center for integrated systems preamplifier in 0.5 a...

Post on 12-Jun-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

A 2.125 Gbaud 1.6kΩ Transimpedance

Preamplifier in 0.5µm CMOS

Sunderarajan S. Mohan

Thomas H. Lee

Center for Integrated Systems

Stanford University

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

OUTLINE

• Motivation

• Shunt-peaked Amplifier

• Inductor Modeling and Optimization

• Circuit Layout and Measurement

• Summary

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

SYSTEM OVERVIEW

Opticalfiber Photo

diode

Pre-AGC

Var. gainamp

amp

Decisioncircuit

Clocksynthesizer

Digitaldata

• Pre-amp design is critical

• Challenge: CMOS implementation

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

CMOS VS. GAAS

Factor GaAs CMOS

Performance Excellent Sufficient for up to low GHz

Integration Photodiode with Pre-amp Analog and Digital

Cost High Low

• Photodiode in GaAs

• Flip-chip techniques can reduce parasitics at the GaAsto CMOS transition

• Parasitic coupling from digital to analogis a challenge for integration

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

TRANSIMPEDANCE AMPLIFIER

Photodiode

Transimpedanceamplifier

+

Cd Cg

Rf

A

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

• ω3dB = 1RinCin

= (A+1)Rf(Cd+Cg)

≈ ARf(Cd+Cg)

• AMAX = k ωT

ω3dBwhere (k ≈ 1)

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

TRANSIMPEDANCE LIMIT

• Rf,MAX ≈ kωT

ω3dB2(Cd+Cg)

• Desire maximum Rf for sensitivity,stability and high gain

• Need to circumvent this limit

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

CIRCUMVENTING THE TRANSIMPEDANCE LIMIT

Common-gatestage

Photodiode transimpedance stage

+

Cg

Rf

A

Shunt-peaked

Cd

• Decouple photodiode from the transimpedance stagewith common-gate stage

• Increase gain-bandwidth product by shunt-peaking

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

SHUNT-PEAKED AMPLIFIER

Common Source Amplifier

R

C

Vdd

vout

vin

Shunt-peaked Amplifier

L

R

C

Vdd

vout

vin

• Bandwidth enhancement using zeros

• No additional power dissipation

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

SMALL SIGNAL MODELS

Common Source Amplifier

R C

vout

gmvin

• One pole

• vout

vin(ω) = gmR

1+jωRC

Shunt-peaked Amplifier

L

R

C

vout

gmvin

• One zero, two poles

• vout

vin(ω) = gm(R+jωL)

1+jωRC−ω2LC

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

MAGNITUDE RESPONSE

No peakingOptimum group delayMaximally flatMaximum bandwidth

0 0.20.4 0.4

0.5

0.6

0.6

0.7

0.8

0.8

0.9

1.0

1.0

1.1

1.2 1.4 1.6 1.8 2.0Normalized frequency

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

PHASE RESPONSE

No peakingOptimum group delayMaximally flatMaximum bandwidth

0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

−10

−20

−30

−40

−50

−60

−70

−80

−90

Normalized frequency

Pha

se

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

FREQUENCY RESPONSE

L

R

C

vout

gmvin

• Two time constants:τC = RC , τL = L/R

• Ratio determines performance:m = τL

τC= L

R2C

Factor ( m) Normalized ω3dB Response

0 1.00 No shunt peaking

0.32 1.60 Optimum group delay

0.41 1.72 Maximally flat

0.71 1.85 Maximum bandwidth

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

ON-CHIP SHUNT PEAKING : PREVIOUS WORK

Bond-wire inductor

Vdd

Lbondwire

Rvout

vin

Cg

Cbondpad

Cd Cload

• Large Cbondpad

• Limited Lbondwire

• Coupling issues

Maximum Q on-chip

Vdd

L

R

Rs

vout

vin

Cg

CL

Cd Cload

• Large CL

• Large area

• Limited L

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

ON-CHIP SHUNT PEAKING: NEW

Vdd

L

(R − Rs)

Rs

vout

vin

Cg

CL

Cd Cload

• Work with inductor parasitics

• Rs is not an issue(now part of load resistance)

• Inductor Q is not relevant

• Minimize area and CL

• L determined byR, Cload, CL and Cd

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

MODELING CHALLENGE

• Simultaneous optimization ofactive and passive components

• 3-D field solvers are inconvenient

Numerically expensive and cumbersome

Good for verification but not for design

• Scalable, analytical models

Design guidelines and explore trade-offs

Circuit design and optimization

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

INDUCTOR MODELING

Two port (without PGS)Cs

RsLport 2

RsiCsi

Cox

Rsi Csi

Cox

port 1

substrate

One port (with PGS)

CL = Cox + Cs Rs

L

• Simple expressions for Rs, Cox and Cs

• Patterned ground shield (PGS) eliminates Rsi and Csi

• NEED simple, accurate expression for inductance!

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

CURRENT SHEET APPROACH

AD

w

s

nI

OD = (1 + ρ)AD

ρAD = nw + (n − 1)s

• Reduce complexity by 4n2

• Use symmetry

• Derive simple expression using GMD, AMD and AMSD

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

GMD, AMD AND AMSD

l I

w2

w2

x1 x2

−w

2< x1, x2 <

w

2

ln (GMD) = ln |x1 + x2| = lnw − 1.5

AMD = |x1 + x2| =w

3

AMSD2 = (x1 + x2)2 =w2

6

L = µl2π

[ln

(2l

GMD

) − 1 + AMDl − AMSD2

4l2

]

= µl2π

[ln

(2lw

)+ 0.5 + w

3l − w2

24l2

]

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

INDUCTANCE EXPRESSSION

ws

ODID

AD

• AD = 0.5(OD + ID)

• ρ = OD−IDOD+ID

• ρAD = nw + (n − 1)s

• L = 2µn2ADπ

[ln

(2.067

ρ

)+ 0.176ρ + 0.125ρ2

]

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

INDUCTANCE EXPRESSSION

00 1 2 3 4 5 6 7

20

40

60

80

100

% Absolute error

%In

duct

ors

exce

edin

gab

s.er

ror

Min Max

L(nH) 0.1 70

OD(µm) 100 400

n 1 20

s/w 0.02 3

ρ 0.03 0.95

Verified by measurements (75) and 3-D field solver simulations (19,000)

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

TRANSIMPEDANCE STAGE

Vdd

L

(R − Rs)

Rs

Rf

vout

iin Cin Cg

CL

Cd Cload

• Input current drive

• Cascode stage

• On-chip shunt-peaking

• Feedback

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

DESIGN METHODOLOGY

1. Design and optimize transimpedance stagewithout shunt peaking

2. Transistor current determines conductor width, w

3. Lithography sets spacing, s

4. Choose n and AD to realize desired Lwhile minimizing parasitic capacitance and area

5. Increase transimpedance resistance, Rf

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

OPTIMIZATION VIA GEOMETRIC PROGRAMMING

• Simultaneous optimization ofactive and passive components

• Global Optimum or Proof of Infeasibility

DAC99, Session 54.3 (June 24, 1999):

Optimization of Inductor Circuits

via Geometric Programming

Maria del Mar Hershenson, Sunderarajan S. Mohan

Stephen P. Boyd and Thomas H. Lee

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

EXPERIMENTAL VERIFICATION OF INDUCTOR

real(ZL) measuredreal(ZL) predictedimag(ZL) measuredimag(ZL) predicted

0 0 0.5 1.0 1.5 2.0 2.5 3.0

200

400

600

800

1000

Frequency (GHz)

Impe

danc

e(Ω

) • OD = 180µm

• w = 3.2µm

• s = 2.1µm

• n = 11.75

• Lmeas = 20.5nH

• Lpred = 20.3nH

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

COMMON-GATE STAGE

Vdd

Photodiode

Common-gatestage

Shunt-peakedtransimpedance stage

• Decouple sensitive feedback nodefrom external capacitances

• Realize higher transimpedance

• Extra power

• Additional noise terms

• Junction capacitances degrade noiseat high frequency

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

DIFFERENTIAL PREAMPLIFIER

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

TRANSIMPEDANCE BANDWIDTH

0 0.2 0.4 0.6 0.8 1.0 1.2

1200

1400

1600

1800

800

1000

CPD = 100fF

CPD = 300fF

CPD = 500fF

CPD = 700fF

frequency (GHz)

Tran

smpe

danc

e(Ω

)

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

INPUT REFERRED CURRENT NOISE DENSITY

0 0 0.5 1.0 1.5 2.0

10

20

30

40γ = 2/3γ = 4/3γ = 2

frequency (GHz)

pA/√ H

z

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

EYE DIAGRAM

1.6 Gb/s

mV

ns

05

101520

−5−10−15−20−25

25

6.2 6.4 6.6 6.8 7.0 7.2

2.1 Gb/s

mV

ns

0

40

120

80

−40

−120

−80

6.0 6.2 6.4 6.6 6.8 7.0

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

PERFORMANCE SUMMARY

Transimpedance (small-signal) 1600Ω (differential)

800Ω (single-ended)

Bandwidth (3dB) 1.2GHzMax. photodiode capacitance 0.6pFMax. input current 1.0mASimulated input noise current 0.6µAMax. output voltage swing 1.0Vpp (differential)

(50Ω load at each output) 0.5Vpp (single-ended)

Power consumption 115mW (core)

110mW (50Ω driver)

Die area 0.6mm2

Technology 0.5µm CMOS

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

CONTRIBUTIONS

• Shunt-peaking with optimized on-chip inductor

• Simple accurate expression for inductance

• Common-gate input stage

• CMOS implementation of differential preamplifier

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

ACKNOWLEDGMENTS

IBM fellowship support

Rockwell InternationalDr. Christopher HullDr. Paramjit Singh

Prof. L. Kazovsky and Dr. Allen Lu

Dr. C. Patrick Yue, Dr. Derek Shaeffer, Dr. Arvin ShahaniMaria del Mar Hershenson and Dr. Ali Hajimiri

S. S. Mohan, ”A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS, ” CICC

May 1999.

top related