building energy 2016 presentaon small scale cogeneraon › sites › default › files ›...

Post on 05-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

SmallScaleCogenera-on

March10,2016

BuildingEnergy2016Presenta5on

Today’sagenda

Cogenera-on/CHPOverview

WhatDoIDoNext?–Study?

TechnologiesAvailabletoMarket

Incen-ves/RebatesandCredits

StateIncen-vesandRenewableAMributes

Resiliency/CaseStudyDiscussion

Introduc-ons

Ques-onsandAnswers

Cogenera-onOverview

u  Alsocommonlycalled“combinedheatandpower”(CHP)

u  Putsimply,togenerateelectricity(and/ormechanicalenergy)andthermalenergyinasingle,integratedsystemtomaximizetotaloverallefficiency

u  Thiscontrastswithcommonprac5ceinthiscountrywhereelectricityisgeneratedatacentralpowerplant,andon-sitehea5ngandcoolingequipmentisusedtomeetnon-electricenergyrequirements

u  ThethermalenergyrecoveredinaCHPsystemcanbeusedforhea5ngorcoolingbuildings.BecauseCHPcapturestheheatthatwouldbeotherwiseberejectedintradi5onalseparategenera5onofelectricormechanicalenergy,thetotalefficiencyoftheseintegratedsystemsismuchgreaterthanfromseparatesystems.(Ontheorderof40%-50%moreefficient)

Cogenera-onOverview

u  Thethermalenergyoutputfromaprimemover(Microturbine,Reciproca5ngEngine,GasTurbine,FuelCell,Etc.)ismostefficientlyusedifitcanbedelivereddirectlyintoasteamorhotwatersystem.Thisdeliversthehighestoverallsystemefficiencyandresultsinthelargestoverallvalueproposi5ontoendusers

u  Thethermaloutputfromthesesystemscanalsobeusedtoprovidecoolingthroughabsorp5onchillers,however,thefinancialbenefitfromthesetypeprojectsoZenarelowerthannon-coolingprojectsduetotheaddedinfrastructurecostsneededonthesetypejobs(i.e.chiller,towers,pumps,etc.unlesstheyalreadyexiston-site)

u  ThethermalenergyrecoveryfromCHPprojectsisoneoftheprimarycashflowgeneratorsthatcreatesthevaluetotheowneranddrivesROI

Cogenera-onOverview

70%-85%Efficient30%-35%

Efficient

LineLosses

EfficientTransformer

Losses

Efficient

70%-85%SystemEfficiency

Cogenera-onOverview

FuelInput(Nat.Gas,LFG,DigesterGas)

ExhaustHeat

GenerateSteamasBy-product(HRSG)

PowerOutput

Process(Sterilizers,Laundry,Etc.)

Water/BuildingHeat

BP/LPTurbines

Facility/End-User

Engine

He

at

HotWaterHeatRecoveryforDomes-c,Space,Pooland/orProcessHea-ng

JacketWaterLubeOilIntercooler

Cogenera-onOverview

Use for Thermal Energy Distributed Generation Technologies

I.C. Engine

Double-Effect Absorption Water-Cooled Chiller

Micro-turbine

Solid Oxide Fuel Cell

Commercial Phosphoric Acid Fuel Cell

Single-Effect Absorption Chiller Residential

PEM Fuel Cell

Desiccant Technology

Gas-turbine

180ºF

360ºF

800ºF

600ºF

Heat Recovery Steam Generator, ORC’s

Cogenera-onOverview

Benefits

Ø  EnergyandOpera5onalCostSavingsØ  ImprovedPowerReliabilityØ  AddedHea5ng/CoolingSystemRedundancyØ  ControlofCustomer’sU5lityFuture

Ø  DesigninFutureSiteExpansionØ  SocietalBenefits:ReducedTotalEmissions,

ReducedStressonPowerGrid.Ø  BeneficialGrants/Incen5ves

FeaturesØ  Generatepoweronsiteatacostthatis

lowerthancanbepurchased

Ø  U5lizeexhaustheattoproducesteamforspacehea5ng,processloadsandspacecooling

Ø  U5lizehotwaterwasteheatfordomes5chotwater,condensateandspacehea5ng,processloads,absorp5oncooling,etc.

Ø  Op5mizethesizeofthesystembymatchingtheelectricandheatprofilesofthefacility

Cogenera-onOverview

Ingeneral,themarketforCHPincludes:Ø  Hospitals,NursingHomes

Ø  Colleges&Universi5es

Ø  WasteWaterTreatmentPlants

Ø  Manufacturing

Ø  Pharmaceu5cals&ChemicalCompaniesØ  Pulp/PaperMills

Ø  LargeMixedUseDevelopments(Office&Residen5alMix)

Cogenera-onOverview

Barrierstoentry:Ø  EnvironmentalPermijng

Ø  U5lityInterconnec5onRequirements

Ø  U5lityRateStructure(BackupDemandCharges,Ratchets,etc.)

Ø  LackofRebatesandIncen5ves

Ø  LackofBenefitforEnvironmentalBenefitsofCHP(REC’s)

Ø  Deprecia5onschedulesforCHPInvestmentsVaryDependingonOwnershipandMayNotReflecttheTrueEconomicLifeoftheEquipment

TechnologySummary

Ø  Combus5onTurbines–NaturalGas/DieselFuel/LandfillGasØ  (IncludingMicroturbines)

Ø  Reciproca5ngEngines-NaturalGas/DieselFuel/LandfillGas

Ø  FuelCells–Natural/LandfillGas

Ø  SteamTurbine/CombinedCyclePlant–BoilerscanoperateonNaturalGas/LandfillGas/Biomass/FuelOil,Coal,WoodChips,etc.

TechnologySummary

Ø  Natural/LandfillGas,JetFuel&DieselFuelØ  FueltoElectricEfficiencies–21%-40%Ø  SizeRange–30kW–100’sofMWØ  HighGradeWasteHeatUsedtoMakeSteamThroughHRSGØ  TurbinesCanBeRecuperatedandNon-RecuperatedØ  HRSGCanbeDuctFiredtoCreateMoreSteamVeryEfficientlyØ  HandfulofManufacturerswithLongHistoryØ  HighUp5mePercentageØ  LongTimeBetweenServiceIntervalsØ  MajorOverhaulRequired~5Years

Combus-onTurbines

(RecuperatorPreheatsCompressedAirBeforeCombus5ontoIncreaseElectricalEfficiency)

TechnologySummary

Ø  HighPressureGasRequirements(OZenRequireGasCompression)Ø  NoiseMustbeConsideredØ  EmissionsVariesGreatlyBetweenManufacturers(5ppm–50ppmNOX)Ø  PerformanceDegradeswithOutdoorAirTemperatureØ  PerformanceDegradeswithCleanlinessofCompressor/TurbineBladesØ  OverallNetEfficienciesCanReach>80%

Combus-onTurbines(Con-nued)

TechnologySummary

Combus-onTurbines(Con-nued)–TypicalLayout

Combus5onTurbine HeatRecoverySteamGenerator

ExhaustBypass

EmissionsControl

(CO,NOX)

DuctBurnerDiverterValve

TechnologySummary

Ø  AsOATRises,kWOutputDropsandExhaustTemperatureIncreasesCombus-onTurbines(Con-nued)–PerformanceVSOAT

Note:>34%DecreaseinOutputfrom0oFOAT

and100oFOAT

TechnologySummary

Ø  AsOATRises,kWOutputDropsandElectricalEfficiencyDecreasesCombus-onTurbines(Con-nued)–PerformanceVSOAT``

TechnologySummary

Ø  AsOATRises,kWOutputDropsCombus-onTurbines(Con-nued)-Microturbine

TechnologySummary

Ø  Capstone(30kW,60kW,200kWPackages(CanBeCombined–1MW)Ø  GE(>25MW–1500MW)Ø  KawasakiGasTurbinesAmericas(600kW–18MW)Ø  OpraTurbines(1.8MW)Ø  PWPowerSystems(30MW–140MW)Ø  Siemens(4MW–400MW)Ø  SolarTurbines(1.2MW–22MW)–DivisionofCaterpillar

Combus-onTurbines(Con-nued)-Manufacturers

TechnologySummary

Ø  TurbineWasteHeatBoilersAreUsedtoCaptureExhaustEnergyfromTurbinestoGenerateSteam(HRSG)orHighTemperatureHotWaterØ  RentechØ  EnergyRecoveryInterna5onalØ  DeltakØ  BabcockPowerØ  Cain

Combus-onTurbines(Con-nued)

TechnologySummary

Combus-onTurbines(Con-nued)Ø  Size/Scaleof4.5MWCHPPlant,30klb/hrHRSG,700TonAbsorber

Bldg.Footprint~2500Sq.Ft.

TechnologySummary

Combus-onTurbines(Con-nued)-Ø  Size/Scaleof4.5MWUnit

TurbineSize10’-5”x36’-6”

TechnologySummary

Combus-onTurbines(Con-nued)Ø  LubeOilCooler&Combus5onAirInletfor4.5MWUnit

TechnologySummary

Combus-onTurbines(Con-nued)Ø  DuctBurner,GasMeterandScannerBlower

TechnologySummary

Combus-onTurbines(Con-nued)Ø  Size/Scaleof1.0MWCHPPlant,ChilledWaterandHotWaterHR

•  320TonsofCooling

•  Upto3,000

MBHHotWater

TechnologySummary

TriCombus-onTurbines(Con-nued)Ø  Size/Scaleof1.0MWCHPPlant 65kWTurbine(typ.)

GasCompressor(typ.)

Absorp5onChiller/Heater(typ.)

ApproximateSize25’x90’

TechnologySummary

Combus-onTurbines(Con-nued)Ø  Size/Scaleof1.0MWCHPPlant

TechnologySummary

Combus-onTurbines(Con-nued)Ø  MicroturbineOp5ons

TechnologySummary

Combus-onTurbines(Con-nued)Ø  MicroturbineOp5onsØ  HotWater/SteamVSHW/CHW

MicroturbinetoHRSG

Microturbine(s)toChiller/HotWaterHeater

200kWTurbine(75–80psiginletgaspressure)

TechnologySummary

Ø  Natural/Landfill/BioGas&DieselFuelØ  FueltoElectricEfficiencies–25%-49%Ø  SizeRange(60kW–15MW)Ø  HighGradeWasteHeatUsedtoMakeSteamThroughHRSGfromExhaustØ  LowGradeWasteHeatfromJacketWater,LubeOilandInter/AZercoolerØ  HandfulofManufacturerswithLongHistoryØ  GoodUp5mePercentage(>92%)Ø  ShorterDura5onBetweenServiceIntervalsØ  MaintenanceDaily/Weekly/MonthlyØ  MajorOverhaulsDependonEngineSpeed

(720,900,1200,1800RPM)

Reciproca-ngEngines

TechnologySummary

Ø  LowPressureGasRequirementsØ  QuickIni5alStartuptoFullLoadØ  Noise/Vibra5onMustbeConsideredØ  EmissionsVariesGreatlyBetweenManufacturersØ  LeanBurnVersusRichBurnOp5onsDependingonApplica5onØ  PerformanceDoesNotDegradewithOutdoorAirTemperatureØ  OverallNetEfficienciesCanReach>80%IfaHomeCanBeFoundforLow

GradeHeat(HotWater)

Reciproca-ngEngines(Con-nued)

TechnologySummary

Ø  Aegis(75kW)Ø  Caterpillar(85kW–4MW)Ø  Cummins(300kW–2MW)Ø  Gauscor(150kW–900kW)Ø  Jenbacher(250kW–9.5MW)Ø  Kawasaki(5MW–7.5MW)Ø  MAN(68kW–580kW)Ø  Schmit(100kW–500kW)Ø  Tecogen(65kW–100kW)

Reciproca-ngEngines(Con-nued)

Note:SmallerEnginesTypicallyAreUsedOnlytoHeatHotWaterandNottoProvideSteam

TechnologySummary

ExampleofReciproca5ngEngineMaintenanceAc5vi5es

Ø  CheckOilLevel/Pressure(Daily)Ø  CheckBateryAcidLevels(Monthly)Ø  GreasingofGeneratorBearings(Every1,000Hours)Ø  SparkPlugReplacement(1,400Hourson1800RPMEngine,4,000HoursonSlowerSpeedEngines)Ø  CheckValveClearance(Every2,000Hours)Ø  Oil/OilFilterReplacement(Every2,000Hours)Ø  CheckAirFilters,VerifyIgni5onTiming(~4,000Hours)Ø  Recondi5onCylinderHeads,ChangeHighVoltageWires(~8,000hours)Ø  ReplacementofGeneratorBearings,Pistons,CylinderLinings(20,000Hours)Ø  TurboReplacement/Refurbishment,ChangeConnec5ngRods(~20,000hours)Ø  EngineOverhaulIncludingCylinderBlock,CrankshaZ,CamshaZ(48,000-60,000hours)

Reciproca-ngEngines(Con-nued)

TechnologySummary

SimplifiedSystemSchema-c

650kWEngine

FuelIn

ExhaustOut~750oF

ExhaustToAtmosphere~325oF

850lb/hr125psigsteam

200oFHotWater

180oFHotWater

1,800MBHHotWaterToHostSite

WasteHeatRadiator

120oF125MBHIntercoolerHotWater

TechnologySummary

Reciproca-ngEngines(Con-nued)Ø  Size/Scaleof670kWCHPPlant,840lb/hrHRSG,1,747MBHHW

TechnologySummary

Reciproca-ngEngines(Con-nued)Ø  Size/Scaleof3,000kWCHPPlant,4,150lb/hrHRSG,4,416MBHHW

TechnologySummary

Reciproca-ngEngines(Con-nued)Ø  Size/Scaleof3,000kWCHPPlant,4,150lb/hrHRSG,4,416MBHHW

TechnologySummary

Ø  Natural/BioGasØ  ElectrochemicalProcess(NoCombus5on)Ø  MoltenCarbonate,PhosphoricAcid,SolidOxideØ  FueltoElectricEfficiencies–40%-47%Ø  SizeRange(400kW–Mul5MWViaParallelingUnits)Ø  SmallScaleUnitsHeatCanProvideBoth200oFand120oFHotWaterØ  LargerUnits(<1.4MW)ProduceSteamasWellas200oFand120oFWaterØ  LimitedofManufacturers(Bloom,Doosan,FCE)Ø  HighQualityPower(DCtoACConversion)Ø  GoodUp5mePercentage(>92%)Ø  ReducedOutputwithServiceLife

FuelCells

TechnologySummary

Ø  ClassIRenewable–AssistswithRebates/Incen5vesandRenewable/AlternateEnergyCredits(highercredit/mWh)

Ø  FederalTaxCredits(30%InvestmentTaxCredit)Ø  VirtuallyEmissionsFreeØ  LimitedWaterUsageRequiredØ  HighMaterialCostsØ  GasMustbeCleanedtoMeetCertainSpecifica5onsifBiogasisUsed.

ThisCanGetExpensiveØ  HighMaintenanceCosts–StackLife~5YearsDuringWhichTime

ElectricalOutputDegradesandHeatOutputIncreases(10%Degrada5on)Ø  TypicallyMoreExpensiveThanOtherTechnologies(UseIncen5ves/

Rebates,REC’stoHelpBringCostIn-LineWithOtherOfferings)

FuelCells

TechnologySummary

DoosanFuelCellExample–400kW

400kWtoHostSite42%ElectricalEff.

640,000BTU/HR(Upto250oF)

3,515SCFH

880,000BTU/HR(Upto140oF)

65dBA@10meters

TechnologySummary

FuelCellEnergyExample–2.800MW

2800kWtoHostSite47%ElectricalEff.(LHV)FuelIn10,860

SCFH(LHV)15–20psig

4,433,000BTU/H@250oF7,460,000BTU/HR@120oF

72dBA@10feet

ApproximateFootprint–44’Wx70’Wx26’H

~700oFExhausttoHRSG(~3,000lb/hr)

9GPMWatertoPackage4.5GPMWatertoDrain

WhatDoIDoNext?

Ø  Thefirststepistypicallytoundertakeafeasibilitystudy.Thesestudiesareperformedbyqualifiedengineeringteamswithyearsofexperienceinthedesign,construc5onandopera5onofCHPplants

Ø  Thesestudiestypicallyinclude:Ø  SiteSurveyofExis5ngSystemsandEquipment(FuelType,HW,Steam,CHWLoads,etc.)Ø  ReviewofExis5ngElectricalandFuelDeliveryInfrastructure(GasPressure,FuelOilTanks)Ø  DetailedInterviewswithOpera5onsStafftoUnderstandExis5ngSystemOpera5onsØ  DetailedReviewofU5lityData(Tariffs,IntervalData,Chiller/BoilerLogs)

Ø  Iden5fyHourtoHour,DaytoNightandWeekdaytoWeekendChangesinLoad

Ø  ReviewofExis5ngAirPermijngØ  ReviewofPlanningandZoningRequirements(Si5ng,Acous5cs,etc)Ø  DiscussionsRegardingMasterPlanning(FutureSiteNeeds)Ø  Reliability/RedundancyRequirementsØ  Opera5onalRequirementsofNewSystem(GridParallel,IslandMode–ExtendedOutage)Ø  Inves5ga5onIntoIncen5ves/RebatesandREC’s/AEC’sØ  DiscussionsWithU5lityCompanyRegardingHighLevelInterconnec5onConcepts

WhatDoIDoNext?

Ø  Thesestudiestypicallyinclude:Ø  DevelopmentofAlterna5vesandDetailedScenarioModeling–DifferentPrimemoversØ  ReviewWithDecisionMakersandTuneConceptsØ  Crea5onConceptualDrawingsØ  DevelopmentofProbableCostEs5matesFromPreviousProjectWork,MajorEquipment

CostEs5matesandByWorkingWithContractorsExperiencedinCHPInstalla5onsØ  ReviewFinancing/Construc5onAlterna5veswithCustomerØ  DevelopmentofFinancialModelsBasedonCustomerFeedbackforU5lityRates

(Exis5ngCommodityContracts,Escala5onRatesAssumed,etc),SiteGrowthEs5matesandFinancingOp5onsChosen

Ø  ModelingAlsoIncludesRebates/Incen5ves,REC’s,ProbableEs5matesofCost,U5lityCostSavings,MaintenanceCosts,Construc5onInterest,etc.

Ø  IllustrateSensi5vityAnalysisBasedonKeyVariablesØ  DiscussNextSteps(Schema5c/DesignDevelopmentPackagetoVerifyPricing)

FeasibilityStudy(Con-nued)

WhatDoIDoNext?

FeasibilityStudy(Con-nued)–DataExample

WhatDoIDoNext?

FeasibilityStudy(Con-nued)–Rebates/Incen-vesØ  DSIREWebsite:WWW.DSIREUSA.ORG

WhatDoIDoNext?

FeasibilityStudy(Con-nued)–Rebates/Incen-vesØ  MassSave:Between$750/kWand$1200perKwDependingonCapacity&Efficiencyhtp://www.masssave.com/business/eligible-equipment/combined-heat-and-power

Ø  Maine–upto$1Mperprojecthtp://www.efficiencymaine.com/opportuni5es/program-opportunity-no5ce/Ø  NewYork–NYSERDA–upto$2.5Mperprojecthtp://www.nyserda.ny.gov/All-Programs/Programs/Combined-Heat-and-Power-Program.aspx

Ø  Connec5cut–upto$450/kWplusfinancingop5onshtp://www.energizect.com/your-business/solu5ons-list/Combined-Heat-Power

WhatDoIDoNext?

Ø  DesignShouldBeBasedonFailureAnalysisØ  EmergencyRentals–Con5ngency–CHPisanEconomicEnginebut

DependingOnSite/Process,RentalsorBackupDieselGensetsMaybeAppropriate

Ø  Availability&EfficiencyGuaranteesØ  EquipmentwithLocalSupportandTrackRecordØ  ServiceAgreementsandCri5calOn-SiteSparesØ  HireOperatorswithExperienceOpera5ngHighAvailabilityPlants

FeasibilityStudy(Con-nued)–OtherImportantItemstoConsider

EBDHistory/BackgroundofCHPProjects

Par-alListofEBDProjects

Customer SystemDescrip-onDanburyHospital 4.5MWGasTurbine

SikorskyAircraZ 10MWGasTurbine

Prat&Whitney 7.5MWGasTurbine

FairfieldUniversity 4.5MWGasTurbine

DataCenter 1MWMicroTurbine

NorwalkHospital 3MWReciproca5ngEngine

WesleyanUniversity 650kWReciproca5ngEngine

IndustrialFacilityinRhodeIsland 5MW&7.5MWReciproca5ngEngines

IndustrialFacilityinFlorida 22.5MWGasTurbine

Q&A

top related