astrophysical jets from accreting black holes€¦ · accreting black holes by max häberlein....

Post on 09-Jun-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Astrophysical Jets from accreting Black Holes

by Max Häberlein

OutlineI. Description of astrophysical jets

1. Sources of Jets2. Formation Mechanism3. Structure of Jets

II.  Accelaration in Jets1. Fermi Acceleration2. Diffusive Shock Acceleration

III. Deceleration Mechanisms1. Synchrotron Emission2. Inverse Compton Emission3. Other Processes

IV. Phenomena

I.Description of astrophysical jets

● Jets are a tremendous, elongated outflows of plasma● Jets can be observed in a huge spatial and energetic scale reaching 

from stellar size to galaxy size● There are many sources for jets● Our universe is full of jets

I.1 Sources of Jets

Accreting BHGRBsAccreting Supermassive BHAGNPhysical SystemObject

Accreting Nucleus or Interacting Winds

Planetary NebulaeRotating NSPulsars (?)Accreting NSLMXBsAccreting NSHMXBsAccreting StarYoung Stellar ObjectsPhysical SystemObject  

Extragalactic

Stellar

I.1 Sources of JetsActive Galaxy Nuclei (AGN)

● supermassive black hole in the core of a galaxy              

● there are 3 types:1. Seyfert galaxies2. Quasars3. Blazars

● emits ulrarelativistic jets 

M~106MSun

V escape≃V jet≃c ;~3M 87 

I.1 Sources of JetsMicroquasars

● binary star system consisting of a massive normal star and a black hole bzw neutron star 

● timescale proportional to M ­> evolution of the jets within days (quasars take years)

● jet velocity

artists view of a microquasar 

V escape≃V jet≃0.6c

I.1 Sources of JetsGamma Ray Bursts (GRB)

● flashes of gamma ray emitted by heavy stars that collapse

● lifetime ~ s● followed by a longer­lived 

afterglow● most luminous events in the 

sky● jet velocity 

V escape≃V jet≃c ;~100

I.2 Structure of Jets

I.3 Formation Mechanism

● not known exactly● there mainly two different 

theories● most popular:

the magnetic field lines spin with the BH. As you go to outer regions they get faster than light. This can be handled by a non­stationary model where field lines can be twisted ­> jet with extreme energy

I.4 Jet Collimination 

II. Acceleration in Jets

II.1 Fermi Acceleration

● relativistic particle is reflected by a moving gas cloud● transformations lead to energy gain

EE≈2

ucu2

c2

II.2 Diffusive shock acceleration

● In a uniform magnetic field a freely moving charged particle follows a helical trajectory. The particles pitch is defined as:

so its momenta are

 

=p⋅BpB

ppara=p

pperp=1−20.5p

II.2 Diffusive shock acceleration

● What happens if a small static irregularity is imposed on the uniform field?

● We are using some simplifications in the following slides1. shock normal is parallel to B­field2. shock is planar3. we are only considering staionary solutions4. individual particle velocity v is much greater than U, the velocity of the up­ and downstream.

II.2 Diffusive shock acceleration

● Momentum is contained because the electric field is identically zero● the pitch changes● describable in phase space by a diffusion equation, which is, considered 

the scattering is sufficiently stochastic, isotropic

∂ f∂t=∇ ∇ f

II.2 Diffusive shock acceleration

● static irregularities are unrealistic● There are two types of scattering centre motion

1.  large­scale motions of the background which advects the scattering centres2.  motion of the individual centres relative to the background (Fermi II)

∂ f∂t= ∇k ∇ f

∂ f∂ t U⋅∇ f= ∇k ∇ f

∂∂tf x ,p=∂ f

∂x∂ x∂t

U⋅∇ f=U⋅∂ f∂ x

II.2 Diffusive shock acceleration

● Liuovilles theorem: phase space density has to be constant along any trajectory

● for every convergence in position space you will need a divergence in momentum space

∂ f∂t= ∇k ∇ f

∂ f∂ t U⋅∇ f= ∇k ∇ f

13∇⋅Up

∂ f∂p

1 1

II.2 Diffusive shock acceleration

● motion of the individual centres relative to the background (Fermi II)

∂ f∂t= ∇k ∇ f

∂ f∂ t U⋅∇ f= ∇k ∇ f

13∇⋅Up

∂ f∂p1p2

∂∂pp2D

∂ f∂p

1 1 2

II.2 Diffusive shock acceleration

● U(x) = U1 for x < 0U(x) = U2 for x > 0

as a steady solution except for x = 0

⇒U ∂ f∂ x=∂

∂xxx

∂ f∂x

II.2 Diffusive shock acceleration

● boundary conditions:1.2.  3.  the momentum space distribution has to be continuous4.  phase space density is invariant under Lorentz­transformations

x−∞⇒ f x ,p f 1p

x∞⇒∣f x ,p ∞∣

II.2 Diffusive shock acceleration

● 1+2 gives

{ f 1 pg1p exp∫0x Udx '

g2p = f 2 pf x ,p~

II.2 Diffusive shock acceleration

● The anisotropic phase space densitycan be expanded:

where 

F x ,p ,

F x ,p ,~ f x ,p−∂ f x ,p∂x

=v3

II.2 Diffusive shock acceleration

● Then 3+4 lead to 

{F x ,p ,~f 1g1−

3Uvg1

f 2

x=0−

x=0

II.2 Diffusive shock acceleration

● it follows with

and hence with

● if a “softer” power law is incoming, a power law with slope a will come out

r−1p∂ f 2∂p=3r f 1− f 2

r=U1

U2

a= 3rr−1

f 2=ap−a∫0

pp 'a−1 f 1p 'dp'

II.2 Diffusive shock acceleration

● From shock theorie it follows for the compression ratio

that means for and  as for a non­relativistic plasma

and for    in a relativistic plasma

r= 1−1M−2

M∞ =53

r=4⇒a=4⇒N x =∫ 14p '2

f x ,p'dp '~−2

=43

r=7⇒a=3.5⇒N x=∫ 14p'2

f x ,p'dp '~−1.5

II.2 Diffusive shock acceleration

● Problem: One doesnt know how the acceleration works on physical grounds

● Answer: Microscopic derivation

II.2 Diffusive shock acceleration● What is the probability for a particle of escaping downstream 

towards     ? 

● What is the probability of crossing the shock front?

probability of not returning

Nesc=nU2

Nuptodown=∫0

1vn d

2=n2v2

nU2

nv /4=4U2

v

II.2 Diffusive shock acceleration

● What is the average momentum gain when crossing the shock front?

pshockfront=p 1U1

v pdownstream=p 1

U1−U2

v

⟨p⟩=p∫0

1[U1−U2

v]2d=

23pU1−U2

v

II.2 Diffusive shock acceleration

● In reality p is a random variable, but for v >> U and initial momentum identically  

● The probability of crossing the shock front n times is

pn~i=1n p0[1

43

U1−U2

vi]⇒ ln

pnp0~

43U1−U2 i=1

n 1v i

p0

Pn~i=1n1−

4U2

vi⇒ lnPn~−4U2i=1

n 1vi=−3

U2

U1−U2

lnpnp0

⇒Pn=pnp0

−3U2/ U1−U2

=pnp0

−3 /r−1

II.2 Diffusive shock acceleration

● With

{

 

N x.p=∫p∞

4p'2 f x ,p 'dp'

N −∞ , x =

⇒N ∞ , x=U1

U2

N0 pp0

0 pp0N0 pp0

II.2 Diffusive shock acceleration

● it follows

N2 pn=PnN p0=U1

U2

pnp0

−3/ r−1

f 2 p=−1

4p2∂N2

∂p=N0

4

3U1

U1−U2

pp0−3r / r−1

=N0

4app0−a

II.2 Diffusive shock acceleration

● We again obtain a power law, but unlike other Fermi processes the slope is fixed

● to verify the slope a, we can look at the synchrotron emission­ if the initial spectum is a power law, the synchrotron spectrum will be a power law with slope

=a−12=0.5

II.2 Diffusive shock acceleration

III. Deceleration Mechanisms

● Synchrotron Emission ● Inverse Compton Scattering● proton – proton collision● Bremstrahlung

X X '

X X '

pp'

III.1 Synchrotron Emission

● particles gyrating in the plasma field can emit photons● Synchrotron Loss Time: 

● Average Acceleration Time:

sync=6mp ,e

3 c

Tp ,eme2B2

acc=803cU2

r gb−1

r g,maxr g

−1

III.1 Synchrotron Emission

● With acc=sync

⇒max⇒ f max=3⋅10143b

U2

c2Hz

III.2 Inverse Compton Scattering● particles interact with the photonic background● similar as for the sychrotron emission it follows considering both 

effects:

where a is the ratio of photonic to magnetic energy density

f max=3⋅10143b

U2

c2 f aHz

III.2 Inverse Compton Scattering

III.3 Other Processes

● 1.  proton – proton collision lead to a very fast  deceleration2.  the probability only gets dominant if the jet for example crosses a gas cloud

● particles emit bremsstrahlung when they cross electric fields  

IV Conclusion

● My aim was 1. to present a short overview about the theoretical methods used in jet physics and especially to explain fermi acceleration in a more simple way2. to show where the 2 in the power law spectrum comes from3. to show that there are many things still to be done regarding jets

● My aim for myself was to make a talk about theory interesting, which I found is a hard thing to do and probably will not have worked.. this time 

II.2 Diffusive shock acceleration

● 3+4 with  gives pp'=p 1−Uv

f 1g1= f 2

U1p∂

∂p f 1g13U1g1=U2p

∂pf 2

top related