are you leveraging dod funding?

Post on 13-Apr-2022

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Ken GoodsonProfessor & Vice Department ChairMechanical Engineering Stanford University

Are You LeveragingDoD Funding?

EXECUTIVE BRIEFINGMarch 18, 2013

goodson@stanford.edu

Visit us atnanoheat.stanford.edu

ABC News October 2011

“Hot” electronics are in the news…

NY Daily News 2010March 2012

APCmagazine March 2012

But Where’s the Money?

Electronics Thermal Challenges

portables

servers

transportation defense

energy efficiency

hotspot mitigation

heterogeneousintegration

portables

servers

transportation defense

Electronics Thermal ChallengesOur corporate sponsors

portables

servers

transportation defense

Electronics Thermal Challenges

7

DARPA Thermal Management Programs Timeline

Heat Removal by Thermo-Integrated Circuits (HERETIC)

• 1998: DARPA PM Towe• 2001: DARPA PM Radack• 2002: HERETIC ends

Micro Cryo Coolers (MCC)• 2006-2011: DARPA PM Dennis Polla

Technologies for Heat Removal in Electronics at the Device Scale (THREADS)

• 2005-2006: DARPA PM Rosker• 2009-present: DARPA PM Albrecht

ACMMACENTI

TGP

98 00 02 04 06 08 10 12

TMT

MCC

THREADS

THREADS

Thermal Management Technologies (TMT)• 2007-2010: DARPA PM Kenny• 2010-present: DARPA PM Bar-Cohen

14 16

Embedded Cooling (NJTT and ICECool)• 2011 - 2015: DARPA PM Bar-Cohen• NJTT and ICECool explore novel, disruptive,

chip/package level – embedded - thermal technologies in Si and non-Si electronics

Generation 1: Exploratory Studies ‘98-’07

Generation 2: Remote Cooling ’07-’12

Generation 3: Intrachip Cooling ’12 -

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Embedded Cooling

NJTTICECool Fun

ICECool Apps

Special Thanks to Avi Bar- Cohen and Joe Maurer, DARPA MTO

8

Thermal Management Technologies (TMT)Program Goals

Task Areas :Microtechnologies for Air-Cooled Exchangers (MACE): Active surfaces and jets for enhanced heat sinksThermal Ground Plane (TGP): Nanostructured wicks and cases for 2-phase vapor chambersNano-Thermal Interfaces (NTI): Engineered, reworkable nanostructures for low resistivity TIMsActive Cooling Modules (ACM): High COP cooler using novel TE materials and refrigeration concepts

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Special Thanks to Avi Bar-Cohen and Joe Maurer, DARPA MTO

Chemical, Bioengineering, Environmental, and Transport Systems (CBET)

9

Chemical, Biochemical, and

Biotechnology Systems

Biomedical Engineering and

EngineeringHealthcare

Transport andThermal Fluids

Phenomena

Process and Reaction Engineering

Luke Achenie

Catalysis andBiocatalysisGeorge Antos

EnvironmentalEngineering and

Sustainability

Chemical andBiological Separations

Rose Wesson

Thermal Transport Processes

Sumanta Acharya

Interfacial Processes and Thermodynamics

Bob Wellek

Particulate andMultiphase Processes

Ashok Sangani

Fluid DynamicsHenning Winter

Combustion, Fire, and Plasma SystemsRuey-Hung Chen

EnvironmentalEngineering

Debra Reinhart

Environmental Health and Safety of

NanotechnologyBarbara Karn

Energy for Sustainability

Ram Gupta

EnvironmentalSustainabilityBruce Hamilton

Deputy Division DirectorBob Wellek

Division DirectorSohi Rastegar (A)

Biotechnology, Biochemical, and

Biomass EngineeringFriedrich Srienc

Biomedical EngineeringKaiming Ye

BiophotonicsLeon Esterowitz

General & Age-Related Disabilities

Engineering Ted Conway

BiosensingEddie Chang

http://www.nsf.gov/div/index.jsp?org=CBET

Special Thanks to Sumanta Acharya, NSF

10

NSF Directorate for Engineering   | Division ofChemical, Bioengineering, Environmental, and Transport Systems (CBET)

Transport and Thermal Fluids Cluster

Thermal Transport ProcessesProgram Director – Sumanta Acharya‐ sacharya@nsf.govOn IPA from Louisiana State University

Unsolicited(Spring Window, Jan 15‐Feb 17)CAREER (July window) Targeted InitiativesEAGERWorkshopsTravel

Fundamentals Applications *

* Pictures taken from NSF reportsCBET-Thermal Transport

NSF-DOE Thermoelectrics Partnership Automotive Thermoelectric Modules

Faculty & StaffProf. Kenneth Goodson (Stanford), PIProf. George Nolas (USF)Dr. Boris Kozinsky (Bosch)Prof. Mehdi Asheghi, Stanford Mechanical EngineeringDr. Winnie Wong-Ng, NIST Functional Properties GroupDr. Yongkwan Dong, USF Department of PhysicsStudents:Michael Barako, Lewis Hom, Saniya Leblanc, Yuan Gao, Amy MarconnetLeveraged Support:Northrop Grumman, AMD/SRC, NSF Graduate Fellowships, Stanford Graduate Fellowship, Stanford DARE Fellowship, Sandia National Labs Fellowship

Bosch

Outline

So Where’s the Money?

Example: Extreme Cooling for Radar

Example: Nanostructured Packaging for Portables

Expanding the Thermal Management Toolset

goodson@stanford.eduhttp://www.nanoheat.stanford.edu

13

Liquid CoolingTeam: General ElectricChallenge:• Eliminate impact on device electrical properties due

to time varying dielectric constant of liquid

High Thermal Conductivity Diamond Teams: TriQuint, BAE, Raytheon, RFMD, NGASChallenges:• Integrate lattice-mismatched heat spreaders• Minimize thermal boundary resistance (TBR)• Match coefficient of thermal expansion of electronic material

Substrate

Drain

Gate

Source

Near-Junction Thermal Transport (NJTT)

NJTT Vision: Provide localized thermal management within 100 µm of the device substrate to increase Output Power from GaN PAs by >3x

DARPA’s Near-Junction Thermal Transport (NJTT) is an effort inside DARPA’s Thermal Management Technology (TMT) portfolio• Start Date: Fall 2011• Teams: TriQuint, BAE, Raytheon, RFMD, NGAS, GE

NJTT Approaches

Schematic of NJTT HEMT Device

Distribution Statement A, Approved For Public Release, Distribution Unlimited

Special Thanks to Avi Bar- Cohen and Joe Maurer, DARPA MTO

DiamondMicrochannel

Array

MEMS Silicon ManifoldRouting Liquid and Vapor

ICECool: HEMT Cooling Geometry

Microfluidics Cooling Trajectory

1985 1990 2000 20102005

IBM Thermalconduction module

Tuckerman & Pease microchannel demonstration

Microchannel implementation in laser diode cooling

Extensive single/two-phase flow research

DARPAPrograms

Toshiba &HitachiLaptops

Apple G5

Liquid Cooling goes primetime

100W/Cm2

300+W/Cm2

3D microfluidics

Two-phaseflow

Fluid Design

Nano SurfacesMulticore

R245FA Channel Wall Heat Transfer Coefficient (kW/cm2K)

Hotspot

Temperature

Rise (K)

DARPA: ICECool & NJTT Temperature Rise Due To GaN‐Diamond Boundary

100 m2K/GW20 40

2

NJTT TBR

AlGaN

Diamond50 nm

Diamond substrate

Stanford Collaborators / Primes under NJTT:

DARPA NJTT and theGaN-Diamond Boundary Resistance

GaN-Diamond Boundary Resistance0.1 1 m2K/GW10 100

Translated ICECoolResistance Target

AlGaN

Diamond50 nm

DARPA NJTT and theGaN-Diamond Boundary Resistance

GaN-Diamond Boundary Resistance0.1 1 m2K/GW10 100

GaN-diamond

GaN-SiC

GaN-Si

20102011,2012

10 ps TDTR

withNORTHROP GRUMMAN

with RAYTHEON

with RAYTHEON

Cho, Altman, Asheghi, Goodson, Electron Device Letters (2012)Cho, Asheghi, Francis, Ejeckam, et al., IEEE Trans. CPMT (2013)Cho, Altman, Asheghi, Goodson, et al., Physical Review B (under review)

DARPA NJTTDATA

with GROUP4RAYTHEON,

RFMD, BOEING

DARPA NJTT and theGaN-Diamond Boundary Resistance

Pre NJTT

Pre NJTT

Translated ICECoolResistance Target

ICECool TeamStanford Mechanical& Chemical Engineering

Prof. Ken GoodsonProf. Juan SantiagoProf. Mehdi AsheghiDr. Damena Agonafer bilayer physics/fabDr. Yoonjin Won MEMS/3D manifoldMichael Barako electrodepositionTom Dusseault bilayer chemistryMatthew Hoffman micro convectionKen Lopez bilayer transportViktor Schkolnikov micro/nanofluidics

DARPA MTO Dr. Avi Bar-CohenDr. Joe Maurer

Raytheon IntegratedDefense Systems

Dave Altman diamond/reliability

Dr. Ralph Korensteindiamond fab and etching

Outline

So Where’s the Money?

Example: Extreme Cooling for Radar

Example: Nanostructured Packaging for Portables

Expanding the Thermal Management Toolset

goodson@stanford.eduhttp://www.nanoheat.stanford.edu

IBM-3M Press Release

September 2011

3D NanoPackaging

LogicMemoryMemory

Chip Carrier

Materials Needs

SRC Interconnect & Packaging Summer Review 2012 ‐ Task 1966

DRAM DRAM

lnterposer

Logic

Chip Carrier

LogicMemoryMemory

Chip Carrier

TIM 1 &2 (metal alloys, particle filled organics, aligned CNT films)‐ High thermal conductivity‐Mechanical compliance

Flowable Underfill‐ Electrically insulating‐Mechanical stiffness‐ Viscosity and capillary forces‐ High thermal conductivity

3D Chip Attachment (Adhesives, Thermal compression bonding)‐ High thermal conductivity‐ Electrically insulating‐ Thermal cycling stability

Encapsulation‐ High thermal conductivity‐ Electrically insulating (on the side facing the chip)‐Mechanical compliance

Material Requirements – 3D Packging

LogicMemoryMemory

Chip Carrier

Primary ThermalInterface

2011

Removable backer

Nanofibers

Low melting temperature binder (e.g. alloys of Ga, In, Sn)

Adhesion layer

Adhesion layer wets nanotubes and promotes adhesion of binder (Pd, Pt, or Ti).

~100 nm is the typical variation in CNT height.

Hu, Fisher, Goodson, et al., J. Heat Transfer (2006)SRC Patent: Hu, Jiang, Goodson, US Patent 7,504,453, issued 2009SRC Patent: Panzer, Goodson, et al., 2009/0068387 (pending)

3D NanoPackaging

Carbon 2012

LogicMemoryMemory

Chip Carrier

Primary ThermalInterface

2010

3D NanoPackaging

LogicMemoryMemory

Chip Carrier

3D Stacking Interfaces

2011

CNT Composites

3D NanoPackaging

LogicMemoryMemory

Chip Carrier

Carbon 2012

Primary ThermalInterface

2010

3D NanoPackaging

10-3 10-2 10-1 10010-1

100

101

102

103

104

Volume Fraction

Ther

mal

Con

duct

ivity

[W m

-1 K

-1]

(Wang et al., 2007a,b)(Yu et al., 2005)(Pop et al., 2006)(Li et al., 2009)(Choi et al., 2006)(Pettes et al., 2009)(Kim et al., 2001)(Fujii et al., 2005)(Li et al., 2009)(Choi et al., 2005)(Panzer et al., 2008)(Akoshima et al., 2009)(Hu et al., 2006)(Yang et al., 2002,2004)(Tong et al., 2007)(Tong et al., 2006)(Pal et al., 2008)(Borca-Tasciuc et al., 2005)(Ivanov et al., 2006)(Xie et al., 2007)(Okamoto et al., 2011)(Jakubinek et al., 2010)(Y. Xu et al., 2006)(Cola et al., 2007)(Zhang et al., 2005)(Zhang et al., 2007)(Pettes et al., 2009)ki = 3000 W/m/K

ki = 30 W/m/K

Marconnet, Panzer, Goodson, Reviews of Modern Physics (accepted & in press 2013)

Thermal Conductivities of Individual CNTs and Aligned Arrays

Mechanical & Thermal Properties of Aligned CNT Films

750 µm

50 µm

Thermal MechanicalPump Laser Doppler 

Vibrometer (LDV)

Piezoelectric Shaker

Probe

Si substratePolysiliconOxideAl2O3FeCNT

Yoonjin Won, Matt Panzer, Amy MarconnetCarbon (2012). SRC 1640 (ended), 1966

MEMS Resonator

GOAL

Thermal Interface Materials (TIM) Properties

Thermal Resistivity (m K / W)1.00.1

Elas

tic M

odul

us (M

Pa)

Greases & Gels

Phase Change Materials

Indium/ Solders Adhesives

0.01

Nano-gels

Lifetimethermal cycling

104

103

102

101

Latest Stanford CNT Data1

1 Gao, Goodson, et al., J. Electronic Materials (2010). Won, Goodson, et al., Carbon (2011) 30

Outline

So Where’s the Money?

Example: Extreme Cooling for Radar

Example: Nanostructured Packaging for Portables

Expanding the Thermal Management Toolset

goodson@stanford.eduhttp://www.nanoheat.stanford.edu

Restrict the conduction lengthscale using nanofabrication

Restrict the conduction lengthscale using high speed optics

Modern SemiconductorThermal Management Lab

Sample Complexity

Rig

Com

plex

ity

How can we “see”thermal phonons?

Sample Complexity

Rig

Com

plex

ity

SiC / Diamond

GaN

12 ps pumpdelayed probe

Students: Cho, Bozorg-GrayeliElectron Device Letters (2012)

Students: Li, Lee, KodamaNano Letters (2012b)

Students: Yoneoka, Li, KodamaNano Letters (2012a)

Student: MarconnetACS Nano (2011)

Rowlette, Kekatpure, Brongersma, Goodson, et al., Physical Review B (2009)

Nanobridge Measurements

ALD Pt

SiO2

Si

10 nm

Free-standing

WFL

Bulk

Thermal conductivity (W/mK)

Bridge Thickness (nm)

SiO2Si3N4

nanotube Pt

Pt gate

2 μmnanotube on substrate suspended

over trench

0 0.2 0.4 0.6 0.8 1 1.20

2

4

6

8

10

12

14

16

I (A

)

V (V)

On Substrate

Suspended

L = 3 m

Cur

rent

(A

)

Voltage (V)

On substrate

Suspended

Single Wall Carbon Nanotube FETsPop, Dai, Goodson, et al., Physical Review Letters (2005), Nano Letters (2006)

Metal Interconnects down to 7.3 nm Students: Yoneoka & Lee, Nano Letters (2012, in press)

Kaeding, Skurk, and Goodson, Applied Physics Letters 65 (1994)Goodson & Ju, Annual Review of Materials Science 29 (1999)

Panzer et al., Journal of Heat Transfer (2008)

DELAYSTAGE

PUMP LASER

PROBE BEAM FOR ns PUMP AND CW PROBEPulse Duration = 10 ns. Decay Time ~ 2 s.

PROBE LASER

PHOTODETECTOR

METAL LAYERPROBE BEAM FOR ps PUMP-PROBE10 ps / 2 ns

Short-Timescale PhotothermalCharacterization of Packaging Properties

Sam

ple

film

Subs

trat

e

Thermal Characterization

400 m

Back Side Front Side

Doped Si Sensor

Al Heater

100 m

Kramer, Flynn, Fogg, Wang, Hidrovo, Prasher, Chau, Narasimhan, Goodson. “MicrochannelExperimental Structure for Measuring Temperature Fields During Convective Boiling,” ASME International Mechanical Engineering Congress & Exposition, Anaheim, CA, USA, November 13-19, 2004, IMECE2004-61936.

nanoheat.stanford.edu 36

Instrumented Microfluidic PlatformKramer, Flynn, Fogg, Wang, Hidrovo, Prasher, Chau, Narasimhan, Goodson. “MicrochannelExperimental Structure for Measuring Temperature Fields During Convective Boiling,” ASME International Mechanical Engineering Congress & Exposition, Anaheim, CA, USA, November 13-19, 2004, IMECE2004-61936.

nanoheat.stanford.edu 37

IEEE Transactions on Components and Packaging Technology (2002)

2000 2002 2004

DARPA fundingIntel

AppleAMD

Research Background

CooligyStartup(VC funding)

MicroCoolers for Computers

AcquisitionBy Emerson

2006 2008

~600W total~ 1kW/cm2

Best Paper at SEMITHERM 2001

Product Win100K+ Units

Trajectory of a Startup (Cooligy)

nanoheat.stanford.edu 38

2000 2002 2004

DARPA fundingIntel

AppleAMD

Research Background

Trajectory of a Startup (Cooligy)

Zhou et al., Proc. SEMITHERM 2004, Proc. ITHERM 2004

Si chip

Fluidinlet

Outlet Thermalattach3D

CooligyStartup(VC funding)

Product Win100K+ Units

MicroCoolers for Computers

AcquisitionBy Emerson

2006 2008

~600W total~ 1kW/cm2

LiquidCoolingChallenge

nanoheat.stanford.edu 39

Current Group Ken GoodsonJosef Miler Elah Bozorg-Grayeli Lewis HomMichael Barako Amy Marconnet Aditja Sood (MSE)Jaeho Lee Shilpi Roy (EE) Woosung ParcSri Lingamneni Yuan Gao Saniya Leblanc Yiyang Li (MSE) Dr. Takashi KodamaJungwan Cho Zijian Li Dr. Yoonjin Won

Prof. Mehdi Asheghi

Visit us atnanoheat.stanford.edu

Last-Minute VC Demo, 2001Microchannel Chip

Electroosmotic Pump

Heat Rejecter Coil & Plate

Sony VAIO Laptop Demo

Shulin Zeng with help from Evelyn Wang, Linan Jiang, and Abdullahel Bari (Stanford)

top related