a covariant variational approach to yang-mills theory

Post on 31-Dec-2015

26 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

A Covariant Variational Approach to Yang-Mills Theory. Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen. A Covariant Variation Principle Overview. Overview. Variational Principle for Effective Action Gaussian Ansatz & Gap Equation Renormalization Numerical Results - PowerPoint PPT Presentation

TRANSCRIPT

Markus Quandt

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 11

Quark Confinement and the Hadron SpectrumSt. Petersburg

September 9,2014

A Covariant Variational Approach to Yang-Mills Theory

Institut für Theoretische PhysikEberhard-Karls-Universität Tübingen

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 22

Overview

1. Variational Principle for Effective Action

2. Gaussian Ansatz & Gap Equation

3. Renormalization

4. Numerical Results

5. Extension to finite Temperature

6. Conclusion and Outlook

A Covariant Variation Principle

Overview

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 33

Effective Action Principle

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 44

Effective Action Principle

A Covariant Variation Principle

Effective Action

• Variation principle for functional probabilityprobability measuremeasure

• Entropy = available space for quantum fluctuations

• Free action

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 55

• Variation principle I

• Variation principle II

Gibbs measureGibbs measure

Schwinger functionsSchwinger functions

(Quantum effective action)(Quantum effective action)

NoteNote: Usually: Usually and proper functionsand proper functions

A Covariant Variation Principle

Effective Action

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 66

1. Take (restricted) measure space with parameters K

2. Minimize [gap equationgap equation]

3. Quantum effective action

4. Proper functions = derivatives of

Modification for gf. Yang-Mills Theory

A Covariant Variation PrincipleA

Covariant variational principle

Effective Action

replace entropy by relative entropyrelative entropy

(available quantum fluctuations in curved field space)

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 77

- non-perturbative corrections to arbitrary proper functions

- closed system of integral equations

- renormalization through standard counter terms

- can discriminate competing solutions

- can be optimized to many physical questions (choice of )

Comparision

A Covariant Variation PrincipleA

covariant variational principle

Effective Action

• Pro

• Cons

- vertex corrections not necessarily reliable

- Confinement ?

- Strong phase transitions ?

- BRST ? [similar to Coulomb gaugeCoulomb gauge]

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 88

Gaussian Trial Measure

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 99

A Covariant Variation Principle

Gaussian Trial Measure

• Physical picture in Landau gauge

Gaussian trial measure for effective (constitutent) gluon

- variational parameters

- Lorentz structure in Landau gauge:

- UV : gluons weakly interacting- IR : configurations near Gribov horizon dominant

self-interaction in such configs sub-dominant

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1010

Curvature Approximation

A Covariant Variation Principle

Gaussian Trial Measure

curvaturecurvature

• trial measure

curvaturecurvature gone, reappears in entropyentropy (natural)

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1111

Remark

A Covariant Variation Principle

Gaussian Trial Measure

• put classical field if interested in propagator

• alternative: effective action for gluon propagator

gap equationgap equation gives best gluon propagator gives best gluon propagatorthat is available within the ansatzthat is available within the ansatz

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1212

Free action

A Covariant Variation Principle

Overview

• classical action: Wick‘s theorem

• relative entropy

involves

lengthy expression

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1313

Gap Equation

A Covariant Variation Principle

Overview

Use O(4) symmetry to perform angular integrations

• constituent gluon mass (4-gluon vertex gap eq.)

• constutent gluon self energy (ghost contribution curvature)

graphgraph

++=

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1414

Ghost sector

A Covariant Variation Principle

Overview

-1+=

-1

Use resolvent identity on FP operator

in terms of ghost form factor

rainbow approx.

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1515

Curvature Equation

A Covariant Variation Principle

Overview

To given loop order

=

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1616

Renormalization

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1717

Counterterms

A Covariant Variation Principle

Renormalization

gluon fieldgluon mass ghost field

Added to exponent of trial measure, notnot

Renormalization conditions Renormalization conditions (3 scales )

• fix

• fix

• fix

scaling/decoupling

constitutent mass at

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1818

A Covariant Variation Principle

Renormalization

• All countertems have definite values, e.g.

• Final system

curvature: quadratic + subleading log. divergence subtracted !

Important for finite-T calculation

similarly

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 1919

Numerical Results

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2020

Gluon prop. IR diverging, constituent mass

• decoupling solution:

Gluon prop. IR finite, constituent mass dominant

Gluon prop IR vanishing, constituent mass irrelevant

Infrared Analysis

A Covariant Variation Principle

Numerical Results

Assume power law in the deep IR

IR exponents

Non-renormalization of

ghost-gluon vertex

• scaling solution:

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2121

Scaling Solution

A Covariant Variation Principle

Numerical Results

Lattice data from Bogolubsky et al., Phys. Lett. B676 69 (2009)

IR exponents:

sum rule violation:

lattice data:

H. Reinhardt, J. Heffner, M.Q., Phys. Rev. D89 065037 (2014)

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2222

Decoupling Solution

A Covariant Variation Principle

Numerical Results

Lattice data from Bogolubsky et al., Phys. Lett. B676 69 (2009)

lattice data: sum rule:

H. Reinhardt, J. Heffner, M.Q., Phys. Rev. D89 065037 (2014)

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2323

Finite Temperature

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2424

Extension to Finite Temperature

A Covariant Variation Principle

Finite Temperature

• imaginary time formalismimaginary time formalism

compactify euclidean time

periodic b.c. for gluons (up to center twists)

periodic b.c. for ghosts (even though fermions)

Extension to T>0 straightforward

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2525

A Covariant Variation PrincipleA

covariant variational principle

Finite Temperature

• Lorentz structure of propagatorLorentz structure of propagator

heat bath singles out restframe (1,0,0,0) breaks Lorentz invariance

two different 4-transversal projectors

Same Lorentz structure for Gaussian kernel and curvature

3-transversal

3-longitudinal

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2626

Gap Equations

A Covariant Variation Principle

Finite Temperature

induced gluon masses now temperature-dependentmust be finite (no counter term)

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2727

Renormalization

A Covariant Variation Principle

Finite Temperature

• counterterms must be fixed at T=0

• example: ghost equation

counter term

finite T correction finite T correction vanishes at T=0

Ren. T=0 profile

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2828

Renormalized System at T>0

A Covariant Variation Principle

Overview

• All finite temperature corrections have similar structure

• Iterative solution

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 2929

Preliminary Results

A Covariant Variation Principle

Overview

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 3030

Conclusion

M. Quandt (Uni Tübingen)M. Quandt (Uni Tübingen) A Covariant Variation PrincipleA Covariant Variation Principle Confinement XI Confinement XI 3131

A Covariant Variation Principle

Overview

• Variational Principle for Effective Action + Gaussian Ansatz

- yields optimal truncation

- conventionally renormalizable

- very good agreement with lattice data

- Easily extensible to finite temperatures

- BRST? Confinement?

Conclusion and Outlook

• Best applied where effective 1-gluon exchange is relevant

- inclusion of fermions

- chemical potential

top related