beam propagation method - empossible · the beam propagation method (bpm) is widely used in...

Post on 21-Oct-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • Beam Propagation Method

    GEOMETRY OF THE BEAM PROPAGATION METHOD

    THE UNIVERSITY OF TEXAS AT EL PASO

    Pioneering 21st Century

    Electromagnetics and Photonics

    The beam propagation method (BPM) is widely used in photonics and nonlinear optics. It propagates a beam through nonhomogeneous media and achieves its efficiency by handling the

    propagation problem one grid slice at a time. The basis formulation assumes one-way propagation under the paraxial approximation. Bi-directional and wide-angle formulations exist.

    BPM is primarily a “forward” propagating algorithm

    where the dominant direction of propagation is

    longitudinal.

    The grid is computed and interpreted as it is in FDFD.

    The algorithm and implementation looks more like the

    method of lines.

    BENEFITS

    • Highly efficient method

    • Can easily incorporate nonlinear materials properties. This is very unique

    for a frequency-domain method.

    • Simple to formulate and implement

    FFT-BPM is simpler to formulate and implement.

    BPM is commonly used to model nonlinear optical devices and waveguide

    circuits.

    DRAWBACKS

    Not a rigorous method

    Small angle approximation

    Ignores backward reflections

    FFT-BPM is slower, less stable, and less versatile than FD-BPM

    FORMULATION OF THE BASIC BPM ALGORITHM

    Step 1: Start with Maxwell’s equations.

    yzxx x

    x zyy y

    y xzz z

    EEH

    y z

    E EH

    z x

    E EH

    x y

    yzxx x

    x zyy y

    y xzz z

    HHE

    y z

    H HE

    z x

    H HE

    x y

    0

    0

    0

    x k x

    y k y

    z k z

    y xxx xx yy yy zz zz x y

    x y

    y xxx xx yy yy zz zz x y

    x y

    s ss s

    s s

    s ss s

    s s

    Step 2: Reduce problem to two dimensions. 0y

    y

    xx x

    x zyy y

    y

    zz z

    EH

    z

    E EH

    z x

    EH

    x

    y

    xx x

    x zyy y

    y

    zz z

    HE

    z

    H HE

    z x

    HE

    x

    x zyy y

    y

    xx x

    y

    zz z

    H HE

    z x

    EH

    z

    EH

    x

    x zyy y

    y

    xx x

    y

    zz z

    E EH

    z x

    HE

    z

    HE

    x

    E-Mode H-Mode

    Step 3: Assume a solution using the slowly varying envelope approximation.

    eff

    eff

    , ,

    , ,

    jn z

    jn z

    E x z x z e

    H x z x z e

    eff

    eff

    x zx yy y

    y

    y xx x

    y

    zz z

    jnz x

    jnz

    x

    eff

    eff

    x zx yy y

    y

    y xx x

    y

    zz z

    jnz x

    jnz

    x

    E-Mode H-Mode

    Step 4: Write equations in matrix form.

    eff

    eff

    hxx x z yy y

    y

    y xx x

    e

    x y zz z

    jnz

    jnz

    hh D h ε e

    ee μ h

    D e μ h

    eff

    eff

    exx x z yy y

    y

    y xx x

    h

    x y zz z

    jnz

    jnz

    ee D e μ h

    hh ε e

    D h ε e

    E-Mode H-Mode

    Step 5: Derive matrix wave equation with small angle approximation.

    2

    2

    y

    z

    e 1 2eff eff2

    y H E

    xx x zz x y xx yy yj n nz

    eμ D μ D e μ ε I e 0E-Mode

    H-Mode 2

    2

    y

    z

    h 1 2eff eff2

    y e h

    xx x zz x y xx yy yj n nz

    hε D ε D h ε μ h 0

    Step 6: Approximate the z-derivative

    1 2effeff2

    y H E

    xx x zz x xx yy y

    jn

    z n

    eμ D μ D μ ε I e

    1 2effeff2

    y e h

    xx x zz x xx yy y

    jn

    z n

    hε D ε D ε μ h

    E-Mode

    H-Mode

    1 1 1

    eff2 2

    i i i i i i

    y y e y e yj

    z n

    e e A e A e

    1 1 1

    eff2 2

    i i i i i i

    y y h y h yj

    z n

    h h A h A h

    1

    2

    eff

    i i H i E i i

    e xx x zz x xx yy n

    A μ D μ D μ ε I

    1

    2

    eff

    i i h i e i i

    h xx x zz x xx yy n

    A ε D ε D ε μ I

    Step 7: Solve field at i+1

    E-Mode

    H-Mode

    1

    1 1

    eff eff4 4

    i i i i

    y e e y

    j z j z

    n n

    e I A I A e

    1

    1 1

    eff eff4 4

    i i i i

    y h h y

    j z j z

    n n

    h I A I A h

    BLOCK DIAGRAM OF THE ALGORITHM

    SNAPSHOTS FROM A TYPICAL MODEL

top related