a microscopic model for cell-seeded material · bioreactor mechanical models problems refereces a...

Post on 27-May-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

BioreactorMechanical models

ProblemsRefereces

A microscopic model for cell-seeded material

J. Yi1, M. Stoffel1, D. Weichert1, K. Gavenis2, R. Muller-Rath2

1Institut fur Allgemeine Mechanik, RWTH Aachen2Klinik fur Orthopadie und Unfallchirurgie, RWTH Aachen

MSB-Net in Marburg, 5. February 2010

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Contents

BioreactorWhat is the Bioreactor?Phenomenon in the Bioreactor

Mechanical modelsMacroscopic constitutive equationsMicroscopic constitutive equations

Problems

Refereces

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

What is the Bioreactor?Phenomenon in the Bioreactor

Sketch of the Bioreactor

=⇒ change of material properties & change of mass

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

What is the Bioreactor?Phenomenon in the Bioreactor

Fotos in Bioreactor

(a) without stimulating (b) with stimulating

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

Macroscopic Model

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

Theory for the macroscopic model

Constitutive equation:

σ = σscaf + σunit

= C : ε+ C(ε) : ε− Dσ + Cunit: ε+ Cunit : ε

≈ C : ε+ C(ε) : ε− Dσ + Cunit : ε

Evolution equation:

Cunit11 (Ψ) = k

√Ψ(Cunit

11,crit − Cunit11

), 0 < Cunit

11 ≤ Cunit11,crit

Ψ =12λ ln2(J) +

12µ(IC

1 − 3)− µ ln(J)

where λ, µ are the Lame constants, IC1 = C : I = FtF : I, J = det F

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

Evolution of Young’s modulus in macroscopic model

(a) t= 0sec (b) t= 6sec

(c) t= 12sec (d) t= 24sec (e) t= 30sec

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

Microscopic Model

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

Theory for the microscopic model

General constitutive approach for transversely isotropicmaterials:

W (C,M(C)) = W [I1(C), I2(C), I3(C), I4 (C,M) , I5(C,M)]

where M is a structure tensor: M(C) = nM ⊗ nM ,nM is a unit vector in the growth direction of fiber andI4(C,M (C)) = C : M = nMCnM = η2 (η: stretch ratio of fibers)

I5(C,M(C)) = C2 : M = nMC2nM

Assumptions for the phenomen of the bioreactor:

I nM = nM(C, ~F

) nM⊥~F−→ , nM = nM(C) =???

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

Suggested model:

W = ρtΨ −→ W (C,M(C)) = Ψ (I1, I2, I3) ρt (I4, I5)

Further simplified assumptions

I Ψ = Ψ (I1, I3) = Ψ (I1, J) =12λ ln2 J +

12µ(I1 − 3)− µ ln J

I ρt = ρt(I4; t) = ρt(η) = ρ0 + ρc(1− ce−η)

where ρ0 is the the initial mass density, ρc is the critical value ofthe density growth parameter and c is the growth parameter.

12S =

∂W∂C =

∂ (ρtΨ)

∂C =∂ρt∂C Ψ + ρt

∂Ψ

∂C :=12Srem +

12Smech

−→ S := Srem + Smech

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

where

I∂ρt∂C =

∂ρt∂η

∂η

∂I4∂I4∂C = ρcce−η 1

2η (M + A) =ρcce−η

2η (M + A)

I∂Ψ

∂C =∂Ψ

∂I1∂I1∂C +

∂Ψ

∂J∂J∂C =

µ

2 I +1J (λ ln J − µ)

12JC−1

A =?

∂I4∂C =

∂ (C : M)

∂C = M : C,C + C : M,C︸︷︷︸:=P

= M : I + C : P︸ ︷︷ ︸:=A

= M + A

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

The 2nd Piola-Kirchhoff stress tensor S is

S = 2∂W∂C = Srem + Smech

= 2 ρcce−η2η

[12λ ln2 J +

12µ(I1 − 3)− µ ln J

](M + A)

+ρc(1− ce−η

) [µ2 I +

12 (λ ln J − µ) C−1

]

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

The material tensor C is

C = 2∂S∂C

= 2 ρcce−η2η

[12λ ln2 J +

12µ(I1 − 3)− µ ln J

](M,C + A,C︸︷︷︸

:=Q

)

+ρc(1− ce−η

) [µ2 I,C +

12 (λ ln J − µ) C−1

,C

]= 2 ρcce−η

[12λ ln2 J +

12µ(I1 − 3)− µ ln J

](P + Q)

+ρc(1− ce−η

) 12 (λ ln J − µ)

(−C−1 ⊗ C−1

)

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Macroscopic constitutive equationsMicroscopic constitutive equations

The anisotropy of the material due to the new added mass can beexplained with the two tensors:{

P = M,CQ = A,C = (C : P),C = (C : M,C),C

Summary: M,C plays a key role!!!

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

Problems and future work

I n = n(C)? −→ M = M(C)?

I The evolution equation?

I The roll of fiber: Only against pull?

I The factors of the fiber growth?

I Micro level and macro level in tissue mechanics

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

BioreactorMechanical models

ProblemsRefereces

References

E. Kuhl, P. Steinmann, 2003. Mass- and volume specific viewson thermodynamics for open system. Proc. R. Soc 459,2547-2568.V. A. Lubarda, A. Hoger, 2002. On the mechanics of solidswith a growing mass. International Journal of Solids andStructures 39, 4627-4664.

J. Yi, M. Stoffel, D. Weichert, K. Gavenis, R. Muller-Rath A microscopic model for cell-seeded material

top related