value of influence ordinates.(Tables give a influence coefficient)

Moment diagramLoad at 0.4 of span 1

Influence diagram for momentat 0.4 of span 1

Moment Envelope due to lane load

In this table, coefficient values have been normalized, with respect to the shortest length span L1, and by the use of a unit load. Therefore, the actual resulting in a given structure, with a shortest span = L1, longest span L2= 1.2 . L1due to a:concentrated load =P, or uniform load = wis given by:

Moment:M= P.(coefficient). L1

M=w.(coefficient).L12

ShearV= P.(coefficient)V= w. (coefficient)

Concrete bridges Folie 70

Practical applications:

Explain the differences between a moment diagram, and influence line and a influence envelope

Draw the influence line for a given action at a given point

Define all load cases to calculate the shear envelope in a given span

See live load folder under the concrete design structures

Given a cross section of a bridge, draw the live load arrangement for Model 1, for the uniform loads, and the axle load. Indicate magnitude, lane position, and lane width.

Concrete bridges Folie 71

Practical applications (Personal enrichment/development – NOT INCLUDED IN TEST)

top related