astrophysical magnetism axel brandenburg (nordita, stockholm)

Post on 05-Jan-2016

220 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Astrophysical MagnetismAstrophysical Magnetism

Axel BrandenburgAxel Brandenburg

((Nordita, StockholmNordita, Stockholm))

2

Similar physics on different scalesSimilar physics on different scales

Galaxies: radius 10 kpc (=3x10Galaxies: radius 10 kpc (=3x102020 m), 2-20 m), 2-20 GGGalaxy cluster: radius 1 Mpc (=3x10Galaxy cluster: radius 1 Mpc (=3x102222 m), 0.1-1 m), 0.1-1 GG

Sun: radius 700 Mm (=7x10Sun: radius 700 Mm (=7x1088 m), 20-2000 G m), 20-2000 GEarth: radius 60 Mm (=6x10Earth: radius 60 Mm (=6x1088 m), 0.5 G m), 0.5 G

3

Importance of solar interiorImportance of solar interior

4

Large scale coherenceLarge scale coherence

Active regions, bi-polaritysystematic east-west orientationopposite in the south

5

Solar cycleSolar cycle• Longitudinally averaged radial field

• Spatio-temporal coherence– 22 yr cycle, equatorward migration

Poleward branch orpoleward drift?

butterfly diagram

6

7

Karlsruhe dynamo experiment (1999) Karlsruhe dynamo experiment (1999)

8

Cadarache experiment (2007)Cadarache experiment (2007)

9

Dynamos: kinetic Dynamos: kinetic magnetic energy magnetic energy

thermalenergy

kineticenergy

magneticenergy

Nuclearfusion

surfaceradiation

viscousheat

Ohmicheat

10

Faraday dynamoFaraday dynamo

But we want to make it self-exciting, without wires,But we want to make it self-exciting, without wires,and without producing a short circuit!and without producing a short circuit!

11

MHD equations (i)MHD equations (i)

BuEJ

002/ ,

1

0 ,

EJBE

BEB

tc

t

/ JBuB

t

12

MHD equations (ii)MHD equations (ii)

uQBJu

AJBuA

21

2

D

D ,

D

D

,

sct

hh

t

ctt

sThp 1

ut

chD

lnD ,ln2

s

Momentum and continuity eqns (usual form)

13

Vector potentialVector potential

• B=curlA, advantage: divB=0• J=curlB=curl(curlA) =curl2A• Not a disadvantage: consider Alfven waves

z

uB

t

b

z

bB

t

u

00 and ,

uBt

a

z

aB

t

u02

2

0 and ,

B-formulation

A-formulation 2nd der onceis better than1st der twice!

14

Comparison of A and B methodsComparison of A and B methods

2

2

02

2

2

2

0 and ,z

auB

t

a

z

u

z

aB

t

u

2

2

02

2

0 and ,z

b

z

uB

t

b

z

u

z

bB

t

u

15

Kolmogorov spectrumKolmogorov spectrumnonlinearitynonlinearity 2

1212 2coscos kxkx

kk 2

constant flux constant flux cmcm22/s/s33

kk

EE((kk)) 2

21 udkkE cmcm33/s/s22

baK kCkE

123 :cm a

a32 :s aa=2/3, =2/3, bb= = 5/35/3

16

Hyperviscous, Smagorinsky, normalHyperviscous, Smagorinsky, normal

Inertial range unaffected by artificial diffusionHau

gen

& B

rand

enbu

rg (

PR

E, a

stro

-ph/

0402

301)

height of bottleneck increased

onset of bottleneck at same position

17

Small-scale vs large-scale dynamosSmall-scale vs large-scale dynamos

B-scale larger than U-scale

B-scale smaller than U-scale

Wavenumber=1/scale

energy

injectionscale

18

Small scale and large scale dynamosSmall scale and large scale dynamosnon-helically forced turbulence helically forced turbulence

Scale separation :==There is room on scalesLarger than the eddy scale

19

Dynamo in kinematic stage –Dynamo in kinematic stage –no large-scale field?no large-scale field?

Fully helical turbulence, periodic box, resistive time scale!

20

-effect dynamos (large scale)-effect dynamos (large scale)

Differential rotation(prehelioseism: faster inside)

Cyclonic convection;Buoyant flux tubes

Equatorwardmigration

New loop

-effect?need meridional circulation

21

Revised theory for Revised theory for -effect-effect

1st aspect: replace triple correlation by quadradatic

2nd aspect: do not neglect triple correlation

3rd aspect: calculate

rather than

ub

buu

uubbuuu Similar in spirit to tau approx in EDQNM

bubuBubUb

neglected!not t

bubuε t/

'd)'( ttbuε

(Heisenberg 1948, Vainshtein & Kitchatinov 1983, Kleeorin & Rogachevskii 1990, Blackman & Field 2002, Rädler, Kleeorin, & Rogachevskii 2003)

22

Implications of tau approximationImplications of tau approximation

1. MTA does not a priori break down at large Rm.

(Strong fluctuations of b are possible!)

2. Extra time derivative of emf

hyperbolic eqn, oscillatory behavior possible!

4. is not correlation time, but relaxation time

εε

JB

~

~t

new

t

εε JB

231

31

31

~ ,

~

~ ,~

u

bjuω

with

23

Kinetic and magnetic contributionsKinetic and magnetic contributions

lKillkljijkii BuBu ~

, uBubu

lkjijkKil uu ,

~ uω ikjijkKii uu ,

~

Kij

Kij ~~

31

lMilklilijkii BbbB ~

, bbBbu

likijkMil bb ,

~ bj ijkijkMii bb ,

~

Mij

Mij ~~

31

bj

24

22-effect calculation-effect calculation

BB

2

2

2

ii

ii

ii

kkk

kkk

kkk

Txy

xTz

yzT

BBkB

2i ki T

BBB 2 Tt te ii xkBB

kkT 2

Im

25

Connection with Connection with effect: effect: writhe with writhe with internalinternal twist as by-product twist as by-product

clockwise tilt(right handed)

left handedinternal twist

031 / bjuω both for thermal/magnetic

buoyancy

JBB

T dt

d2

T

BBJ

effect produces

helical field

26

Paradigm shiftsParadigm shiftsi) 1980: magnetic buoyancy (Spiegel & Weiss)

overshoot layer dynamos

ii) 1985: helioseismology: d/dr > 0 dynamo dilema, flux transport dynamos

iii) 1992: catastrophic -quenching Rm-1 (Vainshtein & Cattaneo) Parker’s interface dynamo Backcock-Leighton mechanism

April 20, 2023

(i) Is magnetic buoyancy a problem?(i) Is magnetic buoyancy a problem?

Stratified dynamo simulation in 1990Expected strong buoyancy losses,but no: downward pumping Tobias et al. (2001)

April 20, 2023

(ii) Before helioseismology(ii) Before helioseismology• Angular velocity (at 4o latitude):

– very young spots: 473 nHz– oldest spots: 462 nHz– Surface plasma: 452 nHz

• Conclusion back then:– Sun spins faster in deaper convection zone– Solar dynamo works with d/dr<0: equatorward migr

Yoshimura (1975) Thompson et al. (1975)Brandenburg et al. (1992)

29

Near-surface shear layer:Near-surface shear layer:spots rooted at spots rooted at r/Rr/R=0.95?=0.95?

Benevolenskaya, Hoeksema, Kosovichev, Scherrer (1999) Pulkkinen & Tuominen (1998)

nHz 473/360024360

/7.14

ds

do

o

=AZ=(180/) (1.5x107) (210-8)

=360 x 0.15 = 54 degrees!

30

(iii) Problems with mean-field theory?(iii) Problems with mean-field theory?

• Catastrophic quenching?– ~ Rm

-1, t ~ Rm-1

– Field strength vanishingly small?

• Something wrong with simulations– so let’s ignore the problem

• Possible reasons:– Suppression of lagrangian chaos?– Suffocation from small scale magnetic helicity?

31

Revisit paradigm shiftsRevisit paradigm shiftsi) 1980: magnetic buoyancy

counteracted by pumping

ii) 1985: helioseismology: d/dr > 0 negative gradient in near-surface shear layer

iii) 1992: catastrophic -quenching overcome by helicity fluxes in the Sun: by coronal mass ejections

32

Upcoming dynamo effort in Upcoming dynamo effort in StockholmStockholm

Soon hiring:Soon hiring:• 4 students4 students• 4 post-docs4 post-docs• 1 assistant professor1 assistant professor• Long-term visitorsLong-term visitors

April 20, 2023

Pencil CodePencil Code

• Started in Sept. 2001 with Wolfgang Dobler

• High order (6th order in space, 3rd order in time)

• Cache & memory efficient

• MPI, can run PacxMPI (across countries!)

• Maintained/developed by ~20 people (SVN)

• Automatic validation (over night or any time)

• Max resolution so far 10243 , 256 procs

• Isotropic turbulence– MHD, passive scl, CR

• Stratified layers– Convection, radiation

• Shearing box– MRI, dust, interstellar– Self-gravity

• Sphere embedded in box– Fully convective stars– geodynamo

• Other applications– Homochirality– Spherical coordinates

34

Increase in # of auto testsIncrease in # of auto tests

35

Evolution of code sizeEvolution of code size

36

Simulations showing large-scale fieldsSimulations showing large-scale fieldsHelical turbulence (By) Helical shear flow turb.

Convection with shear Magneto-rotational Inst.

1t

21t

kc

k

Käp

yla

et a

l (20

08)

37

Convection with shear and Convection with shear and

Käpylä et al (2008)

with rotation without rotation

38

How do they work?How do they work?

Interlocked poloidal and toroidal fields

39

Magnetic helicityMagnetic helicity V

VH d BA

1

2

212 H

11

d d1

SL

H SBA

2 d2

S

SA

1S

1

AB

40

How do they work?How do they work?

effect

Produce interlockedfield at large scale(of positive helicity, say)

… by generating interlockedsmall-scale field of

opposite helicity

41

Effect of helicityEffect of helicityB

rand

enbu

rg (

2005

, ApJ

)

1046 Mx2/cycle

April 20, 2023 42

ConclusionConclusion• 11 yr cycle• Dyamo (SS vs LS)• Problems

– -quenching– slow saturation

• Solution– Modern -effect theory– j.b contribution– Magnetic helicity fluxes

• Location of dynamo– Distrubtion, shaped by– near-surface shear

1046 Mx2/cycle

top related