anna university of technology, coimbatore โ€ฆ1 anna university of technology, coimbatore...

Post on 09-Oct-2020

19 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

ANNA UNIVERSITY OF TECHNOLOGY, COIMBATORE

B.E./B.TECH. DEGREE EXAMINATIONS: NOV/DEC 2006

FIFTH SEMESTER : CSE

DISCRETE MATHEMATICS

Part-A (๐Ÿ ร— ๐Ÿ๐ŸŽ = ๐Ÿ๐ŸŽ)

1. If ๐‘ท,๐‘ธ and ๐‘น are statement variables, prove that

๐‘ท โˆง โˆผ ๐‘ท โˆง ๐‘ธ โˆจ โˆผ ๐‘ท โˆงโˆผ ๐‘ธ โ‡’ ๐‘น

Solution:

๐‘ƒ โˆง โˆผ ๐‘ƒ โˆง ๐‘„ โˆจ โˆผ ๐‘ƒ โˆงโˆผ ๐‘„ โ‡” ๐‘ƒ โˆจ โˆผ ๐‘ƒ โˆง ๐‘„ โˆจโˆผ ๐‘„

โ‡” ๐‘ƒ โˆง โˆผ ๐‘ƒ โˆง ๐‘‡

โ‡” ๐‘ƒ โˆงโˆผ ๐‘ƒ โ‡” ๐น โ‡’ ๐‘… [โˆต ๐น ๐‘–๐‘  ๐‘Ž๐‘›๐‘ฆ ๐‘ ๐‘ก๐‘Ž๐‘ก๐‘’๐‘š๐‘’๐‘›๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘ข๐‘™๐‘Ž]

2. Prove that whenever ๐‘จ โˆง ๐‘ฉ โ‡’ ๐‘ช, we also have ๐‘จ โ‡’ ๐‘ฉ โ†’ ๐‘ช and vice versa.

Solution:

Assume that ๐ด โˆง ๐ต โ‡’ ๐ถ. To prove ๐ด โ‡’ ๐ต โ†’ ๐ถ . Suppose that ๐ด is True and ๐ต โ†’ ๐ถ is False. Hence

๐ต is True and ๐ถ is False. โˆด ๐ด โˆง ๐ต is True but ๐ถ is False, which is contradiction to our assumption.

Assume that ๐ด โ‡’ ๐ต โ†’ ๐ถ . To prove ๐ด โˆง ๐ต โ‡’ ๐ถ. Suppose that ๐ด โˆง ๐ต is True and ๐ถ is False. Hence

๐ด and ๐ต are True. โˆด ๐ด is True but ๐ต โ†’ ๐ถ is False, which is contradiction to our assumption.

โˆด Whenever ๐ด โˆง ๐ต โ‡’ ๐ถ, we also have ๐ด โ‡’ ๐ต โ†’ ๐ถ and vice versa.

3. Give an example to show that โˆƒ๐’™ ๐‘จ ๐’™ โˆง ๐‘ฉ ๐’™ need not be a conclusion from โˆƒ๐’™ ๐‘จ ๐’™

and โˆƒ๐’™ ๐‘ฉ ๐’™

Solution:

Let ๐ด = {1} and ๐ต = {2}

Let ๐ด ๐‘ฅ = ๐‘ฅ โˆˆ ๐ด and ๐ต ๐‘ฅ = ๐‘ฅ โˆˆ ๐ต

Since A and B are non empty, โˆƒ๐‘ฅ ๐ด(๐‘ฅ) and โˆƒ๐‘ฅ ๐ต(๐‘ฅ) are both true. Since ๐ด โˆฉ ๐ต = โˆ…

โˆƒ๐‘ฅ ๐ด ๐‘ฅ โˆง ๐ต ๐‘ฅ is false.

โˆƒ๐‘ฅ ๐ด ๐‘ฅ โˆง ๐ต ๐‘ฅ need not be a conclusion from โˆƒ๐‘ฅ ๐ด ๐‘ฅ and โˆƒ๐‘ฅ ๐ต ๐‘ฅ .

4. Find the truth value of ๐’™ ๐‘ท โ†’ ๐‘ธ ๐’™ โˆจ โˆƒ๐’™ ๐‘น ๐’™ where ๐‘ท: ๐Ÿ > 1, ๐‘„ ๐’™ :๐’™ > 3, ๐‘… ๐’™ :๐’™ > 4

with the universe of discourse being ๐‘ฌ = ๐Ÿ,๐Ÿ‘,๐Ÿ’ .

Solution:

๐‘ƒ is True and ๐‘„(4) is false ๐‘ƒ โ†’ ๐‘„(4) is false.

๐‘ฅ ๐‘ƒ โ†’ ๐‘„ ๐‘ฅ is false

Since ๐‘…(2), ๐‘…(3), ๐‘…(4) are all false. โˆƒ๐‘ฅ ๐‘… ๐‘ฅ is false. Hence ๐‘ฅ ๐‘ƒ โ†’ ๐‘„ ๐‘ฅ โˆจ โˆƒ๐‘ฅ ๐‘… ๐‘ฅ is false.

5. For any sets ๐‘จ, ๐‘ฉ and ๐‘ช, prove that ๐‘จ ร— ๐‘ฉ โˆฉ ๐‘ช = ๐‘จ ร— ๐‘ฉ โˆฉ ๐‘จ ร— ๐‘ฉ .

Solution:

Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด ร— (๐ต โˆฉ ๐ถ)

โ‡” ๐‘ฅ โˆˆ ๐ด ๐‘Ž๐‘›๐‘‘ ๐‘ฆ โˆˆ (๐ต โˆฉ ๐ถ)

โ‡” ( ๐‘ฅ โˆˆ ๐ด ๐‘Ž๐‘›๐‘‘ ๐‘ฆ โˆˆ ๐ต) ๐‘Ž๐‘›๐‘‘ ( ๐‘ฅ โˆˆ ๐ด ๐‘Ž๐‘›๐‘‘ ๐‘ฆ โˆˆ ๐ถ)

โ‡” ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด ร— ๐ต ๐‘Ž๐‘›๐‘‘ ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด ร— ๐ถ

โ‡” ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด ร— ๐ต โˆฉ (๐ด ร— ๐ถ)

2

๐ด ร— ๐ต โˆฉ ๐ถ = ๐ด ร— ๐ต โˆฉ ๐ด ร— ๐ต

6. The following is the Hasse diagram of a partially ordered set. Verify whether it is a Lattice.

Solution:

๐‘ and ๐‘’ are upper bounds of ๐‘Ž and ๐‘. As ๐‘ and ๐‘’ cannot be compared, the LUB of ๐‘Ž, ๐‘ does not exist.

Therefore the Hasse diagram is not a Lattice.

7. If ๐’‡:๐‘จ โ†’ ๐‘ฉ and ๐’ˆ: ๐‘ฉ โ†’ ๐‘ช are mappings and ๐’ˆ โˆ˜ ๐’‡:๐‘จ โ†’ ๐‘ช one-to-one, prove that ๐’‡ is one-to-

one.

Solution:

Let us assume that ๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฆ โ‡’ ๐‘” ๐‘“ ๐‘ฅ = ๐‘” ๐‘“ ๐‘ฆ

โ‡’ ๐‘” โˆ˜ ๐‘“ ๐‘ฅ = ๐‘” โˆ˜ ๐‘“ ๐‘ฆ

โ‡’ ๐‘ฅ = ๐‘ฆ โˆต ๐‘” โˆ˜ ๐‘“ ๐‘–๐‘  ๐‘œ๐‘›๐‘’ โˆ’ ๐‘ก๐‘œ โˆ’ ๐‘œ๐‘›๐‘’

โˆด ๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ

โˆด ๐‘“ is one-to-one.

8. If ๐Œ๐‘จ(๐’™) denotes the characteristic function of the set ๐‘จ, prove that

๐Œ๐‘จโˆช๐‘ฉ ๐’™ = ๐Œ๐‘จ ๐’™ + ๐Œ๐‘ฉ ๐’™ โˆ’ ๐Œ๐‘จโˆฉ๐‘ฉ ๐’™

Solution:

๐œ’๐ดโˆช๐ต ๐‘ฅ = 1 โ€ฆ (1)

โ‡’ ๐‘ฅ โˆˆ ๐ด โˆช ๐ต

โ‡’ ๐‘ฅ โˆˆ ๐ด ๐‘œ๐‘Ÿ ๐‘ฅ โˆˆ ๐ต

โ‡’ ๐œ’๐ด ๐‘ฅ = 1 ๐‘œ๐‘Ÿ ๐œ’๐ต ๐‘ฅ = 1

โ‡’ ๐œ’๐ด ๐‘ฅ + ๐œ’๐ต ๐‘ฅ โˆ’ ๐œ’๐ด ๐‘ฅ . ๐œ’๐ต ๐‘ฅ = 1

โ‡’ ๐œ’๐ด ๐‘ฅ + ๐œ’๐ต ๐‘ฅ โˆ’ ๐œ’๐ดโˆฉ๐ต ๐‘ฅ = 1 โ€ฆ (2)

๐œ’๐ดโˆช๐ต ๐‘ฅ = 1 โ€ฆ (3)

โ‡’ ๐‘ฅ โˆ‰ ๐ด โˆช ๐ต

โ‡’ ๐‘ฅ โˆ‰ ๐ด ๐‘Ž๐‘›๐‘‘ ๐‘ฅ โˆ‰ ๐ต

โ‡’ ๐œ’๐ด ๐‘ฅ = 1 ๐‘Ž๐‘›๐‘‘ ๐œ’๐ต ๐‘ฅ = 1

โ‡’ ๐œ’๐ด ๐‘ฅ + ๐œ’๐ต ๐‘ฅ โˆ’ ๐œ’๐ด ๐‘ฅ . ๐œ’๐ต ๐‘ฅ = 0

โ‡’ ๐œ’๐ด ๐‘ฅ + ๐œ’๐ต ๐‘ฅ โˆ’ ๐œ’๐ดโˆฉ๐ต ๐‘ฅ = 0 โ€ฆ (4)

From (1), (2), (3) and (4), we get

๐œ’๐ดโˆช๐ต ๐‘ฅ = ๐œ’๐ด ๐‘ฅ + ๐œ’๐ต ๐‘ฅ โˆ’ ๐œ’๐ดโˆฉ๐ต ๐‘ฅ

9. If ๐‘บ denotes the set of positive integers โ‰ค ๐Ÿ๐ŸŽ๐ŸŽ, for ๐’™, ๐’š โˆˆ ๐‘บ, define ๐’™ โˆ— ๐’š = ๐ฆ๐ข๐ง ๐’™, ๐’š . Verify

whether ๐‘บ,โˆ— is a Monoid assuming that โˆ— is associative.

d

a b

e

c

3

Solution:

The identity element is ๐‘’ = 100 exists. Since for ๐‘ฅ โˆˆ ๐‘†, min ๐‘ฅ, 100 = ๐‘ฅ โ‡’ ๐‘ฅ โˆ— 100 = ๐‘ฅ, โˆ€ ๐‘ฅ โˆˆ ๐‘†

โˆด ๐‘†,โˆ— is a Monoid.

10. If ๐‘ฏ is a subgroup of the group ๐‘ฎ, among the right cosets of ๐‘ฏ in ๐‘ฎ, prove that there is only

one subgroup ๐‘ฏ.

Solution:

Let ๐ป๐‘Ž be a right coset of ๐ป in ๐บ where ๐‘Ž โˆˆ ๐บ. If ๐ป๐‘Ž is a subgroup of ๐บ,

Then ๐‘’ โˆˆ ๐ป๐‘Ž, where ๐‘’ is the identity element in ๐บ. ๐ป๐‘Ž is an equivalence class containing a with

respect to an equivalence relation.

โˆด ๐‘’ โˆˆ ๐ป โ‡’ ๐ป๐‘’ = ๐ป๐‘Ž. But ๐ป๐‘’ = ๐ป

โˆด ๐ป๐‘Ž = ๐ป. This shows ๐ป is only subgroup.

Part-B (๐Ÿ“ ร— ๐Ÿ๐Ÿ” = ๐Ÿ–๐ŸŽ)

11. (a)(i) Prove that ๐‘ท โ†’ ๐‘ธ โˆง ๐‘ธ โ†’ ๐‘น โ‡’ ๐‘ท โ†’ ๐‘น

Solution:

To prove ๐‘†: ๐‘ƒ โ†’ ๐‘„ โˆง ๐‘„ โ†’ ๐‘… โ†’ ๐‘ƒ โ†’ ๐‘… is a Tautology.

๐‘ท ๐‘ธ ๐‘น ๐‘ท โ†’ ๐‘ธ ๐‘ธ โ†’ ๐‘น ๐‘ท โ†’ ๐‘น ๐‘ท โ†’ ๐‘ธ โˆง ๐‘ธ โ†’ ๐‘น ๐‘บ

F F F T T T T T

F T F T F T F T

T F F F T F F T

T T F T F F F T

F F T T T T T T

F T T T T T T T

T F T F T T F T

T T T T T T T T

โˆด ๐‘ƒ โ†’ ๐‘„ โˆง ๐‘„ โ†’ ๐‘… โ†’ ๐‘ƒ โ†’ ๐‘… is a Tautology

โˆด ๐‘ƒ โ†’ ๐‘„ โˆง ๐‘„ โ†’ ๐‘… โ‡’ ๐‘ƒ โ†’ ๐‘…

(ii) Find the principal conjunctive and principal disjunctive normal forms of the formula

๐‘บ โ‡” ๐‘ท โ†’ ๐‘ธ โˆง ๐‘น โˆง โˆผ ๐‘ท โ†’ โˆผ ๐‘ธ โˆงโˆผ ๐‘น

Solution:

๐‘† โ‡” ๐‘ƒ โ†’ ๐‘„ โˆง ๐‘… โˆง โˆผ ๐‘ƒ โ†’ โˆผ ๐‘„ โˆงโˆผ ๐‘…

โ‡” โˆผ ๐‘ƒ โˆจ ๐‘„ โˆง ๐‘… โˆง ๐‘ƒ โˆจ โˆผ ๐‘„ โˆงโˆผ ๐‘…

โ‡” โˆผ ๐‘ƒ โˆจ ๐‘„ โˆง โˆผ ๐‘ƒ โˆจ ๐‘… โˆง ๐‘ƒ โˆจโˆผ ๐‘„ โˆง ๐‘ƒ โˆจโˆผ ๐‘… ๐‘ค๐‘•๐‘–๐‘๐‘• ๐‘–๐‘  ๐ถ๐‘๐น

โ‡” โˆผ ๐‘ƒ โˆจ ๐‘„ โˆจ ๐น โˆง โˆผ ๐‘ƒ โˆจ ๐น โˆจ ๐‘… โˆง ๐‘ƒ โˆจโˆผ ๐‘„ โˆจ ๐น โˆง ๐‘ƒ โˆจ ๐น โˆจโˆผ ๐‘…

โ‡” โˆผ ๐‘ƒ โˆจ ๐‘„ โˆจ ๐‘… โˆงโˆผ ๐‘… โˆง โˆผ ๐‘ƒ โˆจ ๐‘„ โˆงโˆผ ๐‘„ โˆจ ๐‘… โˆง ๐‘ƒ โˆจโˆผ ๐‘„ โˆจ ๐‘… โˆงโˆผ ๐‘…

โˆง ๐‘ƒ โˆจ ๐‘„ โˆงโˆผ ๐‘„ โˆจโˆผ ๐‘…

โ‡” โˆผ ๐‘ƒ โˆจ ๐‘„ โˆจ ๐‘… โˆง โˆผ ๐‘ƒ โˆจ ๐‘„ โˆจโˆผ ๐‘… โˆง โˆผ ๐‘ƒ โˆจ ๐‘„ โˆจ ๐‘… โˆง โˆผ ๐‘ƒ โˆจโˆผ ๐‘„ โˆจ ๐‘… โˆง ๐‘ƒ โˆจโˆผ ๐‘„ โˆจ ๐‘…

โˆง ๐‘ƒ โˆจโˆผ ๐‘„ โˆจโˆผ ๐‘… โˆง ๐‘ƒ โˆจ ๐‘„ โˆจโˆผ ๐‘… โˆง ๐‘ƒ โˆจโˆผ ๐‘„ โˆจโˆผ ๐‘…

โ‡” โˆผ ๐‘ƒ โˆจ ๐‘„ โˆจ ๐‘… โˆง โˆผ ๐‘ƒ โˆจ ๐‘„ โˆจโˆผ ๐‘… โˆง โˆผ ๐‘ƒ โˆจโˆผ ๐‘„ โˆจ ๐‘… โˆง ๐‘ƒ โˆจโˆผ ๐‘„ โˆจ ๐‘…

โˆง ๐‘ƒ โˆจโˆผ ๐‘„ โˆจโˆผ ๐‘… โˆง ๐‘ƒ โˆจ ๐‘„ โˆจโˆผ ๐‘… ๐‘ค๐‘•๐‘–๐‘๐‘• ๐‘–๐‘  ๐‘ƒ๐ถ๐‘๐น.

โˆผ ๐‘† โ‰ก ๐‘…๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘š๐‘Ž๐‘ฅ ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ 

4

โˆผ ๐‘† โ‰ก ๐‘ƒ โˆจ ๐‘„ โˆจ ๐‘… โˆง โˆผ ๐‘ƒ โˆจโˆผ ๐‘„ โˆจโˆผ ๐‘…

โˆผโˆผ ๐‘† โ‰กโˆผ ๐‘ƒ โˆจ ๐‘„ โˆจ ๐‘… โˆง โˆผ ๐‘ƒ โˆจโˆผ ๐‘„ โˆจโˆผ ๐‘…

๐‘† โ‰ก ๐‘ƒ โˆง ๐‘„ โˆง ๐‘… โˆจ โˆผ ๐‘ƒ โˆงโˆผ ๐‘„ โˆงโˆผ ๐‘… ๐‘ค๐‘•๐‘–๐‘๐‘• ๐‘–๐‘  ๐‘ƒ๐ท๐‘๐น.

(b) (i) Using conditional proof, prove that

โˆผ ๐‘ท โˆจ ๐‘ธ, โˆผ ๐‘ธ โˆจ ๐‘น, ๐‘น โ†’ ๐‘บ โ‡’ ๐‘ท โ†’ ๐‘บ

Solution:

๐‘–) โˆผ ๐‘ƒ โˆจ ๐‘„ ๐‘…๐‘ข๐‘™๐‘’ ๐‘ƒ

๐‘–๐‘–) โˆผ ๐‘„ โˆจ ๐‘… ๐‘…๐‘ข๐‘™๐‘’ ๐‘ƒ

๐‘–๐‘–๐‘–) ๐‘… โ†’ ๐‘† ๐‘…๐‘ข๐‘™๐‘’ ๐‘ƒ

๐‘–๐‘ฃ) ๐‘ƒ ๐‘…๐‘ข๐‘™๐‘’ ๐ด๐‘‘๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘š๐‘–๐‘ ๐‘’๐‘ 

๐‘ฃ) ๐‘„ ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, ๐‘–, ๐‘–๐‘ฃ ๐‘Ž๐‘›๐‘‘ ๐ท๐‘–๐‘ ๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘†๐‘ฆ๐‘™๐‘™๐‘œ๐‘”๐‘–๐‘ ๐‘š

๐‘ฃ๐‘–) ๐‘… ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, ๐‘–๐‘–, ๐‘ฃ ๐‘Ž๐‘›๐‘‘ ๐ท๐‘–๐‘ ๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘†๐‘ฆ๐‘™๐‘™๐‘œ๐‘”๐‘–๐‘ ๐‘š

๐‘ฃ๐‘–๐‘–) ๐‘† ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, ๐‘–๐‘–๐‘–, ๐‘ฃ๐‘– ๐‘Ž๐‘›๐‘‘ ๐‘€๐‘œ๐‘‘๐‘ข๐‘  ๐‘๐‘•๐‘œ๐‘›๐‘’๐‘ 

๐‘ฃ๐‘–๐‘–๐‘–) ๐‘ƒ โ†’ ๐‘† ๐‘…๐‘ข๐‘™๐‘’ ๐ถ๐‘ƒ

(ii) By using truth tables, verify whether the following specifications are consistent; โ€œWhenever

the system software is being upgraded users cannot access the file system. If users can access the

file system, then they can save new files. If users cannot save new files then the system software

is not being upgraded.

Solution:

Let P represents the system software is being upgraded.

Let Q represents users can access the file system.

Let R represents users can save the file.

๐‘ƒ โ†’โˆผ ๐‘„, ๐‘„ โ†’ ๐‘…, โˆผ ๐‘… โ†’โˆผ ๐‘ƒ

Let ๐‘† = ๐‘ƒ โ†’โˆผ ๐‘„ โˆง ๐‘„ โ†’ ๐‘… โˆง ( โˆผ ๐‘… โ†’โˆผ ๐‘ƒ)

๐‘ท ๐‘ธ ๐‘น โˆผ ๐‘ท โˆผ ๐‘ธ โˆผ ๐‘น ๐‘ท โ†’โˆผ ๐‘ธ ๐‘ธ โ†’ ๐‘น โˆผ ๐‘น โ†’โˆผ ๐‘ท ๐‘บ

F F F T T T T T T T

F T F T F T T F T F

T F F F T T T T F F

T T F F F T F F F F

F F T T T F T T T T

F T T T F F T T T T

T F T F T F T T T T

T T T F F F F T T F

From the truth table, ๐‘† has the truth value ๐‘‡ whenever all premises are assigned the truth value ๐‘‡.

โˆด The premises are consistent.

12.(a)(i) Use indirect method of proof to show that

๐’™ ๐‘ท ๐’™ โˆจ ๐‘ธ ๐’™ โ‡’ ๐’™ ๐‘ท ๐’™ โˆจ โˆƒ๐’™ ๐‘ธ ๐’™

Solution:

Let us assume that ยฌ ๐‘ฅ ๐‘ƒ ๐‘ฅ โˆจ (โˆƒ๐‘ฅ)๐‘„(๐‘ฅ) as additional premise

1. ยฌ ๐‘ฅ ๐‘ƒ ๐‘ฅ โˆจ โˆƒ๐‘ฅ ๐‘„ ๐‘ฅ ๐ด๐‘‘๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘š๐‘–๐‘ ๐‘’

5

2. ยฌ ๐‘ฅ ๐‘ƒ ๐‘ฅ โˆง ยฌ โˆƒ๐‘ฅ ๐‘„ ๐‘ฅ 1, ๐ท๐‘’ ๐‘€๐‘œ๐‘Ÿ๐‘”๐‘Ž๐‘›โ€ฒ๐‘  ๐‘™๐‘Ž๐‘ค

3. ยฌ ๐‘ฅ ๐‘ƒ ๐‘ฅ ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, 2

4. โˆƒ๐‘ฅ ยฌ ๐‘ƒ ๐‘ฅ 3, ๐ท๐‘’ ๐‘€๐‘œ๐‘Ÿ๐‘”๐‘Ž๐‘›โ€ฒ๐‘  ๐‘™๐‘Ž๐‘ค

5. ยฌ ๐‘ƒ ๐‘Ž ๐‘…๐‘ข๐‘™๐‘’ ๐ธ๐‘†, 4

6. ยฌ โˆƒ๐‘ฅ ๐‘„ ๐‘ฅ ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, 2

7. ๐‘ฅ ยฌ ๐‘„ ๐‘ฅ 6, ๐ท๐‘’ ๐‘€๐‘œ๐‘Ÿ๐‘”๐‘Ž๐‘›โ€ฒ๐‘  ๐‘™๐‘Ž๐‘ค

8. ยฌ๐‘„ ๐‘Ž ๐‘…๐‘ข๐‘™๐‘’ ๐‘ˆ๐‘†, 7

9. ยฌ ๐‘ƒ ๐‘Ž โˆง ยฌ๐‘„ ๐‘Ž 5,8, ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›

10. ยฌ ๐‘ƒ ๐‘Ž โˆจ ๐‘„ ๐‘Ž 9, ๐ท๐‘’ ๐‘€๐‘œ๐‘Ÿ๐‘”๐‘Ž๐‘›โ€ฒ๐‘  ๐‘™๐‘Ž๐‘ค

11. (๐‘ฅ) (๐‘ƒ ๐‘ฅ โˆจ (๐‘„(๐‘ฅ)) ๐‘…๐‘ข๐‘™๐‘’ ๐‘ƒ

12. ๐‘ƒ ๐‘Ž โˆจ ๐‘„ ๐‘Ž ๐‘…๐‘ข๐‘™๐‘’ ๐‘ˆ๐‘†, 11

13. ยฌ ๐‘ƒ ๐‘Ž โˆจ ๐‘„ ๐‘Ž โˆง ๐‘ƒ ๐‘Ž โˆจ ๐‘„ ๐‘Ž 11,12, ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›

14. ๐น ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, 13

โˆด By the method of contradiction

๐‘ฅ ๐‘ƒ ๐‘ฅ โˆจ ๐‘„ ๐‘ฅ โ‡’ ๐‘ฅ ๐‘ƒ ๐‘ฅ โˆจ โˆƒ๐‘ฅ ๐‘„ ๐‘ฅ

(ii) Prove that โˆƒ๐’™ ๐‘ท ๐’™ โ†’ ๐’™ ๐‘ธ ๐’™ โ‡’ ๐’™ ๐‘ท ๐’™ โ†’ ๐‘ธ(๐’™)

Solution:

1. โˆƒ๐‘ฅ ๐‘ƒ ๐‘ฅ โ†’ ๐‘ฅ ๐‘„ ๐‘ฅ ๐‘…๐‘ข๐‘™๐‘’ ๐‘ƒ

2. ยฌ โˆƒ๐‘ฅ ๐‘ƒ ๐‘ฅ โˆจ ๐‘ฅ ๐‘„ ๐‘ฅ ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘  ๐‘‘๐‘–๐‘ ๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›

3. ๐‘ฅ ยฌ๐‘ƒ ๐‘ฅ โˆจ ๐‘ฅ ๐‘„ ๐‘ฅ ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, 2

4. (ยฌ๐‘ƒ ๐‘Ž โˆจ ๐‘„(๐‘Ž)) ๐‘…๐‘ข๐‘™๐‘’ ๐‘ˆ๐‘†

5. ๐‘ƒ ๐‘Ž โ†’ ๐‘„(๐‘Ž) ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, 2, ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘  ๐‘‘๐‘–๐‘ ๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›

6. ๐‘ฅ ๐‘ƒ ๐‘ฅ โ†’ ๐‘„(๐‘ฅ) ๐‘…๐‘ข๐‘™๐‘’ ๐‘ˆ๐บ

(b) (i) Use conditional proof to prove that

๐’™ ๐‘ท ๐’™ โ†’ ๐‘ธ(๐’™) โ‡’ ๐’™ ๐‘ท ๐’™ โ†’ ๐’™ ๐‘ธ ๐’™

Solution:

1. ๐‘ฅ ๐‘ƒ(๐‘ฅ) ๐ด๐‘‘๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ƒ๐‘Ÿ๐‘’๐‘š๐‘–๐‘ ๐‘’

2. ๐‘ฅ ๐‘ƒ ๐‘ฅ โ†’ ๐‘„(๐‘ฅ) ๐‘…๐‘ข๐‘™๐‘’ ๐‘ƒ

3. ๐‘ƒ ๐‘Ž โ†’ ๐‘„ ๐‘Ž ๐‘…๐‘ข๐‘™๐‘’ ๐‘ˆ๐‘†, 2

4. ๐‘ƒ ๐‘Ž ๐‘…๐‘ข๐‘™๐‘’ ๐‘ˆ๐‘†, 1

5. ๐‘„ ๐‘Ž ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, 3,4, ๐‘€๐‘œ๐‘‘๐‘ข๐‘  ๐‘๐‘•๐‘œ๐‘›๐‘’๐‘ 

6. ๐‘ฅ ๐‘„ ๐‘ฅ ๐‘…๐‘ข๐‘™๐‘’ ๐‘ˆ๐บ ,5

7. ๐‘ฅ ๐‘ƒ ๐‘ฅ โ†’ ๐‘ฅ ๐‘„ ๐‘ฅ ๐‘…๐‘ข๐‘™๐‘’ ๐ถ๐‘ƒ

(ii) Prove that โˆƒ๐’™ ๐‘จ ๐’™ โˆจ ๐‘ฉ(๐’™) โ‡” โˆƒ๐’™ ๐‘จ ๐’™ โˆจ โˆƒ๐’™ ๐‘ฉ(๐’™)

Solution:

Let us assume that ยฌ โˆƒ๐‘ฅ ๐ด ๐‘ฅ โˆจ (โˆƒ๐‘ฅ)๐ต(๐‘ฅ) as additional premise

1. ยฌ โˆƒ๐‘ฅ ๐ด ๐‘ฅ โˆจ (โˆƒ๐‘ฅ)๐ต(๐‘ฅ) ๐ด๐‘‘๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘๐‘Ÿ๐‘’๐‘š๐‘–๐‘ ๐‘’

2. ยฌ โˆƒ๐‘ฅ ๐ด ๐‘ฅ โˆง ยฌ(โˆƒ๐‘ฅ)๐ต(๐‘ฅ) 1, ๐ท๐‘’ ๐‘€๐‘œ๐‘Ÿ๐‘”๐‘Ž๐‘›โ€ฒ๐‘  ๐‘™๐‘Ž๐‘ค

3. ๐‘ฅ ยฌ๐ด ๐‘ฅ โˆง (๐‘ฅ)ยฌ๐ต(๐‘ฅ) 2, ๐ท๐‘’ ๐‘€๐‘œ๐‘Ÿ๐‘”๐‘Ž๐‘›โ€ฒ๐‘  ๐‘™๐‘Ž๐‘ค

4. ยฌ๐ด ๐‘Ž โˆง ยฌ๐ต(๐‘Ž) ๐‘…๐‘ข๐‘™๐‘’ ๐‘ˆ๐‘†, 3

5. ยฌ ๐ด ๐‘Ž โˆจ ๐ต(๐‘Ž) 4, ๐ท๐‘’ ๐‘€๐‘œ๐‘Ÿ๐‘”๐‘Ž๐‘›โ€ฒ๐‘  ๐‘™๐‘Ž๐‘ค

6. (โˆƒ๐‘ฅ)(๐ด ๐‘ฅ โˆจ ๐ต(๐‘ฅ)) ๐‘…๐‘ข๐‘™๐‘’ ๐‘ƒ

7. ๐ด ๐‘Ž โˆจ ๐ต(๐‘Ž) ๐‘…๐‘ข๐‘™๐‘’ ๐ธ๐‘†, 6

6

8. ยฌ ๐ด ๐‘Ž โˆจ ๐ต(๐‘Ž) โˆง ๐ด ๐‘Ž โˆจ ๐ต(๐‘Ž) 5,7, ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›

9. ๐น ๐‘…๐‘ข๐‘™๐‘’ ๐‘‡, 8 ๐‘Ž๐‘›๐‘‘ ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘™๐‘Ž๐‘ค

โˆด By the method of contradiction

โˆƒ๐‘ฅ ๐ด ๐‘ฅ โˆจ ๐ต(๐‘ฅ) โ‡” โˆƒ๐‘ฅ ๐ด ๐‘ฅ โˆจ โˆƒ๐‘ฅ ๐ต(๐‘ฅ)

13.(a)(i) Prove that distinct equivalence classes are disjoint.

Solution:

Let ๐‘… be an equivalence relation defined on set ๐‘‹.

Let ๐‘ฅ ๐‘… , ๐‘ฆ ๐‘… are two distinct equivalence classes on ๐‘‹

i.e., ๐‘ฅ๐‘…๐‘ฆ

Let us assume that there is at least one element ๐‘ง โˆˆ ๐‘ฅ ๐‘… ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘ง โˆˆ ๐‘ฆ ๐‘…

i.e., ๐‘ฅ๐‘…๐‘ง ๐‘Ž๐‘›๐‘‘ ๐‘ฆ๐‘…๐‘ง โ‡’ ๐‘ง๐‘…๐‘ฆ(๐ต๐‘ฆ ๐‘ ๐‘ฆ๐‘š๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘)

โˆด ๐‘ฅ๐‘…๐‘ง ๐‘Ž๐‘›๐‘‘ ๐‘ง๐‘…๐‘ฆโ‡’๐‘ฅ๐‘…๐‘ฆ(๐ต๐‘ฆ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ)

Which is a contradiction.

๐‘ฅ ๐‘… โˆฉ ๐‘ฆ ๐‘… = โˆ…

โˆดDistinct equivalence classes are disjoint.

(ii) In a Lattice show that ๐’‚ โ‰ค ๐’ƒ and ๐’„ โ‰ค ๐’… implies ๐’‚ โˆ— ๐’„ โ‰ค ๐’ƒ โˆ— ๐’….

Solution:

For any ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐ฟ

If ๐‘Ž ๐‘โ‡’๐‘ โˆ— ๐‘Ž โ‰ค ๐‘ โˆ— ๐‘

โ‡’๐‘Ž โˆ— ๐‘ โ‰ค ๐‘ โˆ— ๐‘ โ€ฆ 1 (๐ต๐‘ฆ ๐ถ๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘Ž๐‘ค)

For any ๐‘, ๐‘, ๐‘‘ โˆˆ ๐ฟ

If ๐‘ ๐‘‘โ‡’๐‘ โˆ— ๐‘ โ‰ค ๐‘ โˆ— ๐‘‘ โ€ฆ (2)

From (1) and (2) we get

๐‘Ž โˆ— ๐‘ ๐‘ โˆ— ๐‘‘

(iii) In a distributive Lattice prove that ๐’‚ โˆ— ๐’ƒ = ๐’‚ โˆ— ๐’„ and ๐’‚โจ๐’ƒ = ๐’‚โจ๐’„ implies that ๐’ƒ = ๐’„.

Solution:

๐‘Ž โˆ— ๐‘ โจ๐‘ = ๐‘Ž โˆ— ๐‘ โจ๐‘ = ๐‘ โ€ฆ 1 ๐‘Ž โˆ— ๐‘ = ๐‘Ž โˆ— ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘๐‘ ๐‘œ๐‘Ÿ๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘™๐‘Ž๐‘ค

๐‘Ž โˆ— ๐‘ โจ๐‘ = ๐‘Žโจ๐‘ โˆ— ๐‘โจ๐‘ ๐ท๐‘–๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ข๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘Ž๐‘ค

= ๐‘Žโจ๐‘ โˆ— ๐‘โจ๐‘ = ๐‘Žโจ๐‘ โˆ— ๐‘โจ๐‘ ๐‘Žโจ๐‘ = ๐‘Ž โจ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘™๐‘Ž๐‘ค

= ๐‘Ž โˆ— ๐‘ โจ๐‘ = ๐‘Ž โˆ— ๐‘ โจ๐‘ = ๐‘โ€ฆ (2) ๐ท๐‘–๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ข๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘๐‘ ๐‘œ๐‘Ÿ๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘™๐‘Ž๐‘ค

From (1) and (2) we get,

๐‘ = ๐‘

(b) (i) Let ๐‘ท = ๐Ÿ, ๐Ÿ , ๐Ÿ‘,๐Ÿ’ , ๐Ÿ“ be a partition of the set ๐‘บ = ๐Ÿ, ๐Ÿ,๐Ÿ‘,๐Ÿ’, ๐Ÿ“ . Construct an

equivalence classes with respect to ๐‘น are precisely the members of ๐‘ท.

Solution:

Let ๐‘… = 1, 1 , 1, 2 , 2, 1 , 2, 2 , 3, 3 , 3, 4 , 4, 3 , 4, 4 , 5, 5

Since 1, 1 , 2, 2 , 3, 3 , 4, 4 , 5, 5 โˆˆ ๐‘…

โˆด ๐‘… ๐‘–๐‘  ๐‘Ÿ๐‘’๐‘“๐‘™๐‘’๐‘ฅ๐‘–๐‘ฃ๐‘’

๐น๐‘œ๐‘Ÿ 1, 2 , 3,4 โˆˆ ๐‘… ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘–๐‘  2, 1 , 4, 3 โˆˆ ๐‘…

โˆด ๐‘… ๐‘–๐‘  ๐‘†๐‘ฆ๐‘š๐‘š๐‘’๐‘ก๐‘Ÿ๐‘–๐‘

7

๐น๐‘œ๐‘Ÿ 1, 2 ๐‘Ž๐‘›๐‘‘ 2,1 โˆˆ ๐‘… ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘–๐‘  1, 1 โˆˆ ๐‘…

๐น๐‘œ๐‘Ÿ 2, 1 ๐‘Ž๐‘›๐‘‘ 1,2 โˆˆ ๐‘… ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘–๐‘  2, 2 โˆˆ ๐‘…

๐น๐‘œ๐‘Ÿ 3, 4 ๐‘Ž๐‘›๐‘‘ 4,3 โˆˆ ๐‘… ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘–๐‘  3, 3 โˆˆ ๐‘…

๐น๐‘œ๐‘Ÿ 4, 3 ๐‘Ž๐‘›๐‘‘ 3,4 โˆˆ ๐‘… ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘–๐‘  4, 4 โˆˆ ๐‘…

โˆด ๐‘… ๐‘–๐‘  ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘–๐‘ก๐‘–๐‘ฃ๐‘’

โˆด ๐‘… ๐‘–๐‘  ๐‘Ž๐‘› ๐‘’๐‘ž๐‘ข๐‘–๐‘ฃ๐‘Ž๐‘™๐‘’๐‘›๐‘๐‘’ ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›

1 ๐‘… = 1,2 , 3 ๐‘… = 3,4 , 5 ๐‘… = 5

Equivalence classes with respect to ๐‘… = 1 ๐‘… , 3 ๐‘… , 5 ๐‘…

The equivalence classes with respect to ๐‘… are precisely the members of ๐‘ƒ

(ii) Show that a chain with three of more elements is not complemented.

Solution:

Let ๐ฟ be a chain with 0 and 1. Let ๐‘œ < ๐‘Ž < 1.

We show that โ€ฒ๐‘Žโ€ฒ has no element in ๐ฟ.

Let ๐‘ โˆˆ ๐ฟ and ๐‘ be a complement to ๐‘Ž.

โˆด ๐‘Ž โˆ— ๐‘ = 0 and ๐‘Žโจ ๐‘ = 1

Since ๐ฟ is a chain, either ๐‘Ž โ‰ค ๐‘ or ๐‘ โ‰ค ๐‘Ž

If ๐‘Ž โ‰ค ๐‘, then 0 = ๐‘Ž โˆ— ๐‘ = ๐‘Ž. But ๐‘Ž > 0

Also if ๐‘ โ‰ค ๐‘Ž, then 1 = ๐‘Žโจ๐‘ = ๐‘Ž. But ๐‘Ž < 1

โˆด ๐‘Ž has no complement.

(iii) Establish DeMorganโ€™s laws in a Boolean Algebra.

Solution:

(๐‘Ž โˆ— ๐‘) โ€ฒ = ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ, โˆ€ ๐‘Ž, ๐‘ ๐ฟ

๐‘Ž โˆ— ๐‘ โŠ• ๐‘Žโ€ฒ โŠ•๐‘โ€ฒ = ๐‘Ž โŠ• ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ โˆ— ๐‘ โŠ• ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ

= ๐‘Ž โŠ• ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ โˆ— ๐‘Žโ€ฒ โŠ•๐‘โ€ฒ โŠ• ๐‘

= ๐‘Ž โŠ• ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ โˆ— ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ โŠ• ๐‘

= 1 โŠ•๐‘โ€ฒ โˆ— ๐‘Žโ€ฒ โŠ• 1 = 1 โˆ— 1

๐‘Ž โˆ— ๐‘ โŠ• ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ = 1 โ€ฆ (1)

๐‘Ž โˆ— ๐‘ โˆ— ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ = ๐‘Ž โˆ— ๐‘ โˆ— ๐‘Žโ€ฒ โŠ• ๐‘Ž โˆ— ๐‘ โˆ— ๐‘โ€ฒ

= ๐‘ โˆ— ๐‘Ž โˆ— ๐‘Žโ€ฒ โŠ• ๐‘Ž โˆ— ๐‘ โˆ— ๐‘โ€ฒ

= ๐‘ โˆ— ๐‘Ž โˆ— ๐‘Žโ€ฒ โŠ• ๐‘Ž โˆ— ๐‘ โˆ— ๐‘โ€ฒ

= ๐‘ โˆ— 0 โŠ• ๐‘Ž โˆ— 0 = 0 โŠ• 0

๐‘Ž โˆ— ๐‘ โˆ— ๐‘Žโ€ฒ โŠ• ๐‘โ€ฒ = 0 โ€ฆ (2)

๐น๐‘Ÿ๐‘œ๐‘š 1 ๐‘Ž๐‘›๐‘‘ 2 ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก,

๐‘Ž โˆ— ๐‘ โ€ฒ = ๐‘Žโ€ฒ โŠ•๐‘โ€ฒ

By duality, ๐‘Ž โŠ• ๐‘ โ€ฒ = ๐‘Žโ€ฒ โˆ— ๐‘โ€ฒ

14.(a)(i) Find all mappings from ๐‘จ = ๐Ÿ,๐Ÿ,๐Ÿ‘ to ๐‘ฉ = ๐Ÿ’,๐Ÿ“ . Find which of them are one-to-one and

which are onto.

8

Solution:

None of the above mappings are one-to-one. (i) and (viii) are not onto mapping but the remaining

mappings are onto.

(ii) If ๐’‡ = ๐Ÿ ๐Ÿ ๐Ÿ‘๐Ÿ‘ ๐Ÿ ๐Ÿ

๐Ÿ’๐Ÿ’ and ๐’ˆ =

๐Ÿ ๐Ÿ ๐Ÿ‘๐Ÿ ๐Ÿ‘ ๐Ÿ’

๐Ÿ’๐Ÿ , are permutations, prove that

๐’ˆ โˆ˜ ๐’‡ โˆ’๐Ÿ = ๐’‡โˆ’๐Ÿ โˆ˜ ๐’ˆโˆ’๐Ÿ

Solution:

๐‘” โˆ˜ ๐‘“ = 1 2 34 3 2

41 โ€ฆ (1)

๐‘“โˆ’1 = 1 2 33 2 1

44

๐‘”โˆ’1 = 1 2 34 1 2

43

๐‘“โˆ’1 โˆ˜ ๐‘”โˆ’1 = 1 2 34 3 2

41 โ€ฆ (2)

From (1) and (2), we get

๐‘” โˆ˜ ๐‘“ โˆ’1 = ๐‘“โˆ’1 โˆ˜ ๐‘”โˆ’1

(iii) If R denotes the set of real numbers and ๐’‡: ๐‘น โ†’ ๐‘น is given by ๐’‡ ๐’™ = ๐’™๐Ÿ‘ โˆ’ ๐Ÿ, find ๐’‡โˆ’๐Ÿ.

Solution:

๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฆ โ‡’ ๐‘ฅ3 โˆ’ 2 = ๐‘ฆ3 โˆ’ 2 โ‡’ ๐‘ฅ3 = ๐‘ฆ3 โ‡’ ๐‘ฅ = ๐‘ฆ

โˆด ๐‘“ is one to one.

A B

3

2

1

5

4

B A

i) ii)

B A

B A B A B A

B A B A

iii)

iv) v) vi)

vii) viii)

1

1 1

1 1

1 1

2 2

2 2 2

2 2

3

4

5 3

4

5

3

4

5 3

4

5 3

4

5

3

4

5 3

4

5

9

Let ๐‘ฆ โˆˆ ๐‘….

๐‘“ ๐‘ฅ = ๐‘ฆ โ‡’ ๐‘ฅ3 โˆ’ 2 = ๐‘ฆ โ‡’ ๐‘ฅ3 = ๐‘ฆ + 2 โ‡’ ๐‘ฅ = ๐‘ฆ + 2 13

Therefore for every image in R there is a pre-image in R.

โˆด ๐‘“ is onto.

โˆด ๐‘“โˆ’1 exists.

๐‘“โˆ’1 ๐‘ฆ = ๐‘ฆ + 2 13

14.(b) (i) If ๐’+ denote the set of positive integers and ๐’ denote the set of integers. Let ๐’‡: ๐’+ โ†’ ๐’

be defined by

๐’‡(๐’) =

๐’

๐Ÿ , ๐’Š๐’‡ ๐’ ๐’Š๐’” ๐’†๐’—๐’†๐’

๐Ÿโˆ’๐’

๐Ÿ, ๐’Š๐’‡ ๐’ ๐’Š๐’” ๐’๐’…๐’…

. Prove that ๐’‡ is a bijection and find ๐’‡โˆ’๐Ÿ.

Solution:

To prove ๐‘“ is one to one:

โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘+

Case: 1 when ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘ฆ ๐‘Ž๐‘Ÿ๐‘’ ๐‘’๐‘ฃ๐‘’๐‘›

๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฆ โ‡’๐‘ฅ

2=

๐‘ฆ

2โ‡’ ๐‘ฅ = ๐‘ฆ

Case: 2 when ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘ฆ ๐‘Ž๐‘Ÿ๐‘’ ๐‘œ๐‘‘๐‘‘

๐‘“ ๐‘ฅ = ๐‘“ ๐‘ฆ โ‡’1 โˆ’ ๐‘ฅ

2=

1 โˆ’ ๐‘ฆ

2โ‡’ 1 โˆ’ ๐‘ฅ = 1 โˆ’ ๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ

โˆด From case: 1 and case: 2, ๐‘“ is one to one.

To prove ๐‘“ is onto:

๐‘Š๐‘•๐‘’๐‘› ๐‘ฅ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

Let ๐‘ฆ =๐‘ฅ

2โ‡’๐‘ฅ = 2๐‘ฆ

โˆ€๐‘ฅ โˆˆ ๐‘, ๐‘ฅ = ๐‘“ 2๐‘ฅ

โˆด โˆ€๐‘ฅ โˆˆ ๐‘, ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ÿ๐‘’ ๐‘–๐‘š๐‘Ž๐‘”๐‘’ 2๐‘ฅ โˆˆ ๐‘+

๐‘Š๐‘•๐‘’๐‘› ๐‘ฅ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

Let ๐‘ฆ =1โˆ’๐‘ฅ

2โ‡’1 โˆ’ ๐‘ฅ = 2๐‘ฆโ‡’๐‘ฅ = 1 โˆ’ 2๐‘ฆ

โˆ€๐‘ฅ โˆˆ ๐‘, ๐‘ฅ = ๐‘“(1 โˆ’ 2๐‘ฅ)

โˆด โˆ€๐‘ฅ โˆˆ ๐‘, ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ÿ๐‘’ ๐‘–๐‘š๐‘Ž๐‘”๐‘’ 1 โˆ’ 2๐‘ฅ โˆˆ ๐‘+

Every element has unique pre-image

โˆด ๐‘“ is onto

โˆด ๐‘“ is bijection โ‡’ ๐‘“โˆ’1 exists.

๐‘Š๐‘•๐‘’๐‘› ๐‘ฅ ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

Let ๐‘ฆ =๐‘ฅ

2โ‡’๐‘ฅ = ๐‘“โˆ’1 ๐‘ฆ = 2๐‘ฆ

๐‘Š๐‘•๐‘’๐‘› ๐‘ฅ ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

Let ๐‘ฆ =1โˆ’๐‘ฅ

2โ‡’1 โˆ’ ๐‘ฅ = 2๐‘ฆโ‡’๐‘ฅ = ๐‘“โˆ’1 ๐‘ฆ = 1 โˆ’ 2๐‘ฆ

๐‘“โˆ’1(๐‘›) = 2๐‘› , ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

1 โˆ’ 2๐‘›, ๐‘–๐‘“ ๐‘› ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

10

(ii) Let ๐‘จ, ๐‘ฉ and ๐‘ช be any three non empty sets. Let ๐’‡:๐‘จ โ†’ ๐‘ฉ and ๐’ˆ: ๐‘ฉ โ†’ ๐‘ช be mappings. If ๐’‡ and

๐’ˆ are onto, prove that ๐’ˆ โˆ˜ ๐’‡: ๐‘จ โ†’ ๐‘ช is onto. Also give an example to show that ๐’ˆ โˆ˜ ๐’‡ may be onto

but both f and g need not be onto.

Solution:

Since ๐‘“ โˆถ ๐ด โ†’ ๐ต is onto

๐‘“ ๐‘ฅ = ๐‘ฆ, โˆ€๐‘ฅ โˆˆ ๐ด ๐‘Ž๐‘›๐‘‘ ๐‘ฆ โˆˆ ๐ตโ€ฆ (1)

Since ๐‘” โˆถ ๐ต โ†’ ๐ถ is onto

๐‘” ๐‘ฆ = ๐‘ง, โˆ€๐‘ง โˆˆ ๐ถ ๐‘Ž๐‘›๐‘‘ ๐‘ฆ โˆˆ ๐ตโ€ฆ (2)

โˆ€๐‘ฅ โˆˆ ๐ด, ๐‘”๐‘œ๐‘“ ๐‘ฅ = ๐‘” ๐‘“ ๐‘ฅ = ๐‘” ๐‘ฆ = ๐‘ง [๐‘“๐‘Ÿ๐‘œ๐‘š 1 ๐‘Ž๐‘›๐‘‘ 2 ]

โˆด โˆ€๐‘ง โˆˆ ๐ถ ๐‘ก๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐‘Ž ๐‘๐‘Ÿ๐‘’๐‘–๐‘š๐‘Ž๐‘”๐‘’ ๐‘ฅ โˆˆ ๐ด ๐‘ ๐‘ข๐‘๐‘• ๐‘ก๐‘•๐‘Ž๐‘ก ๐‘”๐‘œ๐‘“ ๐‘ฅ = ๐‘ง

โˆด ๐‘”๐‘œ๐‘“ โˆถ ๐ด โ†’ ๐ถ is onto

For example

Let ๐ด = 1, 2 , ๐ต = ๐‘Ž, ๐‘, ๐‘ ๐‘Ž๐‘›๐‘‘ ๐ถ = {๐‘‘, ๐‘’}

๐‘“ = 1, ๐‘Ž , 2, ๐‘ , ๐‘” = { ๐‘Ž, ๐‘‘ , ๐‘, ๐‘’ , ๐‘, ๐‘’ }

๐‘”๐‘œ๐‘“ 1 = ๐‘” ๐‘“ 1 = ๐‘” ๐‘Ž = ๐‘‘

๐‘”๐‘œ๐‘“ 2 = ๐‘” ๐‘“ 2 = ๐‘” ๐‘ = ๐‘’

๐‘”๐‘œ๐‘“ = 1, ๐‘‘ , 2, ๐‘’

The function ๐‘“ is not onto because ๐‘ โˆˆ ๐ต does not have pre image.

The function ๐‘” is not onto because every element of ๐ถ have pre image but

it is not unique. ๐‘’ โˆˆ ๐ถ ๐‘•๐‘Ž๐‘ฃ๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ÿ๐‘’ ๐‘–๐‘š๐‘Ž๐‘”๐‘’๐‘  ๐‘, ๐‘ โˆˆ ๐ต

The function ๐‘”๐‘œ๐‘“ is onto because every element of ๐ถ have pre image and it is unique.

โˆด ๐‘” โˆ˜ ๐‘“ may be onto but both f and g need not be onto.

15.(a)(i) State and prove Lagrangeโ€™s theorem for finite groups.

Statement:

The order of a subgroup of a finite group is a divisor of the order of the group.

Proof:

Let ๐‘Ž๐ป and ๐‘๐ป be two left cosets of the subgroup {๐ป,โˆ—} in the group {๐บ,โˆ—}.

Let the two cosets ๐‘Ž๐ป and ๐‘๐ป be not disjoint.

Then let ๐‘ be an element common to ๐‘Ž๐ป and ๐‘๐ป i.e., ๐‘ โˆˆ ๐‘Ž๐ป โˆฉ ๐‘๐ป

โˆต ๐‘ โˆˆ ๐‘Ž๐ป, ๐‘ = ๐‘Ž โˆ— ๐‘•1, ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘•1 โˆˆ ๐ปโ€ฆ (1)

โˆต ๐‘ โˆˆ ๐‘๐ป, ๐‘ = ๐‘ โˆ— ๐‘•2, ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘•2 โˆˆ ๐ปโ€ฆ (2)

From (1) and (2), we have

๐‘Ž โˆ— ๐‘•1 = ๐‘ โˆ— ๐‘•2

๐‘Ž = ๐‘ โˆ— ๐‘•2 โˆ— ๐‘•1โˆ’1 โ€ฆ (3)

Let ๐‘ฅ be an element in ๐‘Ž๐ป

๐‘ฅ = ๐‘Ž โˆ— ๐‘•3, ๐‘“๐‘œ๐‘Ÿ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘•3 โˆˆ ๐ป

= ๐‘ โˆ— ๐‘•2 โˆ— ๐‘•1โˆ’1 โˆ— ๐‘•3, ๐‘ข๐‘ ๐‘–๐‘›๐‘” (3)

Since H is a subgroup, ๐‘•2 โˆ— ๐‘•1โˆ’1 โˆ— ๐‘•3 โˆˆ ๐ป

Hence, (3) means ๐‘ฅ โˆˆ ๐‘๐ป

Thus, any element in ๐‘Ž๐ป is also an element in ๐‘๐ป. โˆด ๐‘Ž๐ป โŠ† ๐‘๐ป

Similarly, we can prove that ๐‘๐ป โŠ† ๐‘Ž๐ป

Hence ๐‘Ž๐ป = ๐‘๐ป

Thus, if ๐‘Ž๐ป and ๐‘๐ป are disjoint, they are identical.

The two cosets ๐‘Ž๐ป and ๐‘๐ป are disjoint or identical. โ€ฆ(4)

11

Now every element ๐‘Ž โˆˆ ๐บ belongs to one and only one left coset of ๐ป in ๐บ,

For,

๐‘Ž = ๐‘Ž๐‘’ โˆˆ ๐‘Ž๐ป, ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘’ โˆˆ ๐ป โ‡’ ๐‘Ž โˆˆ ๐‘Ž๐ป

๐‘Ž โˆ‰ ๐‘๐ป, since ๐‘Ž๐ป and ๐‘๐ป are disjoint i.e., ๐‘Ž belongs to one and only left coset of

๐ป in ๐บ i.e., ๐‘Ž๐ปโ€ฆ (5)

From (4) and (5), we see that the set of left cosets of ๐ป in ๐บ form the partition of

๐บ. Now let the order of ๐ป be ๐‘š.

Let ๐ป = ๐‘•1,๐‘•2, โ€ฆ , ๐‘•๐‘š ,๐‘ค๐‘•๐‘’๐‘Ÿ๐‘’ ๐‘•๐‘– โ€ฒ๐‘  are distinct

Then ๐‘Ž๐ป = ๐‘Ž๐‘•1,๐‘Ž๐‘•2,โ€ฆ , ๐‘Ž๐‘•๐‘š

The elements of ๐‘Ž๐ป are also distinct, for, ๐‘Ž๐‘•๐‘– = ๐‘Ž๐‘•๐‘— โ‡’ ๐‘•๐‘– = ๐‘•๐‘— , which is not

true.

Thus ๐ป and ๐‘Ž๐ป have the same number of elements, namely ๐‘š.

In fact every coset of ๐ป in ๐บ has exactly ๐‘š elements.

Now let the order of the group {๐บ,โˆ—} be ๐‘›, i.e., there are ๐‘› elements in ๐บ

Let the number of distinct left cosets of ๐ป in ๐บ be ๐‘.

โˆด The total number of elements of all the left cosets = ๐‘๐‘š = the total number

of elements of ๐บ. i.e., ๐‘› = ๐‘๐‘š

i.e., ๐‘š, the order of ๐ป is adivisor of ๐‘›, the order of ๐บ.

(ii) Find all the non-trivial subgroups of ๐’๐Ÿ”, +๐Ÿ” .

Solution: ๐‘6 , +6 , ๐‘† = 0 ๐‘ข๐‘›๐‘‘๐‘’๐‘Ÿ ๐‘๐‘–๐‘›๐‘Ž๐‘Ÿ๐‘ฆ ๐‘œ๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘› +6 are trivial subgroups

+๐Ÿ” [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]

[1] [1] [2] [3] [4] [5] [0]

[2] [2] [3] [4] [5] [0] [1]

[3] [3] [4] [5] [0] [1] [2]

[4] [4] [5] [0] [1] [2] [3]

[5] [5] [0] [1] [2] [3] [4]

๐‘†1 = 0 , 2 , [4]

+๐Ÿ” [0] [2] [4]

[0] [0] [2] [4]

[2] [2] [4] [0]

[4] [4] [0] [2]

From the above cayleyโ€™s table,

All the elements are closed under the binary operation +๐Ÿ”

Associativity is also true under the binary operation +๐Ÿ”

[0] is the identity element.

Inverse element of [2] is [4] and vise versa

Hence ๐‘†1 = 0 , 2 , [4] is a subgroup of (๐‘6 , +6)

12

๐‘†2 = 0 , 3

+๐Ÿ” [0] [3]

[0] [0] [3]

[3] [3] [0]

From the above cayleyโ€™s table,

All the elements are closed under the binary operation +๐Ÿ”

Associativity is also true under the binary operation +๐Ÿ”

[0] is the identity element.

Inverse element of [3] is itself.

Hence ๐‘†2 = 0 , 3 is a subgroup of (๐‘6 , +6)

Therefore ๐‘†1 = 0 , 2 , [4] and ๐‘†2 = 0 , 3 are non trivial subgroups of (๐‘6 , +6)

(b) If ๐‘ฏ =

๐ŸŽ ๐Ÿ ๐Ÿ ๐Ÿ ๐ŸŽ ๐ŸŽ ๐ŸŽ๐Ÿ ๐ŸŽ ๐Ÿ ๐ŸŽ ๐Ÿ ๐ŸŽ ๐ŸŽ๐Ÿ ๐ŸŽ ๐Ÿ ๐ŸŽ ๐ŸŽ ๐Ÿ ๐ŸŽ๐Ÿ ๐Ÿ ๐ŸŽ ๐ŸŽ ๐ŸŽ ๐ŸŽ ๐Ÿ

is the parity check matrix, find the Hamming code generated by

H (in which the first three bits represent information portion and the next four bits are parity

check bits). If ๐’š = (๐ŸŽ, ๐Ÿ,๐Ÿ, ๐Ÿ,๐Ÿ, ๐Ÿ,๐ŸŽ) is the received word find the corresponding transmitted code

word.

Solution:

Here ๐‘’: ๐ต3 โ†’ ๐ต7

๐ป =

0 1 1 1 0 0 01 0 1 0 1 0 01 0 1 0 0 1 01 1 0 0 0 0 1

= ๐ด๐‘‡ |๐ผ๐‘›โˆ’๐‘š = ๐ด๐‘‡ |๐ผ4

The generator function is given by

๐บ = ๐ผ๐‘š |๐ด = ๐ผ3|๐ด = 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110

๐ต3 โ‰ก 000, 001, 010, 100,011,101, 110, 111

๐‘’ ๐‘ค = ๐‘ค. ๐บ

๐‘’ 000 = 0 0 0 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110 = 0 0 0 0 0 0 0

๐‘’ 001 = 0 0 1 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110 = 0 0 1 1 1 1 0

๐‘’ 010 = 0 1 0 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110 = 0 1 0 1 0 0 1

๐‘’ 100 = 1 0 0 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110 = 1 0 0 0 1 1 1

๐‘’ 011 = 0 1 1 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110 = 0 1 1 0 1 1 1

๐‘’ 101 = 1 0 1 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110 = 1 0 1 1 0 0 1

13

๐‘’ 110 = 1 1 0 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110 = 1 1 0 1 1 1 0

๐‘’ 111 = 1 1 1 1 0 00 1 00 0 1

0 1 11 0 01 1 1

110 = 1 1 1 0 0 0 0

๐ป. ๐‘ฆ ๐‘‡ =

0 1 1 1 0 0 01 0 1 0 1 0 01 0 1 0 0 1 01 1 0 0 0 0 1

0111110

=

1001

๐‘†๐‘–๐‘›๐‘๐‘’, ๐‘ก๐‘•๐‘’ ๐‘ ๐‘ฆ๐‘›๐‘‘๐‘Ÿ๐‘œ๐‘š๐‘’

1001

๐‘–๐‘  ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘Ž๐‘  ๐‘ก๐‘•๐‘’ ๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘ ๐‘๐‘œ๐‘™๐‘ข๐‘š๐‘› ๐‘œ๐‘“ ๐ป, ๐‘ก๐‘•๐‘’ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก

๐‘–๐‘› ๐‘ก๐‘•๐‘’ ๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘ ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฆ ๐‘–๐‘  ๐‘๐‘•๐‘Ž๐‘›๐‘”๐‘’๐‘‘.

โˆด ๐‘‡๐‘•๐‘’ ๐‘‘๐‘’๐‘๐‘œ๐‘‘๐‘’๐‘‘ ๐‘ค๐‘œ๐‘Ÿ๐‘‘ ๐‘–๐‘  0011110 ๐‘Ž๐‘›๐‘‘ ๐‘ก๐‘•๐‘’ ๐‘œ๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘š๐‘’๐‘ ๐‘ ๐‘Ž๐‘”๐‘’ ๐‘–๐‘  001.

top related