alkyl%halides%and%nucleophilic% subs5tu5on%reac5ons%%% 9.pdf ·...

Post on 19-Jun-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Alkyl  Halides  and  Nucleophilic  Subs5tu5on  Reac5ons      

SN2  and  SN1  Reac,ons  

1  

Alkyl  Halides  The   electronega5ve   halogen   atom   in   alkyl   halides  creates   a   polar   C—X   bond,  making   the   carbon   atom  electron  deficient.    

                         Electrosta5c  poten5al  maps  of  four  halomethanes  (CH3X)  

2  

Reac5ons  of  Alkyl  Halides  

3  

Nucleophilic  Subs5tu5on  Reac5ons  

NaOH

Acetone

cis-1-Chloro-3-methylcyclopentane

H

ClH3C

HOH

HH3C

H

trans-3-Methylcyclohexanol

BrNaOH

Acetone

OH

+ NaCl

+ NaBr

R-2-Bromooctane S-2-Octanol

Br

OHH2O +

OH

2-Bromo-3-methylbutane 2-Methyl-2-butanol 3-Methyl-2-butanol

+ HBr

4  

Possible  Mechanisms  of  Nucleophilic  Subs5tu5on  Reac5ons  

R-X + Nuclophile R-Nucleophile + X

1st Possibility:

Nucleophile R R-Nucleophile + X

2nd Possibility:R X

X

R + X

Nuclophile

R-Nucleophile

Slow step

5  

Nucleophilic  Subs5tu5on  Reac5on  

CH3Br OH CH3OH + Br

6  

Subs5tu5on  Nucleophilic  Bimolecular,  a.k.a.  SN2  Reac5on  

                         Rate  =  k  [Alkyl  halide]*[Nucleophile]  

The  rate  of  an  SN2  reac<on  depends  upon  4  factors:    1.       The  nature  of  the  substrate  (the  alkyl  halide)  2.       The  power  of  the  nucleophile  3.       The  ability  of  the  leaving  group  to  leave  4.       The  nature  of  the  solvent  

7  

Rela5ve  Rates  of  SN2  Reac5on  for  Several  Alkyl  Bromides  

8  

•  Me°   >>            1°  >>     2°   >>   3°  

t-­‐butyl  bromide  methyl  bromide   ethyl  bromide   isopropyl  bromide  

Back  side  of  α-­‐C  of  a  methyl  halide  is  unhindered.  

Back  side  of  α-­‐C  of  a    1°  alkyl  halide  is  slightly  

hindered.  

Back  side  of  α-­‐C  of  a    2°  alkyl  halide  is  mostly  

hindered.  

Back  side  of  α-­‐C  of  a    3°  alkyl  halide  is  

completely  blocked.

decreasing  rate  of  SN2  reac)ons  

SPACE  FILLING  MODELS  SHOW  ACTUAL  SHAPES  AND  RELATIVE  SIZES  

Effect  of  Nature  of  Substrate  on  Rate  of  SN2  Reac5ons  

9  

• The  α-­‐carbon  in  vinyl  and  aryl  halides,  as  in  3°  carboca<ons,  is  completely  hindered  and  these  alkyl  halides  do  not  undergo  SN2  reac<ons.  

Effect  of  the  Nucleophile  on  Rate  of  SN2  Reac5ons  

vinyl  bromide   bromobenzene  

The  overlapping  p-­‐orbitals  that  form  the  π-­‐bonds  in  vinyl  and  aryl  halides  completely  block  the  access  of  a  nucleophile  to  the  back  side  of  the    α-­‐carbon.  

Nu:-­‐   Nu:-­‐  

10  

Possible  Mechanism  and  Energy  Diagram  for  SN2  Reac5on  

CH3Br OH CH3OH + Br

energy

reaction progress

ΔG

ΔGo

=

H

H H

BrHO

CH3Br

CH3OH

•  Increasing  the  number  of  R  groups  on  the   carbon   with   the   leaving   group  increases   crowding   in   the   transi5on  state,  thereby  decreasing  the  reac5on  rate.  

•  The   SN2   reac5on   is   fastest   with  unhindered  halides.  

11  

Nucleophiles  in  SN2  Reac5on  

12  

The  Nucleophile  

•  Bases  are  beeer  nucleophiles  than  their  conjugate  acids.    

             Ex:  OH-­‐  versus  H2O  •  In   going   from   leh   to   right   across   a   period   basicity   and  

nucleophilicity  decreases.  Ex:  NH3  versus  H2O  

•  In   going  down  a   group   in   the  periodic   table,   nucleophilicity  increases  and  basicity  decreases.  Ex:  I-­‐  versus  Cl-­‐    

•  For   two   nucleophiles  with   the   same   nucleophilic   atom,   the  stronger   base   is   the   stronger   nucleophile.   Ex:   CH3O-­‐   versus  CH3CO2

-­‐  

• Nucleophilicity  does  not  parallel  basicity  when  steric  hindrance  becomes  important.  

• Steric  hindrance  decreases  nucleophilicity  but  not  basicity.  13  

Rela5ve  Rates  of  SN2  Reac5ons  for  Several  Living  Groups  

S O

O

O

CH3-LG CH3Cl + LGCl

A  good  leaving  group  reduces  the  barrier  to  a  reac5on.  Stable  anions  that  are  weak  bases  are  usually  excellent  leaving  groups  and  can  delocalize  charge.  

14  

Rela5ve  Rates  of  SN2  Reac5ons  in  Several  Solvents  

PO

NN

N

Hexamethylphosphoramide (HMPA)

O N S

O

N,N-Dimethylformamide (DMF)

Dimethyl sulfoxide (DMSO)

15  

SN2  Reac5on  and  Solvent    

• Polar  apro5c  solvents  solvate  ca5ons  by  ion—dipole  interac5ons.  

• Anions  are  not  well  solvated  because  the  solvent.  These  anions  are  said  to  be  “naked”.  

16  

Examples  of  SN2  Reac5on  

NaOH

Acetone

cis-1-Chloro-3-methylcyclopentane

H

ClH3C

HOH

HH3C

H

trans-3-Methylcyclohexanol

BrNaOH

Acetone

OH

+ NaCl

+ NaBr

R-2-Bromooctane S-2-Octanol

17  

Subs5tu5on  Nucleophilic  Unimolecular:  SN1  Reac5ons  

R LG R + LG

Nuclophile

R-Nucleophile

Slow step

Rate  =  k  [R-­‐LG]  The  Rate  of  SN1  Reac5on  depends  upon  3  factors:  1. The  nature  of  the  substrate  (alkyl  halide)  2. The  ability  of  the  leaving  group  to  leave  3. The  type  of  solvent    

18  

SN1  Reac5on  and  The  Substrate  

19  

SN1 Energy Diagram and Mechanism  

•  Rate-­‐determining  step  is  forma5on  of  carboca5on  

•  rate  =  k[RX]  

20  

Stereochemistry of SN1 Reaction

•  The  planar  intermediate  leads  to  loss  of  chirality  

– A  free  carboca5on  is  achiral  

•  Product  is  racemic  or  has  some  inversion  

21  

SN1  Reac5on  Stereochemistry    

•  If  leaving  group  remains  associated,  then  product  has  more  inversion  than  reten5on.  

•  Product  is  only  par5ally  racemic  with  more  inversion  than  reten5on.  

•  Associated  carboca5on  and  leaving  group  is  an  ion  pair.  

22  

SN1 in Reality •  Carboca5on  is  biased  to  react  on  side  opposite  leaving  group  •  Suggests  reac5on  occurs  with  carboca5on  loosely  associated  with  

leaving  group  during  nucleophilic  addi5on  (Ion  Pair)  •  Alterna5ve  that  SN2  is  also  occurring  is  unlikely  

23  

Characteristics of the SN1 Reaction Substrate  •  Ter5ary  alkyl  halide  is  most  reac5ve  by  this  mechanism  

–  Controlled  by  stability  of  carboca5on  –  Remember  Hammond  postulate,”Any  factor  that  stabilizes  a  high-­‐energy  

intermediate  stabilizes  transi5on  state  leading  to  that  intermediate”  

•  Allylic  and  benzylic  intermediates  stabilized  by  delocaliza5on  of  charge  –  Primary  allylic  and  benzylic  are  also  more  reac5ve  in  the  SN2  mechanism  

24  

Nucleophiles in SN1

•  Since  nucleophilic  addi5on  occurs  a-er  forma5on  of  carboca5on,  reac5on  rate  is  not  normally  affected  by  nature  or  concentra5on  of  nucleophile  

25  

Rela5ve  Rates  of  SN1  Reac5ons  in  Different  Solvents  

26  

Effect of Leaving Group on SN1  •  Cri5cally  dependent  on  leaving  

group  –  Reac5vity:    the  larger  halides  

ions  are  beeer  leaving  groups  

•  In  acid,  OH  of  an  alcohol  is  protonated  and  leaving  group  is  H2O,  which  is  s5ll  less  reac5ve  than  halide  

•  p-­‐Toluensulfonate  (TosO-­‐)  is  excellent  leaving  group  

27  

Solvent  in  SN1  •  Stabilizing  carboca5on  also  stabilizes  associated  transi5on  state  and  

controls  rate  •  Pro5c  solvents  favoring  the  SN1  reac5on  are  due  largely  to  stabiliza5on  of  the  transi5on  state  •  Pro5c  solvents  disfavor  the  SN2  reac5on  by  stabilizing  the  ground  state  •  Polar,  pro5c  and  unreac5ve  Lewis  base  solvents  facilitate  forma5on  of  R+      

28  

Examples  of  SN1  Reac5ons  

Br

OHH2O +

OH

2-Bromo-3-methylbutane 2-Methyl-2-butanol 3-Methyl-2-butanol

+ HBr

29  

Predic5ng  the  Likely  Mechanism  of  a  Subs5tu5on  Reac5on  

• Four   factors  are   relevant   in  predic5ng  whether  a  given  reac5on   is   likely   to  proceed  by  an  SN1  or  an  SN2  reac5on—The  most  important  is  the  iden5ty  of  the  alkyl  halide  

30  

Predic5ng  the  Likely  Mechanism  of  a  Subs5tu5on  Reac5on  

• The  nature  of  the  nucleophile  is  another  factor.    • Strong   nucleophiles   (which   usually   bear   a   nega5ve   charge)  present  in  high  concentra5ons  favor  SN2  reac5ons.  

• Weak  nucleophiles,  such  as  H2O  and  ROH  favor  SN1  reac5ons  by  decreasing  the  rate  of  any  compe5ng  SN2  reac5on.  

•  Very  Good  Nucleophiles       I-­‐,  HS-­‐,  RS-­‐  

•  Good  Nucleophiles           Br-­‐,  OH-­‐,  RO-­‐,  CN-­‐,  N3-­‐  

•  Fair  Nucleophiles           NH3,  Cl-­‐,  F-­‐,  RCO2

-­‐  

•  Weak  Nucleophiles           H2O,  ROH  •  Very  Weak  Nucleophiles       RCO2H  

31  

Predic5ng  the  Likely  Mechanism  of  a  Subs5tu5on  Reac5on  

•  A  beeer  leaving  group  increases  the  rate  of  both  SN1  and  SN2  reac5ons.  

• The  nature  of  the  solvent  is  a  fourth  factor.    • Polar   pro5c   solvents   like   H2O   and   ROH   favor   SN1  reac5ons   because   the   ionic   intermediates   (both  ca5ons  and  anions)  are  stabilized  by  solva5on.  

• Polar  apro5c  solvents  favor  SN2  reac5ons  because  nucleophiles  are  not  well  solvated,  and  therefore,  are  more  nucleophilic.  

32  

Summary  of  SN1  and  SN2  Reac5ons  

33  

top related