chapter 7 laplace transforms. applications of laplace transform notes easier than solving...

Post on 19-Dec-2015

224 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Chapter 7

Laplace Transforms

Applications of Laplace Transform

notes

• Easier than solving differential equations – Used to describe system behavior – We assume LTI systems – Uses S-domain instead of frequency domain

• Applications of Laplace Transforms/– Circuit analysis

• Easier than solving differential equations

• Provides the general solution to any arbitrary wave (not just LRC) – Transient– Sinusoidal steady-state-response (Phasors)

– Signal processing – Communications

• Definitely useful for Interviews!

Building the Case…

http://web.cecs.pdx.edu/~ece2xx/ECE222/Slides/LaplaceTransformx4.pdf

Laplace Transform

Laplace Transform

• We use the following notations for Laplace Transform pairs – Refer to the table!

Laplace Transform Convergence

• The Laplace transform does not converge to a finite value for all signals and all values of s

• The values of s for which Laplace transform converges is called the Region Of Convergence (ROC)

• Always include ROC in your solution!

• Example:

asas

aseeas

eas

jsnoteeas

dtee

dtetfsF

tuetf

tjtataj

tasstat

st

at

)Re(;1

0)Re(11

:;1

)()(

);()(

0

)(

0

)(

0

)(

0

Remember: e^jw is sinusoidal; Thus, only the

real part is important!

0+ indicates greater than zero values

Example of Bilateral Version

asas

asas

asas

eas

dtee

dtetfsF

tuetf

tasstat

st

at

)Re(;1

)Re(;1

0)Re(;11

)()(

);()(

0)(0

asas

asas

asas

eas

dtee

dtetfsF

tuetf

tasstat

st

at

)Re(;1

)Re(;1

0)Re(;11

)()(

);()(

0)(0

Find F(s):

Find F(s):

Re(s)<a

a

S-plane

Note that Laplace can also be found for periodic functions

ROC

Remember These!

Example – RCO may not always exist!

;3

1

2

1)(

3)Re(;3

1)(

2)Re(;2

1)(

)()(

)()()(

3

2

32

sssF

ss

tue

ss

tue

dtetfsF

tuetuetf

t

t

st

tt

Note that there is no common ROC Laplace Transform can not be applied!

Example – Unilateral Version

• Find F(s):

• Find F(s):

asasas

dtee

dtetfsF

atuetf

stat

st

at

)Re(0)Re(;1

)()(

0);()(

0

0

0)Re(;1

]1[lim1

]1[lim1

)(

)()(

)()(

)(

0

0

ss

es

es

dttue

dtetfsF

tutf

tjt

stt

st

st

ssF

ttf

edttte

dtetfsF

tttf

stst

st

;1)(

)()(

)(

)()(

)()(

0

0 0

0

0

• Find F(s):

• Find F(s):

asasas

as

dtee

dtetfsF

aetf

stat

st

at

)Re(0)Re(;1

]10[1

)()(

0;)(

0

0

Example

0)Re(;2/12/1

)(

0)Re(;2/1

2/1;2/1

2/1

)Re(;1

)()(

2/12/1

)cos()(

22

0

sbs

s

jbsjbssF

sjbs

ejbs

e

asas

e

dtetfsF

eetf

bttf

jbtjbt

at

st

jbtjbt

0)Re(;2/12/1

)(

0)Re(;2/1

2/1;2/1

2/1

)Re(;1

)()(

2/12/1

)sin()(

22

0

sbs

b

jbs

j

jbs

jsF

sjbs

je

jbs

jje

asas

e

dtetfsF

jejetf

bttf

jbtjbt

at

st

jbtjbt

Example

0)Re(;)(

)(

1

)(

1

2

1)(

)Re(;1

)()(

2/12/1

)cos()(

22

0

asbas

as

jbasjbassF

asas

e

dtetfsF

eeeetf

btetf

at

st

atjbtatjbt

at

Properties

• The Laplace Transform has many difference properties • Refer to the table for these properties

Linearity

Scaling & Time Translation

Scaling

Time Translation

)/()()(/

asFa

ebatubatf

asb

b=0

Do the time translation first!

Shifting and Time Differentiation

Shifting in s-domain

Differentiation in t

Read the rest of properties on your

own!

Examples

3.0)Re(;3.0

15)(

)Re(;1

5)( 3.0

ss

sF

asas

e

etf

at

t

3.0)Re(;3.0

15)(

__;1

)2(5)(

2

)2(3.0

ses

sF

shifttimewithas

e

tuetf

s

at

t

3.0)Re(;3.0

744.2

3.05)(

)}2({5

)}2({5

}){2(5)(

__;1

)2(5)(

22)3.0(2

)2(3.0)3.0(2

)3.0(2)(3.0)3.0(2

)3.0(2)3.0(2)(3.0

)(3.0

ses

es

esF

tuee

tueee

eetuetf

shifttimewithas

e

tuetf

ss

t

t

t

at

t

Note the ROC did not change!

Example – Application of Differentiation

)()(

)(

)()(

?)}({

)()(

0

0

sFds

sG

dtetfds

dtettfsG

ttf

ttftg

st

st

0)Re(;

0)Re(};{

)()(

?)}cos({

)cos()(

222

22

22

sbs

bs

sbs

s

ds

sFds

sG

btt

btttg

Read Section 7.4

Matlab Code:

Read about Symbolic Mathematics: http://www.math.duke.edu/education/ccp/materials/diffeq/mlabtutor/mlabtut7.htmlAnd

http://www.mathworks.de/access/helpdesk/help/toolbox/symbolic/ilaplace.html

Example

• What is Laplace of t^3? – From the table: 3!/s^4 Re(s)>0

• Find the Laplace Transform:

;9)4/(

3

4)(

9

3)()()3sin()(

);/(4

)(

6/;4

:_

)()3sin()6/4()}6/4(3sin{)(

)6/4()2/12sin()(

2

24/

2

24/

6/4

s

esG

ssFuf

asFe

sG

ba

nTranslatioTime

ututtg

tuttg

s

s

t

Note that without u(.) there will be no time translation and thus, the result will be different:

)/()()(/

asFa

ebatubatf

asb

Time transformation

Assume t>0

A little about Polynomials

• Consider a polynomial function:

• A rational function is the ratio of two polynomials:

• A rational function can be expressed as partial fractions

• A rational function can be expressed using polynomials presented in product-of-sums

Has roots and zeros; distinct roots, repeated roots, complex roots, etc.

Given Laplace find f(t)!

Finding Partial Fraction Expansion

• Given a polynomial

• Find the POS

(product-of-sums) for the denominator:

• Write the

partial fraction expression

for the polynomial

• Find the constants– If the rational polynomial has

distinct poles then we can use the

following to find the constants:

http://cnx.org/content/m2111/latest/

......

)]()[(

)]()[(

)]()[(

....)()()(

)(

)...)()((

)(

)(

)()(

3

2

1

32

22

11

3

3

2

2

1

1

321

ps

ps

ps

sIpsk

sIpsk

sIpsk

ps

k

ps

k

ps

ksG

pspsps

sN

sD

sNsG

Matlab Code

Application of Laplace

• Consider an RL circuit with R=4, L=1/2. Find i(t) if v(t)=12u(t).

0;3)(3)(8

33)(

3)]()[(

3)]()[(

8)8(

24)().()(

/12)()(12)(

)().()(45.0

1)(/)()(

)()()45.0(

:_sin

)()(4)(

5.0

)()()(

8

822

011

21

2

1

tetutiss

sI

sIpsk

sIpsk

s

k

s

k

sssVsHsI

ssVtutv

sVsHsIs

sVsIsH

sVsIs

LaplacegU

tvtidt

tdi

tvtRidt

tdiL

t

p

p

Partial fraction expression

Given

Application of Laplace• What are the initial [i(0)] and final

values: – Using initial-value property:

– Using the final-value property

08

24lim)(lim)0(

sssIi ss

38

24lim)(lim)(lim 00

s

ssIti sss

)()()(:_

)()()0(:_

limlim

limlim

0

0

ssFtffvalueFinal

ssFtffvalueInitial

tt

tt

Note: using Laplace Properties

0;3)(3)( 8 tetuti t

Note thatInitial Value: t=0, then, i(t) 3-3=0Final Value: t INF then, i(t) 3

Using Simulink

H(s)

i(t)

v(t)

Actual Experimentation

• Note how the voltage looks like:

Input Voltage:

0;12)(

5.0)(

0;3)(3)(

)()(4)(

5.0

)()()(

8

8

tedt

tditv

tetuti

tvtidt

tdi

tvtRidt

tdiL

t

t

Output Voltage:

Partial Fraction Expansion (no repeated Poles/Roots) – Example

• Using Matlab:

• Matlab code:b=[8 3 -21];

a=[1 0 -7 -6];

[r,p,k]=residue(b,a)

We can also use ilaplace (F); but the result may not be

simplified!

Finding Poles and Zeros

• Express the rational function as the ratio of two polynomials each represented by product-of-sums

• Example:

)3)(1(

)2(2

682

84)(

2

ss

s

ss

ssF

S-plane

Pole

zero

H(s) Replacing the Impulse Response

h(t)x(t) y(t)

H(s)X(s) Y(s)

convolution multiplication

H(s) Replacing the Impulse Response

h(t)x(t) y(t)

H(s)X(s) Y(s)

convolution multiplication

Example: Find the output X(t)=u(t); h(t)

0 1

1 h(t)

)1()1()()(

11)().()(

1)(

1)(

)1()()(

222

tutttutys

e

ss

esXsHsY

ssX

s

e

ssH

tututh

ss

s

0 1

1 y(t)

e^-sF(s)

This is commonly used in D/A converters!

Dealing with Complex Poles

• Given a polynomial

• Find the POS (product-of-sums) for the denominator:

• Write the partial fraction expression for the polynomial

• Find the constants– The pole will have a real and

imaginary part: P=|k|

• When we have complex poles {|k| then we can use the following expression to find the time domain expression:

http://cnx.org/content/m2111/latest/

)cos(||2)(

__);Im();Re(

btektf

PofanglePbPaat

Laplace Transform Characteristics

• Assumptions: Linear Continuous Time Invariant Systems

• Causality– No future dependency

– If unilateral: No value for t<0; h(t)=0

• Stability – System mode: stable or unstable

– We can tell by finding the system characteristic equation (denominator)

• Stable if all the poles are on the left plane

– Bounded-input-bounded-output (BIBO)

• Invertability – H(s).Hi(s)=1

• Frequency Response – H(w)=H(s);sjw=H(s=jw)

)()()(

)2)(2(

1

4

1)(

22

2

tuBetuAeth

ssssH

tt

52

13)(

52

13)(

2

2

j

jH

ss

ssH

We need to add control mechanism to make the overall system stable

Frequency Response – Matlab Code

52

13)(

52

13)(

2

2

j

jH

ss

ssH

Inverse Laplace Transform

Example of Inverse Laplace Transform

Bilateral Transforms

• Laplace Transform of two different signals can be the same, however, their ROC can be different:

Very important to know the ROC.

• Signals can be – Right-sided Use the bilateral

Laplace Transform Table

– Left-sides

– Have finite duration

• How to find the transform of signals that are bilateral!

sidedLeftsaas

tuetx

sidedRightsaas

tuetx

at

at

)Re(;1

)()(

)Re(;1

)()(

See notes

How to Find Bilateral Transforms

• If right-sided use the table for unilateral Laplace Transform• Given f(t) left-sided; find F(s):

– Find the unilateral Laplace transform for f(-t) laplace{f(-t)}; Re(s)>a

– Then, find F(-s) with Re(-s)>a

• Given Fb(s) find f(t) left-sided : – Find the unilateral Inverse Laplace transform for F(s)=fb(t)

– The result will be f(t)=–fb(t)u(-t)

• Example

4

1

5

2)(

)Re(4)Re(4;4

1)(

)Re(4;4

1)(

)(:

)(:_

)Re(5;5

2)(2

)()(2)(

4

4

5

45

sssF

sidedLeftsss

sF

sidedRightss

tue

tfAssume

tueFindTo

sidedRightss

tue

tuetuetx

t

t

t

tt

Examples of Bilateral Laplace Transform

)Re(5);Re(4;4

1

5

2)()(2)(

)Re(5&)Re(4;4

1

5

2)()(2)(

4)Re(5;4

1

5

2)()(2)(

45

45

45

ssss

tuetuetx

ssss

tuetuetx

sss

tuetuetx

tt

tt

tt

Find the unilateral Laplace transform for f(-t) laplace{f(-t)}; Re(s)>aThen find F(-s) with Re(-s)>a

Alternatively: Find the unilateral Laplace transform for f(t)u(-t) (-1)laplace{f(t)}; then, change the inequality for ROC.

Feedback System

Find the system function for the following feedback system:

G(s)

Sum F(s)X(t)

r(t)

e(t) y(t)

+

+

)().(1

)()()(/)(

)(/)())().(()(

)().()(

)(/)()()()(

sGsF

sFsHsXsY

sFsYsGsYsX

sGsYsR

sFsYsEsRsX

H(s)X(t) y(t)

Equivalent System

Feedback Applet: http://physioweb.uvm.edu/homeostasis/simple.htm

Practices Problems

• Schaum’s Outlines Chapter 3– 3.1, 3.3, 3.5, 3.6, 3.7-3.16, For Quiz! – 3.17-3.23– Read section 7.8 – Read examples 7.15 and 7.16

Useful Applet: http://jhu.edu/signals/explore/index.html

top related