advisor: zhu jun reporter: huang ying

Post on 01-Feb-2016

50 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

DFT study of rhodasilabenzene and osmasilabenzyne. Advisor: Zhu Jun Reporter: Huang Ying. Outline. 1. Conversion of osmasilabenzyne into silylene complexes 2. Isomerization from Silacyclopentadienyl Complexes to Rhodasilabenzenes literature research about the experiment - PowerPoint PPT Presentation

TRANSCRIPT

Advisor: Zhu JunReporter: Huang Ying

Si[Rh']

Si

[Rh]

R

R

Si[Os]

RSi[Os]

R

Ⅰ Conversion of osmasilabenzyne into silylene complexes

DFTPackage : Gaussian 03Method: B3LYPbasis sets : 6-31G * LanL2DZ (Os (f) = 0.886) (Si(d)= 0.262) (P (d) =0.340) (Cl(d) = 0.514))

Si[Os]

RSi[Os]

RG(

kcal/mol

Os

PH3

Cl

ClPH3

SiOs

H3P

Cl

ClH3P

Si

-21.2(-19.2)

Os

PH3

Cl

ClPH3

SiOs

H3PCl

ClH3P

Si-20.4(-30.5)

PH3+PH3

Guochen Jia, Coordination Chemistry Reviews, 2007, 251, 2167

Os

PH3

Cl

ClPH3

SiOs

PH3

Cl

ClPH3

Si

2

3

45

2 3

45

-21.2(-19.2)

G(kcal/mol

R=Me R= t-Bu R= n-pentyl

-16.9(-16.7)2

3

4

5

-25.1(-21.9)

-29.0(-26.0)

-40.3(-37.6)

-21.5(-21.3)

-23.4(-20.8)

-26.9(-24.7)

-31.0(-29.6)

-21.6(-20.6)

-22.6(-20.2)

-26.0(-23.8)

-29.4(-27.3)

R= OMe

-28.4(-27.5)

-17.6(-14.7)

-28.8(-27.2)

-23.8(-21.8)

R=NH2

-27.4 (-27.2)

-33.7(-31.1)

-9.2(-9.2)

-18.6(-16.6)

R=TMSR=NO2

-18.6(-18.2)

-18.2(-16.2)

-25.2(-23.1)

-15.5(-16.0)

-23.3(-20.9)

-24.7(-21.8)

-35.5(-33.2)

R= PMe3 R= PPh3

-20.7(-20.2)

-26.2(-24.0)

-18.3(-15.4)

-25.1(-23.1)

-20.8(-21.8)

-26.9(-24.3)

-19.8(-16.8)

-35.9(-34.1)

R=COOH

-23.7(-21.4)

-33.6(-31.8)

-25.0(-22.6)

R=CN

-23.8(-22.7)

-21.1(-18.6)

-29.6(-28.2)

-24.5(-21.9)

R=BH2

-16.9(-15.4)

-19.2(-16.1)

-18.2(-16.5)

-26.0(-23.6)

-23.9(-21.8)

-20.0(-19.7)

steric hindrance hydrogen bond

steric hindrance

substituents effect

Electronic effect + hydrogen bond

Os

PH3

Cl

ClPH3

Si

Os

PH3

Cl

ClPH3

Si-19.1(-18.2)

0.0(0.0)

Os

PH3

Cl

ClPH3

Si

Os

PH3

Cl

ClPH3

Si-19.9(-18.3)

0.0(0.0)

Os

PH3

Cl

ClPH3

Si

Os

PH3

Cl

ClPH3

Si-18.1(-14.4)

0.0(0.0)

PMe3

OMe Me3POMe

OMe

PMe3 OMe

PMe3

PMe3

PMe3

OMe PMe3OMe

PMe3

Os

PH3

Cl

Cl

PH3

Si

Os

PH3

Cl

Cl

PH3

Si-16.7(-16.3)

0.0(0.0)

Os

PH3

Cl

Cl

PH3

Si

Os

PH3

Cl

Cl

PH3

Si-18.9(-16.9)

0.0(0.0)

NH2

PMe3

Os

PH3

Cl

Cl

PH3

Si

Os

PH3

Cl

Cl

PH3

Si-18.4(-19.1)

0.0(0.0)

PMe3

Me3P

OMeOMe

NH2

NH2

PMe3NH2

NH2

NH2

Electronic effect

substituents effect

Os

PH3

Cl

ClPH3

Si

Os

PH3

Cl

ClPH3

Si-11.2(-10.7)

0.0(0.0)

Os

PH3

Cl

ClPH3

Si

Os

PH3

Cl

ClPH3

Si-12.2(-11.9)

0.0(0.0)

TMSOMe

TMS

OMe

TMS

PMe3

TMS

PMe3

Os

PMe3

Cl

ClPMe3

Si

Os

PMe3

Cl

ClPMe3

Si

-5.6(-6.9)

0.0(0.0)

TMS

NH2

TMS

NH2

steric hindrance + electronic effect

steric hindrance + hydrogen bond

Os

PMe3

Cl

ClPMe3

Si

Os

PMe3

Cl

ClPMe3

Si-7.3(-6.1)

0.0(0.0)

TMS

OMeTMS

OMe

substituents effect

Ligands effect

6.8(7.3)

12.5(15.1) (7.5)0.0(0.0)

0.0(0.0)

ligands=3PMe3

ligands=2CO.CH2CH2ligands=2PMe3.2OMe

Si

[Os]

..

Si

[Os]

Any

Si

Os

..CO

CO

Si

[Os]

Si

[Os]

OC

OC

Si

[Os]

Me3P

Me3P

MeO

MeO

Si

[Os]

..Si

[Os]Si

[Os]

Si

[Os]

..Si[Os]

Si

[Os]

NBO bond order(bond line)Os-Si=1.48(2.18) Os-C4=0.94(2.06) Si-C1=0.99(1.77) C3-C4=1.59(1.38) C2-C3=1.29(1.42) C1-C2=1.53(1.39)

NBO bond order(bond line )Os-Si=1.17(2.32) Os-C4=0.91(2.04) Si-C1=0.88(1.86) C3-C4=1.65(1.38) C2-C3=1.23(1.42) C1-C2=1.64(1.38)

Os

PH3

Cl

ClPH3

SiC1

C2

C3C4

Si

Os

..PH3

PH3

H3PC1

C2

C3C4

ELF(electron localization function) ELF(electron localization function)

Michael Denk, J Robert Lennon, Randy Hayashi, Robert West, Alexander V. Belyakov, Hans P. Verne, Arne Haaland, Matthias Wagner, Nils Metzler, J. Am. Chem. Soc. 1994,116, 2691Michael Haaf, Thomas A. Schmedake, Robert West, Acc. Chem. Res. 2000, 33, 704Yoshiyuki Mizuhata, Takahiro Sasamori, Norihiro Tokitoh, Chem. Rev. 2009, 109, 3479

The first stable silylene

And the later

2PMe3.P(OMe)3 -8.4(-8.0)3PMe3 -4.3(-1.5)

2PMe3.CNMe -2.6(-3.8)PMe3.bipyridine 2.2(3.4)

2PMe3.NCH 2.3(2.9)

ΔG(ΔE)Ligands

Ligands effect

CO.bipyridine 0.2(0.8)

3CO -11.3(-10.8)2CO.CS -14.0(-13.4)

2CO.CH2CH2 -16.2(-14.2)

[Os] Si

Si

[Os]

..Five- coordinate

2NCH.2Cl -31.1(-29.8)

2P(OMe)3.2Cl -15.5(-13.0)

2CO.2Cl -31.7(-30.7)

2CH2CH2.2Cl -27.2(-25.3)

Ligands effect

2NCH.2H -25.7(-24.0)2P(OMe)3.2H -12.7(-9.7)

2CO.2H -21.2(-20.1)2CH2CH2.2H -24.1(-21.0)

Si[Os]

Os≡Si is a little longer than above

Cp.H 6.7(9.8)

ΔG(ΔE)

ΔG(ΔE)

-25.9(-27.3)2PMe3.2OMe

[Os] Si

Six- coordinate

Ligands

Jun Zhu, Guochen Jia, Zhenyang Lin, Organometallics, 2007, 26, 1986

Os

POMe3

H

HPOMe3

Si

Os

POMe3

H

HPOMe3

Si-3.4(-4.4)

0.0(0.0)

TMS

OMeTMS

OMe

OsCp

HSi

Os

H

Cp

Si

14.2(14.7)

0.0(0.0)

TMS

TMS

PMe3

PMe3

Si

Rh

CO

OC

OC

Si

Rh

OC

OC

OC

SiRh

CO

OC

OC

20.4(19.9) 30.8(31.4)0.0(0.0) -31.2(-22.0)

Si

Rh + CO

OC CO

Ⅱ. Isomerization from Silacyclopentadienyl Complexes to Rhodasilabenzenes

H.P. Wu, T. J. R. Weakley, M. M. Haley, Organometallics ,2002,21,4320

[Rh]

[Rh]

[Rh]

DFTPackage : Gaussian 03Method: m05basis sets : 6-31G * LanL2DZ (Rh (f) = 1.350) Si(d)= 0.262 P (d) =0.340 Cl(d) = 0.514)

ΔG(ΔE)/kcal.mol-

1 R=OMe R=SMe NH2 R=Me R=Ph R=t-Bu R=Br

2 21.7(12.7) 23.6(14.4) 20.7(10.7)31.9(23.0) 33.0(22.1) 35.6(26.0) 23.4(13.9)

3 31.6(23.0) 31.7(21.2) 32.5(22.9)31.7(22.8) 32.2(23.0) 35.4(25.6) 29.4(19.7)

4 26.0(17.0) 25.5(15.5) 20.6(10.9)29.9(20.7) 29.9(20.4) 31.9(22.3) 27.3(17.7)

5 35.5(25.9) 30.7(21.0) 34.5(24.6)32.6(23.9) 32.6(22.8) 34.6(25.6) 28.6(19.2)

6 22.6(13.0) 27.7(16.6) 20.2(10.2)33.3(23.5)33.8(24.7) 44.6(34.2) 26.8(16.8)

ΔG(ΔE)/kcal.mol-1 R=COOH R=COOMe R=CN R=PMe3+ NO2 TMS

2 29.2(20.0) 30.4(20.6) 25.4(16.2) 23.6(12.5) 21.3(11.7) 38.2(27.4)

3 30.6(22.0) 31.3(22.0) 29.9(20.8) 30.4(21.2) 28.5(20.5) 34.6(24.3)

4 33.4(24.4) 33.5(24.2) 30.7(21.4) 31.8(22.8) 29.7(20.7) 35.6(25.8)

5 29.4(20.2) 29.8(20.6) 28.2(19.1) 27.6(18.3) 24.9(16.3) 34.8(24.9)

6 34.0(24.2) 33.9(24.2) 28.8(19.1) 35.3(24.9) 28.1(18.4) 41.8(31.5)

SiRh

Si

Rh

23

4

56

G(+ CO

31.2(22.0)

OC CO

CO

OC

OC

substituents effect

Si

RhOC CO

+CO

SiRh

CO

OC

OC

SiRh

CO

OC

OCSi

RhOC CO

+CO

SiRh

CO

OC

OCSi

RhOC CO

+CO

16.7(7.0)

0.0(0.0)

0.0(0.0)

0.0(0.0)

17.4(7.1)

5.0(-5.1)

SiRh

CO

OC

OC

25.2(15.8)

0.0(0.0)

SiRh

CO

OC

OC

17.0(7.0)

0.0(0.0)

Si

RhOC CO

+CO

Si

RhOC CO

+CO

Si

RhOC CO

+CO

SiRh

CO

OC

OC

0.0(0.0)

20.3(10.1)

NO2

OMe

MeO

O2N

MeO

OMe

OMe NO2

MeONO2

OMe

NO2

MeO NO2

OMe

MeO

NO2

MeO

MeO

NO2

OMe

MeO NO2

MeO

MeO NO2

OMeNO2

NO2

MeO

O2N

NO2

Si

RhOC CO

+CO

SiRh

CO

OC

OC

0.0(0.0)

16.4(6.2)

Si

RhOC CO

+CO

SiRh

CO

OC

OC

0.0(0.0)

20.0(8.3)

OMeNO2

OMe

MeO

MeO

MeO

O2NOMe

OMe

MeO

NO2

NO2

MeO

MeO

NO2

NO2

Si

RhOC CO

+CO

SiRh

CO

OC

OC 0.0(0.0)

13.7(3.2)OMe

OMe

MeO

MeO

MeO

OMe

NO2NO2

Si

RhOC CO

+CO

SiRh

CO

OC

OC

0.0(0.0)

21.4(10.1)OMe

OMe

MeO

MeO

MeO

OMe

NO2NO2

NO2 NO2

SiRh

CO

OC

OCSi

RhOC CO

+CO

OMe

OMe

MeO

MeO

MeO

OMe 0.0(0.0)

6.2(-4.6)

Si[Os]

Si[Os]

Si

[Os]

Si[Os]

Our experimental ultimate goal is to synthesize

Benjamin V. Mork and T. Don Tilley ,Angew. Chem. Int. Ed. 2003, 42,357

the M≡Si just be limited to early transition elements now

Ⅲ literature research about the experiment

Rory .Waterman, Paul G. Hayes, T.Don Tilley, Acc. Chem. Res. 2007, 40, 712Robert J. P. Corriu, Bhanu P. S. Chauhan, Gerard F. Lanneau, Organometallics,1995, 14, 164Hirroshi Ogino . The Chemical Record, 2002,2, 291

Some methods to synthesize M=Si

Si[Os]Si

[Os]How to synthesize

2. 1,2-elimination.

3. The Migration of α-H.

1. Through the light to get intermediates silylene

Si

Os

R R

X

Si

Os Si

Os

R R

Si

Os

R RSi

Os

R R

Si

Os

R R

Si

Os

R R

Paulus W. Wanandi, Paul B. Glaser, and T. Don Tilley, J. Am. Chem. Soc. 2000, 122, 972-973

The retrosynthetic analysis of osmasilabenzene

But

Si[Os]

Ezzat Khan, Stefan Bayer, Rhett Kempe, Bernd Wrackmeyer, Eur. J. Inorg. Chem. 2009, 4416

Rory .Waterman , Paul G. Hayes,T.Don Tilley, Acc. Chem. Res, 2007, 40, 712

Designed synthetic route of silylene complex

[Os]Si

Me3Si

Me3Si

Et

BEt2

[Os] Si

Me3Si

Me3Si

Et

BEt2

[Os]

H B(C6F5)3Si

R

R

H

H

BEt3

100C-120CSi

H

H

R

R

Et

BEt2

Si

[Os]

William P. Freeman, T. Don Tilley, J. Am. Chem. SOC. 1994,116, 8428

Designed synthetic route of Silacyclopentadienyl Complex

Summary

1. Theoretical calculations at the B3LYP level of density functional theory have been carried out to study the migratory insertion reactions from osmasilabenzynes complexes to silylene complexes , and Realize the isomerization from osmasilylene complex to osmasilabenzyne in thermodynamic.

2. Theoretical calculations at the m05 level of density functional theory have been used to explore the isomerization from silacyclopentadienyl complexes to rhodasilabenzenes , and found that the effect of substituents in the six-membered ring play important roles in determining the relative stabilities.

3. According to the synthetic route which we have designed, we can try to synthesize the silylene complexes and silacyclopentadienyl complexes.

Future work1. Continue to explore the migratory insertion reactions from osmasilabenzynes

complexes to silylene complexes and the isomerization from silacyclopentadienyl complexes to rhodasilabenzenes, the main focus is their dynamical properties.

SiOs

PH3

PH3

-5.0Kcal/mol

H3P

Cl

-PH3

Si

OsH3P

H3PCl

0.0Kcal/mol

2. Try to explore some other transition metal.

Rh

PH3

Cl

ClPH3

SiSi

RhH3P

ClCl

4.9(-6.1)

0.0(0.0)

+ PH3

3. Explore the isomerization from silacyclopentadienyl complexes to rhodanaphthalenes

4. Try to synthesize the silylene complexes and silacyclopentadienyl complexes.

5. Do some research of the migration of α-H

6. Try to get the stable triplet state of silylene in theory.

Thanks for your attention

top related