bayesian anova

Post on 10-May-2015

695 Views

Category:

Technology

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Or how to learn what you know all over again but different

History of ANOVAThe Math of ANOVABayes TheoremAnatomy of Baysian ANOVACompare and Contrast!Rumble in the Jungle: Advantages of

BayesReal World 13: Genotype and Frequency

Dependence in an invasive grass.

Ronald Fisher, 1956

John Bennet Lawes:Founder Rothamsted Experimental station 1843

Harvesting of Broadbalk field, the source of the data for Fisher’s 1921 paper on variation in crop yields.

Excerpt from Studies in Crop Variation: An examination of the yield of dressed grain from Broadbalk Journal of Agriculture Science , 11 107-135, 1921

Cover page from his 1925 book formalizing ANOVA methods

Table from chapter 8 of Statistical Methods for Research Workers,On the analysis of randomize block designs.

History of ANOVAThe Math of ANOVABayes TheoremAnatomy of Baysian ANOVACompare and Contrast!Rumble in the Jungle: Advantages of

BayesReal World 13: Genotype and Frequency

Dependence in an invasive grass.

upswithin gropsamong groutotal

n

j

__

iij

a

i

n

j

__

i

a

i

n

j

__

ij

a

i

SS SS SS

)Y(Y)Y(Y)Y(Y 2

11

2

11

2

11

Adapted from Gotelli and Ellison 2004

upswithin gropsamong groutotal

n

j

__

iij

a

i

n

j

__

i

a

i

n

j

__

ij

a

i

SS SS SS

)Y(Y)Y(Y)Y(Y 2

11

2

11

2

11

Source

d.f. Sum of squares

Mean square

F-ratio p-value

Among groups

a-1 Determined from F-distribution with (a-1),a(n-1) d.f.

Within groups

a(n-1)

Total an-12

11

)Y(Yn

j

__

ij

a

i

2

11

)Y(Yn

j

__

iij

a

i

2

11

)Y(Yn

j

__

i

a

i

)(a-

SS psamong grou

1

)a(n-

SS upswithin gro

1

1an-

SStotal

upswithin gro

psamong grou

MS

MS

Adapted from Gotelli and Ellison 2004

Adapted from Gotelli and Ellison 2004

upswithin gropsamong groutotal

n

j

__

iij

a

i

n

j

__

i

a

i

n

j

__

ij

a

i

SS SS SS

)Y(Y)Y(Y)Y(Y 2

11

2

11

2

11

Our statistical model

ijiijy 1

History of ANOVAThe Math of ANOVABayes TheoremAnatomy of Baysian ANOVACompare and Contrast!Rumble in the Jungle: Advantages of

BayesReal World 13: Genotype and Frequency

Dependence in an invasive grass.

Rev. Thomas Bayes 1702-1761

)(

)|()(

)(

),()|(

yp

ypp

yp

ypyp

)|()()|( yppyp

Prior Likelihood

Adapted from Clark 2007

10321 ....,, yyyy 10321 ....,, yyyy

10321 ....,,

,

10321 ....,,

10321 ....,, yyyy

Common Risk Independent Risk Hierarchical

Adapted from Clark 2007

History of ANOVAThe Math of ANOVABayes TheoremAnatomy of Baysian ANOVACompare and Contrast!Rumble in the Jungle: Advantages of

BayesReal World 13: Genotype and Frequency

Dependence in an invasive grass.

or

ijiijy 1

),(~ 21 yiij Ny

),0(~ 21 Ni

2)()(

1

)(1

1 mj

mj

J

jmm

m

Js

),0(~ 2 N

From Qian and Shen 2007

History of ANOVAThe Math of ANOVABayes TheoremAnatomy of Baysian ANOVACompare and Contrast!Rumble in the Jungle: Advantages of

BayesReal World 13: Genotype and Frequency

Dependence in an invasive grass.

Source d.f. SS MS F-ratio

p-value

Treatment

3 3.10

1.03 6.73 0.0068

Location 3 1.01

0.34 2.19 0.101

Treatment* Location

9 1.24

.14 .88 0.5543

Residuals 49 7.52

0.16

Source d.f. SS MS F-ratio

p-value

Treatment

3 3.10

1.03 6.73 0.0068

Location 3 1.01

0.34 2.19 0.101

Treatment* Location

9 1.24

.14 .88 0.5543

Residuals 49 7.52

0.16

Lines represent 95% credible intervals for Bayesian estimates and confidence intervals for frequentist.

Comparison Control v. Foam

Control v. Haliclona

Control v. Tedania

Foam v. Haliclona

Foam v. Tedania

Orthogonal contrasts p-value

0.0397 0.002 0.0015 0.258 0.0521

Tukey’s HSD p-value

0.16 0.01 0.00001 0.66 0.21

Bonferroni adjusted pairwise t-test p-value

0.238 0.012 0.0009 1.00 0.313

Bayesian credible interval around the difference between 2 means

(-0.68 , 0.03)

(-0.84 , -0.12)

(-0.91 , -0.18) (-0.51 , 0.21)

(-0.58, 0.14)

History of ANOVAThe Math of ANOVABayes TheoremAnatomy of Baysian ANOVACompare and Contrast!Rumble in the Jungle: Advantages of

BayesReal World 13: Genotype and Frequency

Dependence in an invasive grass.

• Avoids the muddled idea of fixed vs. random effects, treating all effects as random.

• Provides estimates of effects as well as variance components with corresponding uncertainty.

• Allows more flexibility in model construction (e.g. GLM’s instead of just normal models)

• Issues such as normality, unbalanced designs, or missing values are easily handled in this framework.

• You just don’t believe in p-values (uniformative, etc, see Anderson et al 2000)

What’s up now Fisher,

Neyman-Pearson null hypothesis testing!?

Source d.f. SS MS F-ratio

p-value

Plot 2 209 154 8.9 0.0002

Genotype 6 63 10 0.6 0.72

Plot* Genotype

12 227 19 1.1 0.36

Year 1 113 113 6.5 0.012

Residuals 106 1790

17

Source d.f. SS MS F-ratio

p-value

Plot 2 209 154 8.9 0.0002

Genotype 6 63 10 0.6 0.72

Plot* Genotype

12 227 19 1.1 0.36

Year 1 113 113 6.5 0.012

Residuals 106 1790

17

Source d.f. SS MS F-ratio

p-value

Plot 2 209 154 8.9 0.0002

Genotype 6 63 10 0.6 0.72

Plot* Genotype

12 227 19 1.1 0.36

Year 1 113 113 6.5 0.012

Residuals 106 1790

17

model { for( i in 1:n){ y[i] ~ dnorm(y.mu[i],tau.y) y.mu[i] <- mu + delta[plottype[i]] + gamma[studyyear[i]] + nu[gens[i]] + interact[plottype[i],gens[i]] } mu ~ dnorm(0,.0001) tau.y <- pow(sigma.y,-2) sigma.y ~ dunif(0,100) mu.adj <- mu + mean(delta[])+mean(gamma[]) +mean(nu[])+mean(interact[,])

#compute finite population standard deviation for(i in 1:n){ e.y[i] <- y[i] - y.mu[i]} s.y <- sd(e.y[])

xi.d ~dnorm(0,tau.d.xi) tau.d.xi <- pow(prior.scale.d,-2)

for(k in 1:n.plottype){

delta[k] ~ dnorm(mu.d,tau.delta) d.adj[k] <- delta[k] - mean(delta[]) for(z in 1:n.gens) { interact[k,z]~dnorm(mu.inter,tau.inter) } }

Nick Gotelli

Robin Collins

top related