automatic shape optimisation in hydraulic machinery using...

Post on 18-Mar-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 1 | 27

Automatic shape optimisation in hydraulic

machinery using OpenFOAM®

5th OpenFOAM® Workshop, 21-24 June 2010, Gothenburg

Jakob Simader

Andreas Ruopp

Ralf Eisinger

Albert Ruprecht

Institut of Fluid Mechanics and Hydraulic Machinery

Universität Stuttgart

www.ihs.uni-stuttgart.de

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg 2 | 25

Contents

1. Motivation

2. Workflow:

1. Parameter check

2. Grid generation and Grid conversion

3. CFD and simulated boundaries

4. convergence check and evaluation

3. Optimisation results

4. Conclusions and outlook

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Motivation

• Automatic shape optimisation

reducing calculation time

• Robust calculation shemes

• Low costs

• Low manpower

• Multi design criterias (part load,

BEP, overload)

• Multi parameter setup

3 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Sequential workflow

Perl inte

rface

Optimiser

Parameter check

CFD simulation

Objective

function

optimised design

“Setup” configuration

design

parameters

Convergence check

Sequential workflow

Grid generation

Grid conversion

4 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Advantages:

• Massive parallel cluster nodes

available

• Fast design studies possible

• Calculation of many designs at the

same time

• No license costs using

OpenFOAM®

• Available node number on cluster

is the only limitation

Parameter check

Grid generation

Grid conversion

CFD simulation

Convergence check

Level 1

Level 2

Parallel workflow

Multilevel parallel run on cluster nodes

5 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Optimisation:

• Genetic algorithm (recombination)

• Simplex algorithm

• Stochastic algorithm

CFD and grid:

• OpenFOAM®

• Grid size between 80.000 and 100.000 nodes

• SST model

Used quality function:

• pressure recovery factor

Optimisation and CFD

2

in

inout

v

pp2c

p

6 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

First check

Second check

Parameter check

2 checks:

• Limited depth

• No intersection of cross sections:

– Determinate of the four bounding

vectors of each tube segment

must have same sign

Parameter check

)dc(

)cb()ba(

detsign

detsigndetsign

a

b

c

d

7 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Grid generation

Definition of cross sections

• Width

• Height

• Radius

Grid generation

Grid conversion

Width

Height

Radius

8 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Grid generation

Definition of position of cross sections

• Position of middle point of cut (x,y)

• Angle of normal vector

6 parameters for one cut

In total 48 parameters for 8

cross sections

Grid generator build for in house

CFD-code

converter needed for OpenFOAM®

data files

Grid generation

Grid conversion

9 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Inlet velocities

Draft tube flow high sensitive to

inlet flow field

CFD simulation

• Measured velocity profiles for francis turbine:

– part load

– BEP

– full load

• One run for uniform velocity distribution (c = 6 m/s) without any circumferential component

10 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Convergence check

Criteria:

• Number of max. Iterations

• cp(i = max) 1

• cp(i) cp(i+1)

• ĉp cp(i = max)

check for pressure quantities

therefore Runtime output of:

- Abs. mass flow ave. of p

- Abs. mass flow ave. of ptot

Ensuring a good convergence behaviour

Convergence check

11 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Optimisation setup

• 48 Parameter setup

• Parallel setup with up to 30 individuals

• CFD-Solver OpenFOAM®

• Calculation time approximately 24 hours

• Single design criteria:

– uniform velocity

– Part load, BEP and over load (8 segments)

– Detailed elbow discretisation (12 segments, but still 48 Parameter)

• Multi design criteria:

– Averaged cp of part load, optimum and over load (1/3 each)

– Weighted cp of part load, optimum and overload

(part load: 30%, optimum: 50%, over load: 20%

12 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Optimisation setup

• 48 Parameter setup

• Parallel setup with up to 30 individuals

• CFD-Solver OpenFOAM®

• Calculation time approximately 24 hours

• Single design criteria:

– uniform velocity

– Part load, BEP and over load (8 segments)

– Detailed elbow discretisation (12 segments, but still 48 Parameter)

• Multi design criteria:

– Averaged cp of part load, optimum and over load (1/3 each)

– Weighted cp of part load, optimum and overload

(part load: 30%, optimum: 50%, over load: 20%

13 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Single criteria results: uniform velocity

cp = 0.781

Optimised geometry:

• Area distribution fits common conventions

• smooth tube geometry, except bottom shape

→ detailed view of bottom shape

14 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Single criteria results: uniform velocity

cp = 0.736

Hand smoothed geometry:

• Smaller pressure recovery

• The contraction after the elbow has positive

effect on the secondary flow phenomena

15 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Single criteria results: uniform velocity

Cutting plane

Secondary flow fills

up separated region

16 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Single criteria results: optimum

cp = 0. 870

Optimised geometry:

• Similar shape to the one with uniform velocity

• Also: smooth tube geometry, except bottom

shape

17 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Single criteria results: optimum

• Evolution of cp along optimisation run

18 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Single criteria results: optimum detailed elbow

cp = 0. 892

Optimised geometry:

• smooth tube geometry, except bottom shape

→ “doing the right thing might be a bit wrong,

better than the wrong thing right”

19 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Single criteria results: optimum detailed elbow

20 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Single criteria results: comparison

cp (over load) = 0.757

cp (optimum) = 0.870

cp (part load) = 0.300

Optimised geometries:

• Very smooth shape for part load conditions

• Different shape for different inlet flow

→ optimising an averaged pressure recovery

cp (over load) = 0.757

cp (optimum) = 0.870

cp (part load) = 0.300

21 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Optimisation setup

• 48 Parameter setup

• Parallel setup with up to 30 individuals

• CFD-Solver OpenFOAM®

• Calculation time approximately 24 hours

• Single design criteria:

– uniform velocity

– Part load, BEP and over load (8 segments)

– Detailed elbow discretisation (12 segments, but still 48 Parameter)

• Multi design criteria:

– Averaged cp of part load, optimum and over load (1/3 each)

– Weighted cp of part load, optimum and overload

(part load: 30%, optimum: 50%, over load: 20%

22 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

weightedaveraged

cp (averaged) = 0.607

cp (over load) = 0.730

cp (optimum) = 0.850

cp (part load) = 0.240

cp (weighted) = 0.696

cp (over load) = 0.735

cp (optimum) = 0.855

cp (part load) = 0.241

23 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Optimisation effort summary

Single Weighted

Ttotal (<24 h) (<24h)

No.indiv. 2700 1902

No.of died indiv. 871 510

No.of calc. Indiv. 1829 1392

No.of best Indiv. 233 112

No.of nodes per Indiv 1 1

No.of cpu„s per node 4 4

• All runs on 24 nodes on xeon cluster / 2xQuadcore 2.8Ghz

• Time consumption not tuned yet

24 | 25

Universität Stuttgart

Institute of Fluid Mechanics andHydraulic Machinery

23.06.2010 5th OpenFOAM® Workshop, 21-25 June 2010, Gothenburg

Conclusions

• Introduced optimisation scheme is applicable for high numbers

of parameters

• Fast calculation time due to parallel setup

• Multi design criteria optimisation

Outlook• „Multi-generation‟ optimiser

• Faster parallel „perl‟ algorithm to reduce calculation time

25 | 25

top related