ch 5.6: method of substituion; newton’s law of...

Post on 31-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Ch 5.6: Method of Substituion; Newton’s Law of Cooling

Theorem

∫f (g(x)) · g ′(x) dx =

∫f (u) du

where f is a continuous function on the range of u = g(x).

Example) Find∫

(x + 1)4 dx .

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

ExamplesEvaluate the following integrals.

1.∫ √

1 + y 2 · 2y dy

2.∫

2x(1 + x2)10

dx

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Highlight
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Highlight
ykang4
Snapshot
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

Integral of the tangent and secant functionI∫

tan x dx = − ln | cos x |+ C = ln | sec x |+ CI∫

sec x dx = ln | sec x + tan x |+ C

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Highlight
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

Example

Find∫

1cos2(3x)

dx .

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

u?Find

∫csc2(2θ) cot(2θ) dθ by letting

1. u = cot(2θ)2. u = csc(2θ).

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

Using an identity

Find∫

cos2(x) dx .

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

The Substitution Rule for Definite integrals

TheoremIf g

′(x) is continuous on [a, b] and f is a continuous function on

the range of u = g(x), then∫ b

af (g(x)) · g ′(x) dx =

∫ g(b)

g(a)f (u) du.

Example) Evaluate∫ 4

0

√2x + 1 dx

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Highlight
ykang4
Highlight
ykang4
Highlight

Example

Evaluate∫ 2

11

(3−5x)2 dx

ykang4
Highlight
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

Integrals of Even and Odd functionsLet f be continuous on [−a, a], a > 0.

I If f is an even function, then∫ a−a f (x) dx = 2

∫ a0 f (x) dx

I If f is an odd function, then∫ a−a f (x) dx = 0

ExamplesEvaluate the following integrals.

1.∫ 2−2 (3− x2) dx

2.∫ 2−2 x(3− x2) dx

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Highlight

Newton’s Law of Cooling (Also taught in Math 2306)Let u(t) denote the temperature of an object at time t, if T is theconstant room temperature, then

du

dt= k[u(t)− T ]

Its solution is given by

u(t) = (u0 − T )ekt + T

where u0 = u(t = 0), and k is constant.

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

ExampleWhen a cake is just removed from an oven, its temperature ismeasured at 300◦ F. Three minutes later its temperature is 200◦ F.How long will it take for the cake to cool off to 80◦ F? Assume theroom temperature is 70◦ F.

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

Class ExerciseEvaluate the following integrals. Show all steps.∫

1

x ln(x6)dx

ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen
ykang4
Pen

top related