chapter 4 electrostatic fields in matter 4.1 polarization 4.2 the field of a polarized object 4.3...

Post on 18-Dec-2015

223 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Chapter 4 Electrostatic Fields in Matter

4.1 Polarization

4.2 The Field of a Polarized Object

4.3 The Electric Displacement

4.4 Self-Consistance of Electric Field and Polarization; Linear Dielectrics

4.1.1 Dielectrics

4.1.2 Induced Dipoles and Polarizability

4.1.3 Alignment of polar molecules

4.1.4 Polarization and Susceptubility

4.1 Polarization

4.1.1 Dielectrics

According to their response to electrostatic field,most everyday objects belong to one of two large classes:

conductors and insulators (or dielectrics): all charges are attached to

specific atoms or molecules.

Stretching and rotating are the two principle mechanisms by which electric fields can distort the charge distribution of a dielectric atom or molecule.

4.1.2 Induced Dipoles and Polarizability

A simple estimate:The field at a distance d from the center of a uniform charge sphere

At equilibrium,

(v is the volume of the atom)

A neutral atom

applied

Polarized atom

Induced dipole

p

qdp Ep

Atomic polarizability

3

2 2 3 30 0 0

1 1 14 4 4

inq q qdde

d d a aE

0 0

14 3 34

qd pe

a aE E

30 04 3a v

Usually

the most general linear relation

or in (x,y,z)

ijdepend on the orientation of the axis you chose.

It’s possible to select axes such that ij = 0 for ji

4.1.2

P E E

E 40 22 10 m

Nc

E

40 24.5 10 mNc

P E �

( is polarizability tensor) �

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

P E E E

P E E E

P E E E

4.1.3 Alignment of Polar Molecules

Polar molecules have built-in, permanent dipole moments

applied electric field (uniform)

Torque

s

2 2

S S

N r F r F

qE qE qS E

N P E qS P

If the applied electric field is nonuniform,the total force is not zero.

for short dipole,

4.1.3

F F F q E E q dE

x x

y y

z z

dE E S

dE E S

dE E S

dE S E

F P E

4.1.4 Polarization and Susceptibility

The polarization of a polarized dielectric

dipole moment per unit volume

is electric susceptibility tensor

for linear dielectric

is electric susceptibility

P

0 eP X E �

eX�

0

0

0

( )

( )

( )

xx xy xz

yx yy yz

zx zy zz

x e x e y e z

y e x e y e z

z e x e y e z

P X E X E X E

P X E X E X E

P X E X E X E

0 eP X E

eX

4.2 The Field of a Polarized Object

4.2.1 Bound charges

4.2.2 Physical Interpretation of Bound Charge

4.2.3 The Field Inside a Dielectric

4.2.1 Bound charges

bound charges: surface charge

volume charge

0

0

0 0

1 14

1 1 14

1 1 14 4

( )

1

[ ]

RV

R RV V

Rsurf V

V P d

P d P d

P da P dR

2ˆ1( )R

R R

ˆb

b

P n

P

0 0

1 1 1 14 4b bR Rsurf V

V da d

4.2.2 Physical Interpretation of Bound Charge

and represent perfectly genuine accumulations of charge.

for uniformly distributed dipoles

for a uniform polarization and perpendicular cut

s

b b

0b

b

qb A

q PA

P

for a uniform polarization and oblique cut

for the polarization is nonuniform ,

4.2.2 (2)

ˆcosend

qb A

q PA

P P n

ˆb P n

?b

P Ppx

q b x

d Pd

b P

b P

bV surf

V

d P da

P d

Ex.2

Ex.9 of chapter 3

potential of a dipole moment

4.2.2 (3)

?E

ˆ cosb P n P

( , )V r

0

3

2cos for

3P R r R

r cosr z

0for

3Pr R V z

0 0

1ˆ3 3PE V z P

0cos for

3P r r R

343

p R P 1

20

ˆ4

p rV

r

320

41 1 ˆfor 4 3

r R V R Prr

4.2.3 The Field Inside a Dielectric

microscopic

microscopic field is defined as the averaged field over region large enough.

microscopic field at P

or

averaged

V

out

dielectric

out inE E E

out inV V V

20

ˆ1

4

P RV doutsideout R

p Pd

p

VP

srr

Ex.3 as Ex.2

inE E E

30

1 1 [ ]4

qr qrR

30

1 [ ]4

qr r

R

30

14

qs

R

( )s r r

0

13inE P

34( )3

qs p R P

for points outside, 20

ˆ14

p rV

r

4.2.2 (4)

r

2( ) 4E r da E r

3

30

43

43

rq

R

304

rqE

R

4.2.3

30

1

4

pEin R

33

0

1 1 4( )34

R PR

0

1

3P

20

ˆ1

4

P RV dinin R

20

ˆ1

4out inP R

V V V dR

20

ˆ1

4

p rV

r

or

Ex.3(averaged field)

( )P

uniform

P

uniform

V pP

4.3 The Electric Displacement

4.3.1 Gauss’s Law in The Presence of Dielectrics

4.3.2 A Deceptive Parallel

4.3.1 Gauss’s Law in The Presence of Dielectrics

bound free

Gauss’s Law

electric displacement

Gauss’s Law

b f

0 b f fE P

0( ) fE P

fD

0D E P

.encfsurfaceD da Q

4.3.1

Ex.4

inside

outside

need to know

Rrfor >

Rr

.encfsurfaceD da Q

?D

(2 )D rL L

ˆ2

D rr

?E

P

0 0

2E D r

r

2

ˆ1

4f fR

D D dR

4.3.2 A Deceptive Parallel

one equation need 2 more equations [ i.e., ] to get unique solution

one unknown V, one equation.

?

One equation: ?

or

0E

02

ˆ1

4

RE d

R

3 , ,x y zE E Eunknown 0E

0E

E 0E

2

0:V V

3 , ,x y zD D Dunknown

0 ( )D E P P

4.4 Self-Consistence of Electric Field and Polarization; Linear Dielectrics

4.4.1 Permittivity, Dielectric Constant

4.4.2 Special Problems Involving Linear Dielectrics

4.4.3 Energy in Dielectric System

4.4.4 Forces on Dielectrics

4.4.5 Polarizability and Susceptibility

4.4.1 Permittivity, Dielectric Constant

self- consistence

for linear dielectrics

permittivity permittivity of free space

dielectric constant

x y

y x

( ) 2y f x x

( ) 1x f y y

2y

1x

0 eP x E

0 0 0 0(1 )e eD E P E x E x E

D E

0 (1 )ex

0

1 eK x

0( ) ( ) ( ) ( )

1e e

b fe

x xr P D r

x

4.4.1 (2)

Ex.5 ?

for r < a

for r > a

for b > r > a

for r > b

dielectric

centerV

0E P D

4

QD r

r

02 24 4

a b acenter a b

Q QV V E d dr dr

r r

0

1 1 1( )

4

Q

b a b

0

2

2

ˆ4

ˆ4

Qr

rE

Qr

r

4.4.1 (3)

for b > r > a

at r = b

at r = a

00 2

ˆ4

ee

x QP x E r

r

0b P 2

21

( 0)rP r Prr

0

0

2

2

4

e

be

x Q

bP nx Q

a

4.4.1 (4)

? even in linear dielectric

may or may not

?

If the surface or the loop is entirely in a uniform linear dielectric,

0D

0( ) 0s

D da D d E P d P d

0 D

ExP e

0 0

dP

vacvac EK

ED

E

10

But for

0

dP 0D

D E

0 vacD E

0P

0P

vacuum

Dielectric

4.4.1 (5)

QvacE

EK

vacVV

K

vacvac

QC

V vac

vac

Q QC K KC

V V

4.4.2 Special problems Involving Linear Dielectrics

Ex.7

E

?

Method 1.

0 0 0eP x E

0 00

11

( )3 3

exE P E

1 0

0

22

1( )

3 3ex

E P E

1 0 1 0 0( )( )3e

e ex

P x E x E

0( )3n

nexE E

4.4.2 (2)

dielectric constant

Method 2.

0 1 2 00

( )3

ne

n

xE E E E E

0 01 3

( ) ( )21

3e

E E Ex K

1 eK x

0 eP x E

0

1

3pE P

0 pE E E

3e

px

E E

0 ( )3ex

E E E

01

( )1

3e

E Ex

Ex.8

4.4.2 (3)

? ( )qF force on q

0ˆ ( 0)b z e zP n P x E z

0

0

, 2 2

2 2 3/2

1cos

4 ( )

1

4 ( )

z due to qq

Er d

qd

r d

00 0

2 2 3/21

[ ]4 2( )

bb e

qdx

r d

2 2 3/21

2 2 ( )e

be

x qd

x r d

, , bz z due to q z due toE E E

Total bound charge

Method 1.

4.4.2 (4)

2 2 3/20

2 2 1/20

2 ( )

1[ ]

2 ( )

2

eb b

e

e

e

e

e

x rdrq r drd qb

x r d

xq d

x r d

xq

x

?qF

02

ˆ1( )

4q bR

E daR

Method 2. method of image

q

0z

b

0z

4.4.2 (5)

(0,0, )q at d

(0,0, )bq at d

z

b

(0,0, )q at d(0,0, )bq at d

b

2 2 20

2 2 2

1( 0)

4 ( )

( )

[

]b

qV z

x y z d

q

x y z d

2 2 20

1( 0) [ ]

4 ( )

bq qV z

x y z d

• Satisfy Poission’s eq

The potential shown at above is the correct solution.

4.4.2 (6)

( ) 0V z 0

( 0) ( 0)z

V z V z

2 2 2 3/20 0

2 2 2 3/2 2 2 2 3/2

2( ) 2 ( ) 2( )1 1( ) ( )

4 2 ( )

21 1

4 2 2( ) ( )

b b

z z

b eb

e

q d q d q q dV V

z z x y d

q d x qd

xx y d x y d

2

2 20 0

1 1ˆ ˆ( )

4 4 2(2 ) 4b e

qe

qq x qF z z

xd d

4.4.3 Energy in Dielectric System

Suggestion:

to charge a capacitor up

with linear dielectric (constant K)

energy stored in any electrostatic system (vacuum)

with linear dielectric

212

W CV

vacC KC

20

2W E d

20 1

2 2W KE d D Ed

0 , for linear dielectric,

derivation:

4.4.3 (2)

( )

( )

( )

f

s

W Vd

D Vd

DV d D Vd

DV da D Ed

D E

( ) ( ) ( )

fD

DV D V D V

21 12 2

( ) ( )D E E E E D E

12

12

( )

[ ]

D E d

D Ed

12

W D Ed

s

4.4.4 Forces on dielectrics

with Q constant

w

x

l

d Dielectric

us usF F dW F dx

,2

21 1

2 2

QW CV

C

0 ( )r e

Q AC

V dw

l X xd

22

21 1

2 2

dW Q dC dCF V

ds dx dxC

0 eX wdC

dx d

20

2eX w

F Vd

with V constant, such as with a battery that does work,

4.4.4 (2)

212

0 e

W CV

X wdC

dx d

2 2

2 20

1

21 1

2 2 e

dW dQ dC dCF V V V

dx dx dx dxdC w

V X Vdx d

usdW F dx VdQ

1. polarization for linear dielectric

induced dipole moment of each atom or molecular

susceptibility

atom polarizability

• What is the constant between α and Xe ?

non-self-consistent field

5 equations, 5 variables

4.4.5 Polarizability and Susceptibility

0 eP X E

p E

P Np N E

343

1N

R

self elseE E E

selfp E

30

14

pself

RE

elseP N E

2.

3.4.

5.

0e

NX

[ , , , , ]self elseP p E E E

4.4.5 (2)

3 30 0

300

1 1

4 4

(1 ) (1 )34

else else else

else else

pE E E E

R R

NE E

R

0

0 03 3

, (1 ) 1

N

else eN NN

P E X

30

3433

3 34 43 3

4

(4 ) 3

11 ( )e

if a

aN a fX f

fN a R

0

00 03

31

N

e e eNN N

X X X

Clausius-Mossott formulaLorentz-Lorenz equation in its application to optics

4.4.5 (3)

0

0 0

3

0

(1 )3

3

31

3 11

2

e

ee

e eX

e

r e

XNX

X X

N N X

KX

N K

top related