candles for the study of 48 ca double beta decay

Post on 12-Jan-2016

72 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

CANDLES for the study of 48 Ca double beta decay. T. Kishimoto RCNP & Physics Dept. Osaka Univ. Contents. Double beta decay and Majorana Mass Matter dominated universe Neutrino mass Majorana neutrino and double beta decay Double beta decay of 48 Ca CANDLES detector Concept - PowerPoint PPT Presentation

TRANSCRIPT

1

CANDLES for the study of 48Ca double beta decay

T. Kishimoto

RCNP & Physics Dept.

Osaka Univ.

2

Contents

• Double beta decay and Majorana Mass –Matter dominated universe–Neutrino mass– Majorana neutrino and double beta decay

• Double beta decay of 48Ca• CANDLES detector

–Concept–CANDLES I, II, III, VI, V

• Prospect

3

Baryon density in our Universe• Big bang nucleosynthesis

– 4He, D, 3He, 7Li– Baryon density

B ~ 10 - 10

If particle number is conserved, Particle :Anti-particle :

Matter dominated Univ. →CP + particle # →Double Deta decay

Relativity + uncertainty →anti-particle

present

future

past

・ no information is faster than light・ interact with any space-time→particle that travels backward in time→anti-particleCarries inverse quantity (charge spin(chirality))

Charge: conservedChirality: violated by mass

distance

timelight

Dirac equation→anti-particle

4

5

Neutrino type

• type Dirac Weyl Majorana• components 4 2 2 x 2•                           L R

particle

Anti-particle

C, PCP

m=0 m≠0

Lepton numberChirality

Direction of propagation

mL mR

oscillationm

~55 meV ~7 meV

6

Direct measurement of m

• 3H – decay (Q: 18.7keV)

• 0 decay

• CMBR– WMAP +

SDSS + …

KATRIN => m ~ 0.2 eV

KATRIN => m ~ 0.2 eV

m < ~ 0.6 eVm < ~ 0.6 eV

7

02 decay

n p

e -e

n p

hh

h

hV -A

V -A

e -

m a s s te r m

n p

e - e

n p

e - e

2 m o d e

0 m o d e

Possible in Standard model

Majorana particleparticle⇔anti-particle・ possible only for ・ matter dominated universe

.....||

|)00(|2200

102/1

mMG

T

NM

Phase volume

Nuclear matrix element

Effective mass

2 mode

Sum energy spectrum

0 modeT >1025 

yrT ~1019 yr

8

has to be a Majorana particle

• Mass term (Dirac)

• Mass term (Majorana)– Only Left (right) handed

mass term can be made– Left and right can have

different mass – We know only left-handed

neutrino – Heavy right-handed

( see-saw mechanism )– Violates lepton number

Chirality flip ( relativity )

Left handed → right handed (anti-particle)

Leptogenesis

9

Leptogenesis

• GUT ? (No proton decay?) SK

• Majorana particle ( Lepton number )– particle anti-particle

• CP– Anti-lepton > Lepton   (~10-10)

• Instanton effect (t’Hooft)– Standard model– Anti-lepton → baryon

• conserved : B-Lpositron     proton

Fukugita, Yanagida (1986)

Proton decay(B-L cons.) is irrelevant to the Baryogenesis : Yanagida

Effective in early universe

10

Double beta decay nuclei

• Nuclei – 48Ca, 76Ge, 82Se,100Mo,– 128Te, 130Te, 136Xe, 150Nd– Positron emitter

• Ultra rare process – 1020~25 yr

• Huge natural background sources – High sensitive detector– Low background circumstance⇔Underground

lab.

AZN

AZ+1N-1

AZ+2N-2

11

World Experiments

Cla im by KKK

CANDLES

48Ca 76Ge 100Mo82Se 130Te 136Xe 150Nd

0.01

0.1

1

101

IV

V

12

Why 48Ca• Highest Q value (4.27 MeV, 150Nd: 3.3 MeV)

– Large phase space factor – Little BG ( : 2.6 MeV, : 3.3 MeV )

• Natural abundance → 0.187%– Isotope separation → expensive (no Gas)  

• ~10g x 2 (in the world. only Early studies)• Next generation

– M ~ T-1/2 ~ M-2 (no BG) ~ M-4 ( BG limited )

– 48Ca (no BG so far)• If we want to sense normal hierarchy region,

only 48Ca + enrichment has a chance.

Nuclear matrix element

13

n1

e

p1

p1

n1

e

n1e

p1

p1

n1

e

q1~0q2~0

q2 + q1~0q2 - q1~pF

ifrrqqiedr ))(( 2121

if

i f

2 decay

0 decay

ifdr

2 nucleon correlationNeutrino potential 1/r~A-1/3

F2N(q=0)

F2N(q)

14

p n

f7/2

f5/2

Matrix element 48Ca

forbidden if only f7/2(wf) And GT(op)

wf: Configuration mixingOp: Higher partial wave

A=48

|M0|2 ~5 ambiguity (accept and challenge) M(48Ca) is well estimated but not perfect yet. It is small though taken to be the minimum.

M0

M. Horoi (2010)

Oto Cosmo Observatory

5 03 9 .5 m

第 一 観 測 室第 二 観 測 室 第 三 観 測 室

国 道 168号 線

西 吉 野 村 側

大 塔 村 側

845m

A tunnel constructed for a railroad but never used. It is 60km south from Osaka

ELEGANT VI

C.L.) % (90year 104.1 2202/1 T

C.L.) % (90 eV 7.44~2.7m

NPA 730  ’ 04, 215

15

神岡

大 塔 コ ス モ 観 測 所

大阪大学核物理研究センター

大阪大学理学部

48Ca double beta decay by ELEGANT VI

NPA 730  ’ 04, 215

Not limited by backgrounds

1.76 y

But only 6.4g of 48Ca 16

C.L.) % (90 eV 22~5.3mC.L.) % (90year 108.5 220

2/1 T

PRC78 058501(‘08)

Q of 48Ca

PMT PMT

CaF2(Eu)n = 1.44CaF2(pure)

n = 1.47

Optical greasen = 1.47

Silicon oiln = 1.40

CaF2(Eu)

CaF2(pure)

CaF2(pure)

17

How to sense m=1~10-2eV• Big detector

– Huge amount of materials

• Low radioactive background– Active shield– Passive shield– Low background material– BG rejection by signal processing

• High resolution– Backgrounds from 2 decay

• CANDLES is our solution

18

CANDLES

CaFCaF22(Pure)(Pure)

200kg, 300kg, 3t, enrichment

48Ca (Q=4.27MeV)

Liquid ScintillatorWave Length Shifter4 Active ShieldPassive shield

PhotomultiplierPhotomultiplier energy resolution

CaF2(Pure)

Liquid Scintillator(Veto Counter)

Buffer Oil

Large PMT

CAlcium fluoride for studies of Neutrino and Dark matrtersby Low Energy Spectrometer

19

CANDLES IBackground rejection

Liquid Scintillator

CaF2

ADC(fast)ADC(total)

CaF2(pure)

liquid ScintillatorPMT(5")× 4

ADC(total)

Liquid Scintillator

CaF2

POP(Proof of Principle)

liq. scint. : mineral oil + DPO     (3 g/l)+ Bis-MSB (0.3 g/l)

20

Reduction 100MHz FADC    T > 30ns(3ch) ; ~3% 500MHz FADC (under preparation) . . . T > 5ns ; ~1%

Rejection of Double Pulse

Prompt

Delayed

Typical Pulse Shape(100MHz FADC)

900ns 50ns

212Bi212Po

T1/2 = 0.299sec64%Q = 8.95MeV

Q = 3.27MeV

Q = 2.25MeV

Q = 7.83MeV

208Pb

Sum energy ~ Q value

21

Pulse Shape Discrimination

• PSD (Event by Event)PSD (Event by Event)– FADC (100MHz)

– Afast/Aslow (Fast and slow component)

Difference in decay time between and rays

Discrimination between and Events   Background Reduction ~ 0.3%

22

Development of Low Background CaF2 Crystals

Radioactivities in CaF2(pure) Crystal(-ray measurement)

Radioactivities in CaF2 Powder(HPGe measurement)

U-chain(214Bi) ~41Bq/kg . . . 1/25 of Previous CrystalsTh-chain(220Rn) ~21Bq/kg . . . 1/5 of Previous Crystals

CaF2 Powder

FusedCaF2

Raw MaterialsCaCO3, HF

CaF2 Crystal

Where is the crystals contaminated?

Powder selection Crystal making

CaF2(Eu) in ELEGANT VI U-chain(214Bi) : 1100Bq/kg Th-chain(220Rn) : 98Bq/kg

23

Radioactive impurities

0

5

10

15

20

25

30

35

40

45

50

0 - 0.01

- 0.02

- 0.03

- 0.04

- 0.05

- 0.06

- 0.07

- 0.08

- 0.09

- 0.10

- 0.12

- 0.14

- 0.16

- 0.18

- 0.20

 (mBq/ kg)不純物濃度

U系列

Th系列

3t 600k 300kCANDLES III(U.G.)CANDLES IV

Energy resolution and BG rejection (2 phase system)

CaF2(Pure)

• BG from 2

• Energy resolution

• CaF2 : UV – PMT

• 2 phase system 9.14%(FWHM)

Energy (keV)

Cou

nts

137Cs (662keV)

24

UV

Visible light

Veto phase (absorves UV)

Conversionphase

CaF2(pure)

Liquid ScintillatorCANDLES I (WLS phase)

25

H2O

15”PMT

Mount System

CaF2(Pure)10cm cube

Liquid Scintillator

CANDLES-II

• Prototype

45cm

Cosmic-ray Events (High Energy)

Index 1.44@586nm (CaF2)

Index 1.46@586nm (Mineral Oil)

S.Umehara

CANDLES III@Osaka

Tank: Φ2.8×h2.6 m

PMT:13”×3215”×   8

CaF2:   191 kg103   cm3×60

26

Rejection ofexternal BG

Observation at sea levelUnderground OK

Kamioka Experimental hall D

CANDLES III(UG)3m ×4m h

CANDLES III ( UG )

Lab D

Super Kamiokande

KamLAND

CANDLES

Kamioka

4m3m

CANDLES III(UG)

CANDLES III ( UG )

CANDLES III ( UG )62 PMT’s

96 CaF2(pure) crystals

(CaF2 crystals)

Almost completed

29

Mile stone• ELEGANTS VI

– Best 48Ca 0limit

• CANDLES I, II

• CANDLES III+ III(UG)– 100 x10cm3 CaF2 (~30Bq/kg) ~0.5 eV

– Start running in this October.

• CANDLES IV – 3t CaF2 (3.5 kg 48Ca) (~3Bq/kg) ~0.1 eV

• CANDLES V– Enrichment and 0.3~1t of 48Ca (m≦10meV)

achieved

Characteristic of CANDLES

• BG rate (events/weight)– So far the best

• 2~3 orders

• Scale up: – CANDLES IV, V

• Enrichment – more nuclei– BG reduction

Target Project Abund. (%)

Background rate (counts/kg/year)

48Ca ELEGANT VI 0.187 0 (measured)0.075 (expected)

CANDLES III 0.187 5x10-4

CANDLES IV 0.187 5x10-5

76Ge HDM ~86 0.61

130Te CUORICINO 33.9 2.4

CUORE 33.9 0.8 (CUORE-0)10-2~10-3(Goal)

136Xe EXO-200 ~80 0.1

+ Ba tagging

30

Achieve both simultaneously

Enrichment of 48Ca• Increase nuclei

• BG reduction

• Crown ether– Sep. coeff.   ε~ (3.5±0.5)x10-3

– Crown ether resin

31

O

O O

O

OO

C C

C

C

C

C

C C

Dicyclohexano 18-crown-6

DC18C6Ca2+

- -

- -

- -

48Ca : 0.2% => 5~10 %

Enrichment for long migrationEnrichment for long migration

~7 hours~7 hours1m1m

~70~70 hourshours20m20m

~250~250 hourshours200m200m

Enrichment due to crown ether

・ long migration length ・ higher enrichment and larger amount ~7 時間 (1m) → ~250 時間  (200m) amount: ×17, enrichment: ×8

P r e l i m i n a r ymaximum: 0.0026(original:0.0019)

Ca ions in CE

33

• Why CE absorbs 40Ca more than 48Ca? – CE: Harmonic oscillator pot.

• Heavier Ca is in a lower energy state.

– Water: (pH: 10-14 mol/ℓ)• H2O: polar molecule: HO pot.

• Partition function ⇔ distribution

– Mass dependence

)2

1( nEn

CE

water

E

14848

48

2

)(31

kTExp

nWCE

WCE

m

k

2.0)12.1( meV~1% effect

Other enrichment methods

• Laser ionization – Plant for Uranium enrichment– KAERI 1kUS$/g (~1/100 of current CM value)

• Centrifuge: high (0.6 MG) (JAERI)• Electrophoresis • Others

• We will clarify the separation method in an year.

34

35

Thank you.

top related