appi- and apci-gc/ms-ms for petroleum and environmental ...αββ 20r-cholestane ααα...

Post on 29-Jul-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

APPI- and APCI-GC/MS-MS for Petroleum and

Environmental Applications

Vlad Lobodin, PhD

1

National High Magnetic Field Laboratory, Tallahassee, FL

Future Fuels Institute, Florida State University, Tallahassee, FL

Annual crude oil production:

The World Crude Oil Production

~ 30 billion bbl

~ 5,000,000,000 m3

~ 5 km3

World Crude Oil Production by M bbl/day

Energy Fuels, 2010, 24 (3), pp 1788–1800 “Forecasting World Crude Oil Production Using Multicyclic Hubbert Model”

Predicated “Oil peak” in 2014.

River Thames (London)

The World Crude Oil Production

Average Water Discharge: ~ 2,000,000,000 m3 / year

The Word Crude Oil Production: ~ 5,000,000,000 m3 / year

Gerald Herbert, AP

April 20, 2010

April 22, 2010

Gerald Herbert, AP

NASA

May 24, 2010

~5 million barrels of crude oil have

leaked from the Macondo well

Michael Spooneybarger, AP

Pensacola Beach, Florida June 23, 2010

the inside of tarballs is saturated

with less weathered petroleum

compounds

Tarballs collected from beach

400 600 800 1000 m/z

Macondo Wellhead Oil

13,700 ± 80 Peaks ≥ 6σ

(+) ESI 9.4 FT-ICR MS

Pensacola Beach

32,232 ± 488 Peaks ≥ 6σ

(+) ESI 9.4 FT-ICR MS

High Resolution FT-ICR

Mass Spectrometry: 20 < C# < 100

Biomarker Region

Biomarker Region

1920

6920

16920

11920

8

6

4

2

0

1920

6920

16920

11920

8

6

4

2

0

1st Dimension

Retention Time

(seconds)

2nd Dimension

Retention Time

(seconds)

Pensacola Beach

Macondo Wellhead Oil

Comprehensive Two-dimensional

Gas Chromatography (GC×GC)

C8-C37, Volatiles

m/z 500.5 500.4 500.3

N1O1

N1

O1S113C1

N1O1

N1

N1O1 N1S1

A) Macondo Well Oil

10 Peaks across 250 mDa

O113C1 O2

13C1 N1O2

H1C113C1 O1

13C1

O213C1

N1O2

N1O3 O313C1

B) Pensacola Beach

32 Peaks across 250 mDa

(+) ESI 9.4 T FT-ICR MS

C14H30

C16H34

C18H38

C25H52

C30H62

C20H42

50ºC(3 min)- 3ºC/min- 300ºC

GC/MS of “Macondo crude oil” NIST 2779

(Total Ion Chromatogram)

GCxGC/TOF-MS of “Macondo crude oil” NIST 2779

9.4 Tesla

FT-ICR MS

14.5 Tesla

FT-ICR MS

FT-ICR FACILITIES

1. Carbon Number

2. Heteroatom Composition

3. Aromaticity

m/z 704.53510

[C50H72S1]+•

800 700 600 500 400

*

m/z

m/Δm50%

100 - 400 ppb

DBE = C – H

2

N

2 + + 1

McLafferty & Turecek Int. Mass Spectra, 1993

[Z = -2(DBE) + n + 2]

Carbon Number

DB

E

S1 Class

Relative Abundance (% total)

40

30

20

10

0 20 40 60 80

Workflow for High Resolution “Petroleomics”

S CH3

Isomeric structure for S-compounds

S

CH3

C1-dibenzothiophenes (4 isomers)

S

CH3

S

CH3

1-methyl-dibenzothiophene 4-methyl-dibenzothiophene 3-methyl-dibenzothiophene 2-methyl-dibenzothiophene

C1-benzothiophenes (6 isomers)

C2-dibenzothiophenes (26 isomers):

22 dimethyl-dibenzotiophene isomers and 4 ethyl-dibenzotiophene isomers

S

CH3

S

CH3

2-methyl-

benzothiophene

S

CH3

S

CH3

3-methyl-

benzothiophene

4-methyl-

benzothiophene

5-methyl-

benzothiophene

S CH3

6-methyl-

benzothiophene

S

CH3

7-methyl-

benzothiophene

Benzonaphthotiophenes

S

S S Benzo[b]naphtho[1,2-d]thiophene Benzo[b]naphtho[2,3-d]thiophene Benzo[b]naphtho[2,1-d]thiophene

Petroleum Biomarkers: Hopanes and Steranes

Bacteriohopanetetrol

(hopanoid in prokaryotes) Hopanes

A B

C D

E

1

2

3

4 5

6

7

8

9

10

11

12

13

14 15

16

17

18

19 20

21

22

23 24

25 26

27

28

30

29

31

32

33

34

35

C35H62O4

Cholesterol steroid in eukaryotes

Steranes

A B

C D 1

2

3

4 5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20 21 22

23

24 25 26

27

28

C27H46O

============================================================ 29

M+•

4% of TIC

C27H46

EI mass spectrum of 17α (H)-22,29,30-tris-norhopane

Petroleum Biomarkers

Steranes Hopanes

Multiple reaction monitoring mode

MRM

m/z 191

m/z 217

M+• → m/z 191 M+• → m/z 217

Waters Xevo TQ-S

Ion Source Diagram of APCI-GC/MS-MS

Corona Pin

Capillary

GC Column

Ionization

Chamber

Adapted from Waters Corporation

Ion source

Housing

Mass Spec

Heated Transfer Line

N2+• + M M+• + N2

(Atmospheric

Pressure)

Charge Transfer

Protonation

======================================================

Ionization mechanisms:

Charge Transfer vs. Protonation

By courtesy of Waters Corporation

Phenanthrene 100 pg

100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185

%

0

100

100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185

%

0

100

100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185

%

0

100 179

178

178

179

178

179

m/z

Ionization mechanisms: Charge Transfer vs. Protonation

“wet” source

“wet” source

“dry” source

M+•

[M+H]+

MW 178

Phenanthrene

M+•

[M+H]+

M+•

APCI-GC Mass Spectrum of 17α(H)-22,29,30-trisnorhopane

50 100 150 200 250 300 350 400

Rela

tive A

bu

nd

an

ce,

%

0

100 370

191

121 95 149 355

m/z

44% of TIC

M+•

APCI-GC/MS-MS of 17α(H)-22,29,30-trisnorhopane

Product (daughter) scan from M+• (m/z 370)

M+•

Collision energy: 15 eV

Collision gas: Ar

C27H46

m/z 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370

%

0

100 191

95

81 69

149

109

135

121

163

177 355 370

MRM transition: m/z 370 → 191

MS/MS spectrum of 17α(H)-22,29,30-trisnorhopane

MS/MS spectrum from m/z 370

NIST library EI mass spectrum 17β(H)-22,29,30-trisnorhopane

The first match

Sum of 7 MRM transitions

17α(H)-22,29,30-trisnorhopane C27H46 M+•→ 191

17α(H),21β(H)-30-norhopane C29H50 M+•→ 191

17α(H),21β(H)-30-hopane C30H52 M+•→ 191

ααα 20R-cholestane C27H48 M+•→ 217

αββ 20R-cholestane C27H48 M+•→ 217

αββ 20R 24S-methylcholestane C28H50 M+•→ 217

ααα 20R 24R-ethylsholestane C29H52 M+•→ 217

17α(H),21β(H)-22R-homohopane C31H54 M+•→ 191

17α(H),21β(H)-22S-homohopane C31H54 M+•→ 191

αββ 20R 24R- ethylcholestane C29H52 M+•→ 217

pg

Calibration curve

17α(H),21β(H)-30-hopane

5E5

1E6

2E6

1.5E6

APCI-GC/MS-MS of NIST2266

(hopanes & steranes standard)

0 100 200 300 400 500 600

R² = 0.999

17α(H)-22,29,30-trisnorhopane

17α(H),21β(H)-hopane

17α(H),21β(H)-22S-homohopane 17α(H),21β(H)-22R-homohopane

17α(H),21β(H)-30-norhopane

APCI-GC/MS-MS of NIST2266. Hopanes.

m/z 370 → 191

m/z 398 → 191

m/z 412 → 191

m/z 426 → 191

αββ 20R-cholestane ααα 20R-cholestane

αββ 20R 24S-methylcholestane

αββ 20R 24R- ethylcholestane

ααα 20R 24R-ethylsholestane

APCI-GC/MS-MS of NIST2266. Steranes.

m/z 372 → 217

m/z 386 → 217

m/z 400 → 217

NIST2779 (Macondo crude oil)

Pricey samples from BP oil spill being sold to scientists

http://www.nola.com/news/gulf-oil-spill/index.ssf/2012/03/federal_government_sells_price.html

By Mark Schleifstein, NOLA.com | The Times-Picayune. March 08, 2012

It's likely to be one of the oddest ironies to emerge from the BP oil spill: the federal

government is selling tiny containers of oil siphoned from the Macondo well at a price

equal to $76.3 million a barrel. By comparison, a barrel of crude oil was selling for

$106 on Wednesday.

Of course, the BP oil is not being sold by the

barrel.

The National Institute of Standards and

Technology, an agency of the U.S. Department of

Commerce, is selling 1.2 milliliter bottles of the oil

to scientists who need it for comparison with

materials collected as part of the federal Natural

Resources Damage Assessment process. The

price: $480 for a set of five.

MS/MS conditions for acquisition of MRM transitions

Compound class MRM transition Dwell time, ms Collision

energy, eV

C27-Hopanes 370.30 > 191.10 50 15

C27-Steranes 372.30 > 217.10 50 20

C27-Steranes 372.30 > 218.10 50 20

C27-Steranes 372.30 > 259.20 50 20

C28-Hopanes 384.30 > 191.10 50 15

C28-Steranes 386.30 > 217.10 50 20

C28-Steranes 386.30 > 218.10 50 20

C28-Steranes 386.30 > 259.20 50 20

C29-Hopanes 398.30 > 191.10 50 15

C29-Steranes 400.30 > 217.10 50 20

C29-Steranes 400.30 > 218.10 50 20

C29-Steranes 400.30 > 259.10 50 20

C30-Hopanes 412.30 > 191.10 50 20

C30-Steranes 414.30 > 217.10 50 20

C31-Hopanes 426.30 > 191.10 50 20

C32-Hopanes 440.40 > 191.10 50 20

C33-Hopanes 454.40 > 191.10 50 20

C34-Hopanes 468.40 > 191.10 50 20

C35-Hopanes 482.40 > 191.10 50 20

APCI/GC-MS/MS of NIST2779 (Macondo crude oil)

Time, min

50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00

RA

, %

0

100

Time 80.00 82.00 84.00 86.00 88.00 90.00 92.00 94.00

Hopanes: Summed Signals for C27-C35 (M+• → m/z 191)

C35

C34 C33

C32

C31

H30

H29

Ts

Tm

H31S

H31R

H32S

H32R H33S

H33R H34S

H34R H35R

H35S

A B

C D

E

1 2

3 4

5 6

7 8

9

10

11 12

13

14 15

16

17

18

19 20

21

22

23 24

25 26

27

28 29

30

31

32

33

34

35

C29Ts

DH30

M30

m/z 372 → 217

m/z 386 → 217

m/z 372 → 217

βα

βα

αβ αβ

βα

βα

αβ αβ

αααS

βα

βα

αβ αααS

αααR

αβ

Time 50.00 55.00 60.00 65.00 70.00 75.00 80.00

50.00 55.00 60.00 65.00 70.00 75.00 80.00

%

100

50.00 55.00 60.00 65.00 70.00 75.00 80.00

50.00 55.00 60.00 65.00 70.00 75.00 80.00

0

%

100

0

%

100

%

100

0

0

APCI/GC-MS/MS of NIST2779 (Macondo crude oil)

C27 -Diasteranes C27-Steranes

C28 -Diasteranes

C28-Steranes

C29 -Diasteranes C29-Steranes

Sum of C27-C29 Steranes/Diasteranes

A B

C D 1 2

3

4 5

6

7

8

9

10

11 12

13

14 15

16

17

18

19

20 21 22

23

24 25 26

27

28 29

αααS

αββR

αααR αββS

αββR αββS

αααR

αββR αββS

Oil Spill Source Identification

NIST 2779 (Macondo crude oil) Environmental sample

ASTM D3328

ASTM D5739

Direct Visual Comparison of TIC

(and selected ion) chromatograms.

Reporting results:

Similar

Inconclusive

Dissimilar

C28

C29

C29

C27

C29

C27

C29

C30

C27

C28

C27

C29

C29

NIST 2779 (Macondo crude oil)

C30

C31

C32 C33

C29

C34

m/z 191

m/z 217

C28

C29

C29

C27

C29

C27

C29

C30

C27

C28

C27 C29

C29

Natural Oil Seep

m/z 217 Steranes/Diasteranes

Hopanes

C30

C31

C32

C33

C29

C34

C27

m/z 191

0

0,4

0,8

1,2

1,6

2

βαC27/βαC29

Diasteranes

Ts/Tm

H29/H30

H32S/H32R

H33S/H33R

αββC27/αββC29

Steranes

H30/H31+H32+H33+H34+H35

NIST 2779 (Macondo crude oil)

0

0,4

0,8

1,2

1,6

2

Ts/Tm

H29/H30

H32S/H32R

H33S/H33R H30/(H31+H32+H33+H34

+H35)

αββC27/αββC29

βαC27/βαC29

NIST2779 (Macondo crude oil)

Steranes

Diasteranes

SAM 1-18 collected

1-45 months after

the oil spill

"Megaplume" in the GC600 lease block:

Lat: 27° 22.466' N

Long: 90° 30.689'W

water depth: 1382m

Natural Oil Seeps (GC600, Megaplume)

Natural oils seeps in the Gulf of Mexico - 140,000 tonnes per year (range of

80,000 to 200,000 tonnes.

Natural Oil Seeps. The Gulf of Mexico.

from www.sarsea.org

0

0,4

0,8

1,2

1,6

2

Ts/Tm

H29/H30

H32S/H32R

H33S/H33R H30/(H31+H32+H33+H34+H3

5)

αββC27/αββC29

βαC27/βαC29

Steranes

Diasteranes

Megaplume Oil Seep (GC600)

0

0,4

0,8

1,2

1,6

2

Ts/Tm

H29/H30

H32S/H32R

H33S/H33R H30/(H31+H32+H33+H34+H35)

αββC27/αββC29

βαC27/βαC29

Steranes

Diasteranes

Blue crude (Anadarko Independence Hub)

Energy Fuels, 2011, 25 (1), pp 172–182

0

0,5

1

1,5

2

0

0,5

1

1,5

2

0

0,5

1

1,5

2

0

0,5

1

1,5

2

SAM-1 SAM-2 SAM-3

SAM-4 SAM-6

0

0,5

1

1,5

2

SAM-7

0

0,5

1

1,5

2

SAM-8

0

0,5

1

1,5

2

0

0,5

1

1,5

2

SAM-5

βαC27/βαC29

Diasteranes

Ts/Tm

H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

C27βα/C29βα

Diasteranes

Ts/Tm

H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

C27βα/C29βα

Diasteranes

Ts/Tm

H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm

Ts/Tm

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm

Ts/Tm

βαC27/βαC29

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

C27αββ/C29αββ

Steranes

C27αββ/C29αββ

Steranes C27αββ/C29αββ

Steranes

C27αββ/C29αββ

Steranes

C27αββ/C29αββ

Steranes

C27αββ/C29αββ

Steranes

C27αββ/C29αββ

Steranes C27αββ/C29αββ

Steranes

0

0,5

1

1,5

2

SAM-9

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm

C27αββ/C29αββ

Steranes

0

0,5

1

1,5

2

SAM-10

0

0,5

1

1,5

2

SAM-11

0

0,5

1

1,5

2

SAM-12

0

0,5

1

1,5

2

SAM-13

0

0,5

1

1,5

2

SAM-14

0

0,5

1

1,5

2

SAM-15

SAM-16

0

0,5

1

1,5

2

0

0,5

1

1,5

2

SAM-17

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm Ts/Tm

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm Ts/Tm

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm Ts/Tm

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

C27αββ/C29αββ

Steranes C27αββ/C29αββ

Steranes C27αββ/C29αββ

Steranes

C27αββ/C29αββ

Steranes C27αββ/C29αββ

Steranes

C27αββ/C29αββ

Steranes

C27αββ/C29αββ

Steranes C27αββ/C29αββ

Steranes

0

0,5

1

1,5

2

SAM-18

C27βα/C29βα

Diasteranes H29/H30

H32S/H32R

H33S/H33R H30/ΣH31‒H35

Ts/Tm

C27αββ/C29αββ

Steranes

0

0,4

0,8

1,2

1,6

2

βαC27/βαC29

Diasteranes

Ts/Tm

H29/H30

H32S/H32R

H33S/H33R

αββC27/αββC29

Steranes

H30/H31+H32+H33+H34+H35

NIST2779 (Macondo crude oil)

Blue crude (Independence Hub)

Megaplume oil seep (GC600)

SAM-10 (Pensacola Beach)

Overlaid spider diagrams

Correlation coefficients

25,500 peaks

150 < m/z < 850

850 750 650 550 450 350 250 150

m/z

(+) APPI FT-ICR MS of Macondo crude oil

Relative Abundance (% total) Carbon Number

10

15

5

0

20

DB

E

10 20 30 40

S class (M+•)

50 60

DBE=12

S

DBE=9

R

10 20 30 40 50 60

25

30 HC class (M+•)

DBE=10

S

R

R

(+) APPI FT-ICR MS of Macondo crude oil

Mass Spec

UV-lamp

(Atmospheric

Pressure)

Heated Transfer Line

Capillary

GC Column

Ionization

Chamber

Ion source

Housing

APPI-GC/MS Ion Source Diagram

Kr UV-lamp

Atmospheric Pressure PhotoIonization (APPI)

Spectral distribution of a Krypton lamp

E=10.6 eV, λ= 117 nm

E=10.0 eV, λ= 124 nm

M+• M hν

hν > IE(M)

Ionization energies, IE (eV)

IE(N2) = 15.6 eV

IE(H2O)= 12.6 eV

IE(O2) = 12.1 eV

IE(C6H6) = 9.2 eV

IE(Toluene)= 8.8 eV

IE(Naphthalene) = 8.1 eV

IE (Phenanthrene) = 7.9 eV

IE (Thiophene) = 8.9 eV

IE (DBT) = 8.0 eV

IE(Alkanes) ~ 10 eV

- ē

100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190

%

0

100 178

m/z

APPI-GC/MS. Mass Spectrum of Phenanthrene

M+•

MW 178

IE = 7.9 eV

Phenanthrene (20 pg injected)

M+• M hν

time

5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00

%

0

100 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00

%

0

100

APPI-GC/MS vs APCI-GC/MS of Phenanthrene

APCI-GC/MS

m/z 178 →m/z 152

APPI-GC/MS

m/z 178 → m/z 152

S/N 4160

S/N 32830

APPI-GC/MS of Aromatic compounds

M+•

M+•

M+•

MW 168

IE = 8.1 eV

MW 167

IE = 7.6 eV

MW 184

IE = 7.9 eV

Time 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

%

0

100

Acenaphthylene

Naphthalene

Acenaphthene

Fluorene Anthracene

Benz[a]anthracene

Fluoranthene

Pyrene

Phenanthrene

Chrysene

Benzo[b]fluoranthene

Benzo[k]fluoranthene

Dibenz[a,h]anthracene

Benzo[g,h,i]perylene

Benzo[a]pyrene

Indeno[1,2,3-cd]pyrene

Boiling T 500 °C

APPI-GC/MS of 610 PAH Calibration Mix A

610 PAH Calibration Std (x 1000 dilution)

Final concentration: 500-1000 ng/mL

APPI/GC-MS/MS of NIST2779 (Macondo crude oil)

S

Me

Me

S

APPI with Argon lamp

Ar UV-lamp

E=11.6 eV, λ= 106.7 nm

E=11.8 eV, λ= 104.8 nm

Spectral distribution

of Ar lamp

0.105 ‒ 9 µm

LiF wavelength transmission range

17α(H),21β(H)-30-hopane

as internal standard Environ. Sci. Technol. 1994, 28, 142-145

APPI(Ar)-GC/MS-MS. PAHs and PASHs ratios.

Depletion of PAHs and PASHs in Environmental

samples from AL-MS shore line.

Phen DBT C2-Phen C2-DBT C3-Phen C3-DBT Chrys

100

NIST 2779

(DWH) Jul, 2011 Feb, 2012 Jan, 2014

Depletion is relative to 17α(H),21β(H)-30-hopane (C30-Hopane)

We first utilized AP-GC/MS for a trace analysis of petroleum

biomarkers from the Macondo crude oil and environmental

samples.

We describe an Atmospheric Pressure PhotoIonization

(APPI) source that in combination with GC separation and

MS/MS analysis is an efficient method for characterization of

aromatic compounds in wellhead and spilled oil.

Analysis of petroleum compounds with APGC/MS-MS

provides a sensitive analytical tool for targeted analysis,

source identification of the oil spill, and tracking a fate of oil

spill residues.

SUMMARY

Thank you!

top related