chiang ch9

Post on 20-Jan-2015

1.445 Views

Category:

Business

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

its use full to students of management

TRANSCRIPT

1

• Ch. 9 Optimization: A Special Variety of Equilibrium Analysis

• 9.1 Optimum Values and Extreme Values

• 9.2 Relative Maximum and Minimum: First-Derivative Test

• 9.3 Second and Higher Derivatives• 9.4 Second-Derivative Test• 9.5 Digression on Maclaurin and

Taylor Series• 9.6 Nth-Derivative Test for Relative

Extremum of a Function of One Variable

2

9.1 Optimum Values and Extreme Values

• Goal vs. non-goal equilibrium• In the optimization process, we need to

identify the objective function to optimize.

• In the objective function the dependent variable represents the object of maximization or minimization

= PQ - C(Q)

3

9.2 Relative Maximum and Minimum: First-Derivative Test9.2-1 Relative versus absolute extremum9.2-2 First-derivative test

5

9.2-2 First-derivative test

• The first-order condition or necessary condition for extrema is that f '(x*) = 0 and the value of f(x*) is:

• A relative maximum if the derivative f '(x) changes its sign from positive to negative from the immediate left of the point x* to its immediate right. (first derivative test for a max.)

A f '(x*) = 0

x*

y

6

9.2-2 First-derivative test

• The first-order condition or necessary condition for extrema is that f '(x*) = 0 and the value of f(x*) is:

• A relative minimum if f '(x*) changes its sign from negative to positive from the immediate left of x0 to its immediate right. (first derivative test of min.)

x

Bf '(x*)=0

y

x*

7

9.2-2 First-derivative test

• The first-order condition or necessary condition for extrema is that f '(x*) = 0 and the value of f(x*) is:

• Neither a relative maxima nor a relative minima if f '(x) has the same sign on both the immediate left and right of point x0. (first derivative test for point of inflection)

D f '(x*) = 0

x*

y

x

8

9.2 Example 1 p. 225

,75.6)5.6('0)6('25.5)5.5('

min625.9)5.6(8)6(375.9)5.5(

1,25.5)5.2('0)2('75.6)5.1('

max625.385.240)2(375.38)5.1(

rightleft

extrema6;2062

01283)('

derivativest 1036243)('

function primative83612)(

**

*2

*1

2

2

23

fff

fff

fff

fff

xfy

xxxx

xxxf

xxxf

xxxxfy

i

9

primitive function and 1st & 2nd derivatives

4

0246)()3

62

0128)(

36243)()2

83612)()1

2

2

23

x

xxf

xx

xxxf

xxxf

xxxxf

10

9.2 Example 1 (neg) p. 225

1,8.6)5.6('0)6('3.5)5.5('

max6.9)5.6(8)6(4.9)5.5(

,3.5)5.2('0)2('8.6)5.1('

min6.385.240)2(4.38)5.1(

right)(left

extrema6;2062

01283)('

derivative1st 036243)('

function primative83612)(

*

*2

*1

2

2

23

fff

fff

fff

fff

xfy

xxxx

xxxf

xxxf

xxxxfy

i

11

primitive function and 1st & 2nd derivatives

4

0246)3

062

0128

36243)2

83612)1

2

2

23

x

xxf

xx

xxxf

xxxf

xxxxf

12

9.2 Example 2 p. 226

,2.0)6.2('05.22.0)4.2('

min relative76.16.275.15.276.14.2

rightleft

extrema5.22/5

derivative1st 052

function primative85

/

*

*

/

2

fff

fff

QfAC

Q

QQf

QQAC

13

plots: primitive convex function, as well as

1st & 2nd derivatives

2)3

25

052

52)2

85)1 2

CM

Q

QMC

QMC

QQAC

14

9.2 Smile test

maximum relative then 0,x if

derivative 2nd4)4

extrema300;12004)3

derivativest 1041200)2

function primative21200)1

//

2

2

*

2

f

dQ

Rd

QQ

QdQ

dR

QQR

15

Primitive function and 1st & 2nd derivatives

4)3

300

041200

41200)2

21200)1 2

RM

Q

Q

QMR

QQR

16

9.3 Second and Higher Derivatives9.3-1 Derivative of a derivative9.3-2 Interpretation of the second derivative9.3-3 An application

17

9.3-1 Derivative of a derivative

• Given y = f(x)• The first derivative f '(x) or dy/dx is itself a

function of x, it should be differentiable with respect to x, provided that it is continuous and smooth.

• The result of this differentiation is known as the second derivative of the function f and is denoted as f ''(x) or d2y/dx2.

• The second derivative can be differentiated with respect to x again to produce a third derivative, f '''(x) and so on to f(n)(x) or dny/dxn

18

9.3 Example

derivative rd30)4

derivative nd24)3

derivativest 141200)()2

function primative21200)1 2

Qf

Qf

QQf

QQfR

19

Primitive function and 1st & 2nd derivatives

4)3

300

041200

41200)2

21200)1 2

RM

Q

Q

QMR

QQR

20

Example 1, p. 228

derivativeth 50)6

derivative4th 96)5

derivative 3rd696)4

derivative 2nd34648)(")3

derivative1st 334316')2

function primative13174)()1

)5(

)4(

)3(

2

23

234

xf

xf

xxf

xxxf

xxxxf

xxxxxfy

21

9.3-2 Interpretation of the second derivative

• f '(x) measures the rate of change of a function – e.g., whether the slope is increasing or

decreasing

• f ''(x) measures the rate of change in the rate of change of a function– e.g., whether the slope is increasing or

decreasing at an increasing or decreasing rate

– how the curve tends to bend itself (p. 230)

22

9.3-3 The smile test

minimum relative a is then

,0 If

maximum relative a is then

,0 If

*

*

*

*

x

xf

x

xf

23

9.3 Example

maximum 05)

derivative 2nd4)4

extrema300Q3)

derivativest 1041200)2

function primative21200)1

*

2

RM

RM

QMR

QQTR

24

9.4 Second-Derivative Test9.4-1 Necessary and sufficient conditions9.4-2 Conditions for profit maximization9.4-3 Coefficients of a cubic total-cost function9.4-4 Upward-sloping marginal-revenue curve

25

9.4-1 Necessary and sufficient conditions

• The zero slope condition is a necessary condition and since it is found with the first derivative, we refer to it as a 1st order condition.

• The sign of the second derivative is sufficient to establish the stationary value in question as a relative minimum if f "(x0) >0, the 2nd order condition or relative maximum if f "(x0)<0.

26

9.4-2 Profit function: Example 3, p. 238

testsmile theapplyingmax0min0 )9

extrema w/ der. 2nd solving5.100)5.36(5.100)3( )8

derivative nd25.1186 )7

extrema eq. quadratic5.363 )6

derivative1st 05.3285.1183 )5

simplified200053282559

functionprofit 20005.152825.6121200 3)

functioncost 20005.152825.61 )2

function revenue21200 )1

*2

*1

*2

*1

2

23

232

23

2

QQ

Q

QQ

QQ

Q.Q.Q

QQQQQTR-TCπ

QQQTC

QQTR

27

9.4 Quadratic equation

2

12

*2

*1

2

2

4,

arefunction quadratic theof roots the

0

form in thefunction quadratic aGiven

a

acbbxx

cbxax

28

9.4-2 Profit function: example 3, p. 238

max0 min0 )8

testsmile theapplying

5.100)5.36(5.100)3( )7

5.1186 )6

functionprofit of derivative nd2

5.363 )5

05.3285.1183 )4

functionprofit of derivative1st

200053282559 3)

functionprofit

20005.152825.61)2

21200 )1

functionscost and revenue

*2

*1

*2

*1

2

23

23

2

QQ

Q

QQ

QQ

Q.Q.QTR-TCπ

QQQTC

QQTR

29

9.4 Imperfect Competition, Example 4, p. 240

QQQQ 018.01.1238000Q*ARTR 1)

function revenue Total32

30

Example 4, p. 240TR and 1st , 2nd & 3rd derivatives

max. 0)("min. 0)( )11

testsmile

94.1)79.19("95.1)76.10( )10

432.06.6)( )9

8)

derivitive 3rd

79.1976.10 )7

0216.06.646 )6

RM5)

derivative 2

72.0.03.3468000

054.2.223

1018.01.1238000R )4

)()()3

ruleproduct theand revenue Marginal

)2

018.01.1238000 )1

functions revenue totaland Average

*2

*1

*2

*1

2

32

2

32

32

QMRQRM

MRRM

QQRM

RMfRM

QQ

QQRM

MRf

nd

QQQ

QQQ

QQQM

QfQQQfMR

QQfTR

QQQQfAR

31

9.4 Strict concavity

• Strictly concave: if we pick any pair of points M and N on its curve and joint them by a straight line, the line segment MN must lie entirely below the curve, except at points MN.

• A strictly concave curve can never contain a linear segment anywhere

• Test: if f "(x) is negative for all x, then strictly concave.

32

9.5 Digression on Maclaurin and Taylor Series9.5-1 Maclaurin series of a polynomial function9.5-2 Taylor series of a polynomial functions9.5-3 Expansion of an arbitrary function9.5-4 Lagrange form of the remainder

33

9.5-2 Taylor series of a polynomial functions

0

0

0/

0

10

1

002

001

000

00

002

001

000

00

xand x fromsecant the toparallel is tangent whose

xand between x curve on thepoint a is p where

0)(

then0,n If

1 Where

210)(

sderivative its of sum wt.by the function any function, arbitrary an for seriesTaylor 210

)(

sderivative its of sum wt. thefunction, lpolynomina afor seriesTaylor

riserunrun

risexxp fRxfxf

xx!n

pfR

Rxxn!

xf xx

!

x f xx

!

xf xx

!

xfxf

xxn!

xf xx

!

x f xx

!

xf xx

!

xf xf

n)(n

n(n)///

n(n)///

34

xxfy

xxxfxfxf

xf

dxxfdy

xxxfy

xxxfy

xfxy

xxfxy

xyxfydx

dx

0

01001

1

0

)8

)7

:is y ofion approximat seriesTaylor order -firstA

alityproportion offactor theis where

8.4) (see aldifferenti)6

0 finite as)5

)4

)3

0 then 0 as)2

derivativelim)1

alsDifferenti 1.8

35

Difference Quotient, Derivative & Differential

f(x0+x)

f(x)

f(x0)

x0 x0+x

y=f(x)

x

y

x

f’(x)

f’(x0)x

x

A

C

D

B

Exercise 9.5-2(a): Geometric series

36

11-610 pp Calculus, Stewart, and243 p.t Wainwrigh& Chiang

1x if convergent by x,it

multiplingby one proceeding thefrom obtained is each term :series Geometric

11

1

11

1...1)(

024

240

6

60

2

2011

240124)(12411)2)(3)(4()(

6016)(1611)2)(3()(

2012)(12112)(

101)(1111)(

10-1)(11

1

for 0 let x and 4 equalsn choose i.e.,!

)(

!3

)(

!2

)()()(

series,Maclaurin theof termsfivefirst theFind

100

432

432

50

)4(55)4(

40

)3(44)3(

30

//33//

20

/22/

10

1

0

00

)(3

00

)3(2

00

//

00/

0

xaax

x

aax

xxxxxxxf

xxxxxf

xfxxxf

xfxxxf

xfxxxf

xfxxxf

xfxx

f(x)

xxn

xfxx

xfxx

xfxxxfxfxf

n

n

n

n

n

n

nn

37

432

1

1

900 where1

aaaay

. aay

Ch. 5b Linear Models and Matrix Algebra 5.5 - 5.8

38

1221126400

3300025411

050200

250150

050200

250150

10

01

analogy by

algebrascalar 1x if 11

2(a))-9.5 250, p. t, Wainwrigh& (Chiangion approximat seriesTaylor

2

12

0

1

12

0

1

00111

..

.....

..

..

..

..

A...AAIAAI

x...xxxx

IAAAAIAA

n

n

n

n

n

n

-

5.7 Leontief Input-Output Models5.7 Leontief Input-Output ModelsStructure of an input-output modelStructure of an input-output modelMiller & Blair, p. 102Miller & Blair, p. 102

39

381, p. 1972, Theory, micMicroeconoNicholson,Walter

...)1(

1...

)1(

1

)1(

1

111

1

1

111

11

11

1

1

11

1

series geometric theapplying and 1

1Let

...)1(

1...

)1(

1

)1(

1

...)1(

...)1()1(

)1(...

)1()1(

that prove (r) rateinterest Given

:problem (v) flow - (V)stock The

2

2

2

2

2

r

v

rrrvV

rv

r

rrv

r

rv

rr

v

r

v

xvxxxvV

rx

rrrv

r

v

r

v

r

vV

r

v

r

v

r

v

r

vV

n

n

n

n

n

Diewert’s Quadratic Lemma

40

1991)July SJAE, Sundquist, and Cooke(1)10

1lnln21ln)9

ln21lnln21lnln

lnlnlnln21lnlnlnln)8

lnlnln)7

)6

)5

ln/ln)4

lnln21lnlnlnln)3

lnlnLet)3

),())(!/)((...))(!2/)(())(()()()2

),()1

10210101

011001

01010101010

201010101001

010100

00

00

000000000000

201001001

0102

01001001

i

ssii

iiiii

iiiii

i iiiiiiii

i iiiiiiiiii

iiiiiiii

yii

ixy

ii

iiiyiiiiii

iiiiiii

nnn

jijj

ii

i

XXYY

XXssYY

XXssXXssXXs

XXXXssXXsYY

XXssXsXffXf

PPXY

PMPPP

sXPXPYPXPYXXYXYXf

XXXfXXXfYY

xxandYxf

xxRtnnxfxxxfxxxfxfxf

XfY

Diewert’s Quadratic Lemma

41

region base the torelative jregion in index ty productivi the=

jregion in isector in esexpenditur wageof share the=s

jregion in iinput of price theP

jregion in Xinput ofquantity average the= X

jregion in Youtput of price theP

jregion in Ycommodity of acreper yield average the= Y

region first theis 1 andregion base 0such that regions geographic ofset = j

acres planted and materials, ,fertilizer

enery, labor, capital, of inputsKLEFMA =i e.g., where

economy, in thecommodity a of production in the inputs ofset = i

Let

j

ij

ij

iij

yj

j

Diewert’s Quadratic Lemma

42

i

ssii

iiiii

iiiii

i iiiiiiii

i iiiiiiii

iiii

jiji

ji

ijijj

iiiiiii

iiiiiii

nnn

jijj

iiWWWW

WWssWW

WWssWWssWWs

WWWsWWsaxafaxaf

WsWffWf

NNWW

NNWW

sWNWNWWWWWWWf

WWWfWWWfWW

axRtnnafaxafaxafafxf

WfW

1)10

1lnln21ln)9

ln21lnln21lnln

lnlnln21lnln))(!2/)(())(()8

ln)7

)6

)5

ln/ln)4

lnln21lnlnlnln)3

),())(!/)((...))(!2/)(())(()()()2

),()1

10210101

011001

01010101010

201010

2

00

00000000

201001001

2

Diewert’s Quadratic Lemma

43

jregion in t coefficienmix industry the=

jregion in isector in esexpenditur wageof share the=s

jregion in isector in jobs of share the= S

jregion in isector in employment the= N

jregion in isector in jobper wageaverage the= W

jregion in jobper wageaverage the= W

nation hin theregion witfirst theis 1 and U.S. theis 0such that

9 to0 = j where U.S. theof regions geographic ofset = j

sectors eagricultur-non and eagriculturfor 2 and 1 =i e.g., where

economy, in the sectors for the tionsclassifica industrial standard ofset = i

Let

j

ij

ij

ij

ij

j

9.5 Maclaurin Series of a Polynomial Function

44

n(n)///

nnn

n

nn

nn

nn

nn

nn

xn!

f x

!

f x

!

f x

!

f f(x)

nfaannnnf

faafaf

faafaf

faafaf

faafaf

annnnxf

xannnaxf

xannxaaxf

xnaxaxaaxf

xaxaxaxaaxf

0

2

0

1

0

0

0

function primative theinto tscoefficien theof value thengSubstituti

!)0()1)(2)(3()3)(2)(1()0(

!3)0(!3)0(6)0(

!2)0(!2)0(2)0(

!1)0(!1)0()0(

!0)0(!0)0()0(

tcoefficien for the solving& gsimplifyin 0,at xfunction each Evaluating

derivative n)1)(2)(3()3)(2)(1()(

derivative 3)2)(1(...6)(

derivative 2)1(...62)(

derivative 1...32)(

function primative...)(

210

///33

///3

///

//22

//2

//

/11

/1

/

000

th

rd33

///

nd232

//

st12321

/

33

2210

9.5 Maclaurin Series of a Polynomial Function

45

2210

210

////

//

2

3422

6

1

4

0

2

0

2

0

1

0

0

0

606

4064

20342

Given

xx x!

x

! x

! f(x)

xn!

f x

!

f x

!

f x

!

f f(x)

)(f(x)f

)(fx(x)f

)f(xxf(x)

n(n)///

9.5 Taylor Series of a Polynomial Function

46

n(n)

///

n(n)///

xxn!

xf

xx!

x f xx

!

xf xx

!

xf xf

)f(xxf)g(f(x)gS

.x-x xxn!

g

!

g

!

g

!

g g

agxf

xaagxf

xaxaagxf

xaxaagxf

x

00

20

010

000

0

0

00

210

rd3

//////

nd032

////

st203021

//

202010

000

210)(

and )(0 then ,)( ince

0and Therefore

0

2

0

1

0

0

0)(

thatexpansion seriesMaclaurin thefrom know we0,At

derivative 36)()(

derivative 262)()(

derivative 132)()(

function primitive)()(

xfromdeviation theis andpoint chosen a is x where Let x

9.5 Taylor Series of a Polynomial Function

47

xx!

x fR

RxRxx!

x!

xf

xx!

xf xx

!

xf xf

xxn!

xf

xx!

x f xx

!

xf xx

!

xf xf

fxf

fxxf

fxxxf

//

/

n(n)

///

20

0

10

10

000

0

00

20

010

000

0

////

//

2

0

2

44)1(4811

41

0

8)(

10)(

210)(

2)1(2)(

4)1(22)(

8)1(25)(

1 n with 1, xaround belowfunction quadratic toExpand

9.5 Taylor Series of a Polynomial Function

48

2

2

2

20

10

20

010

000

0

00

20

010

000

0

////

//

2

0

25

1244

)1(1)1(48

2

21

1

41

0

8)(

210)(

210)(

2)1(2)(

4)1(22)(

8)1(25)(

1 n with 1, xaround belowfunction quadratic toExpand

xx

xxx

xx

xx!

x

! x

! xf

xx!

x fxx

!

xf xx

!

xf xf

xxn!

xf

xx!

x f xx

!

xf xx

!

xf xf

fxf

fxxf

fxxxf

///

n(n)

///

50

9.6-3 Nth-derivative test

odd is N ifpoint inflectionan

0 andeven is N ifmin relative a

0 andeven is N ifmax relative a

:be will valuestationary then the

,0 ,derivative N theof that is derivation successive

in dencountere at x valuederivative nonzerofirst theif

and 0 is at function a of derivativefirst theIf

0

0

0

0th

0

00

)(xf

)(xf

xf

)(xf

xfxf(x)

(n)

(n)

(n)

/

51

9.5-4 Lagrange form of the remainder

min. a is valuecritical (24), 0 Y and

(4)even is Y derivative nonzerofirst Because

derivative 4 24)7(

derivative 30724)7(

ederiviativ 20712)7(

valuecritical the7at x 0Y

deriative 174

function primitive7

(4)

n

th)4(

rd)3(

nd2//

*/

st3/

4

Y

-x)(- Y

-x)( Y

-x)( - Y

-x) (Y

52

9.5-4 Lagrange form of the remainder

minimum a therefore

0 and (4)even isn

:ruledecision

derivative 4 24

function primitive7

th)4(

4

Y

-x) (Y

53

9.6 Nth-Derivative Test for Relative Extremum of a Function of One Variable9.6-1 Taylor expansion and relative extremum9.6-2 Some specific cases9.6-3 Nth-derivative test

54

9.6-1 Taylor expansion and relative extremum

55

9.6-2 Some specific cases

top related