collinear expansion and sidis at twist-3

Post on 24-Feb-2016

34 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Collinear expansion and SIDIS at twist-3. Yu-kun Song (USTC) 2013.10.28 Jinan YKS , Jian-hua Gao , Zuo -tang Liang, Xin-Nian Wang, arXiv:1308.1159. Outline. Introduction Collinear expansion extended to SIDIS Azimuthal asymmetries & nuclear effects Discussions and outlook. - PowerPoint PPT Presentation

TRANSCRIPT

Yu-kun Song (USTC)2013.10.28 Jinan

YKS, Jian-hua Gao, Zuo-tang Liang, Xin-Nian Wang, arXiv:1308.1159

Collinear expansion and SIDIS at twist-3

Outline

Introduction

Collinear expansion extended to SIDIS

Azimuthal asymmetries & nuclear effects

Discussions and outlook

A large scale (Q) and a small scale (k)Large scale → factorizationSmall scale → structure information (intrinsic k )

An ideal probe of nucleon/nuclear structure !TMD factorization works at leading twistHigher twist

Gauge invariant parton correlation functionsFactorization proof/argumentsNLO calculations

Experiments : Compass, Jlab, EIC,…

Semi-inclusive DIS

X

2 2ˆˆ O

Q

O

Sterman-Libby power counting

Leading twist

Gauge invariant parton distribution functionsFinite, perturbatively calculable partonic cross

section

Leading twist: collinear approximation

Higher twist: collinear expansion

Gauge invariant parton correlation functionsFinite, perturbatively calculable partonic cross

section

2

3 43 4ˆ ˆˆ ˆO O

Q Q Q

O

X

Higher twist (1/Q power corrections)

Systematic applications to SIDISCollinear expansion in DIS

Ellis, Furmanski, Petronzio, 1982, 1983 Qiu, 1990

Collinear expansion applied to SIDIS e+N →e+q+X Liang, Wang, 2006

Nuclear medium effects of azimuthal asymmetriesGauge link → nuclear modification of PDFs Liang, Wang, Zhou, 2008 SIDIS e+N →e+q+X at twist-4 YKS, Gao, Liang, Wang, 2011Doublely polarized SIDIS e+N →e+q+X at twist-3 YKS, Gao, Liang, Wang, Arxiv: 1308.1159

[Ellis, Furmanski, Petronzio, 1982,1983 ;Qiu,1990]

Collinear Expansion:1. Taylor expand at , and decompose

2. Apply Ward Identities

3. Sum up and rearrange all terms,

(0) 2 (0)(0) (0) ' ' ' '

' ' ' '

ˆ ˆ( ) 1 ( )ˆ ˆ( ) ( ) ... 2

H x H x AH k H x k k k A p Ak k k p

Collinear expansion in DIS

( , )ˆ ( )n ciH k i ik x p

(0) (0)1(1, ) (1, )

1 2, 2 1

ˆ ˆ( ) ( )ˆ ˆ( , ), ( , )c L

c L R

H x H xH x x p H x x

k x x i

(0) (0) (1, ) ' (1) (2, ) ' ' (2)1 2 ' 1 2 1 2 ' ' 1 2

, , ,

1 ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( , ) ( , ) ( , , ) ( , , )2

c c

c L R c L M R

W H x x H x x x x H x x x x x x

A

(0)H

(1, )ˆ cH

(2, )ˆ cH

(0) (0) ˆˆW H (1) (1, )

,

ˆˆ c

c L R

W H

(2) (2, )

, ,

ˆˆ c

c L R M

W H

e N e X

In the low region, we consider the case when final state is a quark(jet)

Compared to DIS, the only difference is the kinematical factor

Collinear expansion is naturally extended to SIDIS

Parton distribution/correlation functions are -dependent

Collinear expansion in SIDIS e+N →e+q+X

3 32 (2 ) ( )k cK E k k q

(0)H

(1, )ˆ cH

(2, )ˆ cH

(0) (0) ˆˆ KW H (1) (1, )

,

ˆˆ c

c L R

W H K

(2) (2, )

, ,

ˆˆ c

c L R M

W H K

k

[Liang, Wang, 2006]

k

: color gauge invariant

Hadronic tensor for SIDIS(0) (1, ) (2, )

2 2 2 2, , ,

2 (0)(0)

2

2 (1, )(1)

2

2 (2, )(1)

2

(0)

(1, )

2

...

ˆ ( , )

ˆ ( ,

1 ˆTr ,2

1 ˆTr ,4

)

1 ˆ{Tr(2 )

[ ]

[ ]

[

c c

c L R c L R M

L

L

NB

L NB

x

dW dW dW dWd k d k d k d k

d Wh

d k

d Wh

d k q p

d Wh

d k q p

k

x k

(2, )

(2, )(

(2, )

2)

2 (2, )(2)

2 2

ˆ ( , )

ˆ ( , )

ˆ ( ,

ˆ Tr },

1 ˆTr .(2

))

]

[ ]

[ ]

L NB

L NB

MM

NB

N

x k

d Wh

d k

x k

x kq p

2,3,4

3,4,

4,

((0) (0; ) ( ) , (0) (0; ) ( ) , (0) (0; ) (

)(0) (0 )) ,

D yD

y y y yyD y

L LL

: Projection operatork k xp

(0) (1, ) (2, ) (2, )ˆ , , ,L L M

Structure of correlation matricesTime reversal invariance relate and

Lorentz covariance + Parity invariance,

† †( ,0 ;0 ,0 ) ( ,0 ;0 ,0 ) ( , ; , )( , ; , ) TL L y y y L L y y y

(0)1 1

(0)1 1

...

· ...( ) ( )T T T L

L T

ks ks i ii i

ksT T

iLi

f p k M s k

k s p k Ms kM

f f f f f

g g g g g g

1 1 1 1, , ,

, ,

: twist-2 parton distribution functions

: twist-3 parton correlation funct, i, , ons, ,T L T

T T L T T L

f f g g

f f f f g g g g

y

SIDISDY

SIDISf DYf

Structure of correlation matrices

QCD equation of motion, , induce relations

(1, ) (1, ) (1, )

(1, )

(1, )

5

...

ˆ

...

( )( )

ks i ii

L L L

LT T L

LT T

i

Lks i

i

p k M s k

ip k Ms k

0i D

Re ,

Re ,

Re ,

Re ,

( )( )( )( )

T T

L L

T T

T

L

T

x

x

x

x

f

f

f

f

Im ,

Im ,

Im ,

Im .

( )( )( )( )

T T

L L

T T

T

L

T

g

g

g

x

x

x

xg

(1, ) (1, )

(1, ) (

(0)

1 )(0) ,

Re Im

Re Im

L L

L L

nxp

nxp

Relations from QCD EOMSum up and , one has (up to twist-3)

Explicit color gauge invariance for and .Explicit EM gauge invariance

(0)W (1, ) (1, ),L RW W

2

{ }2

{ } { }

[

1

]

1

1 1

1 ( 2 )·

( 2 ) ( 2 )· ·

· ( 2 )·

( ) ( )

( ) ( )

ks ksT B

i iB i B i

ks

T

T L

L T TB

f f f f

f f

d Wd k q x p

d k p qM q x p s q x p kp q p q

k s ii k q x pM

g gq

gp

g

[ ] [ ] ( 2 ) ( 2 )· ·B i B iT

i iLgiM iq x p s q x p k

p q qg

p

(0)

2 0dWd

qk

if ig

Unpolarized SIDIS at twist-4 levelCross section for

Twist-4 parton correlation functions

(1) (1)2 2

(

2 2em 2

2

1) (1)

2

2

2

2 22 2

2

2

2 | |[1 (1 ) ] 4(2 ) 1 cos

|

( ,

|4(1 ) [ ]cos 2

| | 28(1 )

) ( , )

( , ) ( , )

( , ( , )])[

qBB

BB

B

B B

B

B

e kd y y y xdxdyd k Q y Q

ky xQ

ddxdyd k

ddxdyd

f x k f x k

x k x k

x k xy kk xxQk

( )

(2, )2

2

22

2 2

2

2

| |2[1 (1

( , )

( , )) ]

B

B

B

LB

f x k

ddxd

MQ

kyyd k Q

xx k

(1) (1)2

22

2

2

( , ) ( , )cos | | [ ]2(12(( ,) )

)1 1

B B

B

Bk xy x k x kf xy kQ

(1)2

(1)2

2 2

4 3

2{ } 5

4 3

2, (0) (0( , )

( , )

) (0; ) ( ) ,(2 ) 2

, (0) (0) (0; ) ( ) ,(2 ) 2

ixp y ik y

ix

B

kB

p y i y

k k k g dy d y e p s D L y y p sk

ik k dy d y e p s D L yx k y sk

x k

p

13

[YKS, Gao, Liang, Wang,2011] e N e q X

Doubly polarized e+N →e+q+X at twist-3

[YKS, Gao, Liang, Wang, 2013]( ) ),(le N e q Xs

2 2em

1

2

2

1

2

2 2

2

2,

2 | |( ) ( ) ,

| | 2( ) ( ) ,2 2

2 | | ( )

cos

sin sin sin(2 )

sin ,

2

[( ) ]

UU l LU UT UL l LL l LT

UU

UT

q

B

B

B

B

T T Ts s

B

sT

L

L

LU

U

eddx dyd k Q y

x kA y B yQ

k x M k kA y B yM

F F s F F F s F

F f f

F

F

F

f f f f

f

Q M M

x k B yQ

x

2 2

1

21 2

| | ( ) ,

2 | |( ) ( ) ,

| | 2( ) ( )

sin

cos

cos2 2

cos cos 2[( ) ]

L LB

LL

LT s sT TB

T T s

k D yQ

x kC y D yQ

k x M k kC y

g

g g

g D yM Q M

g g gM

F

F

Leading twist

Twist-3

kT - broadening of PDF in a nucleus

Two facts about the gauge linkGenerated by QCD multiple gluon scattering

between struck quark and mediumIt induce physical effects, cannot be removed by

a wise choice of gauge→ Different interaction induce different PDFs: fN

q

& fAq

~ | (0) (0; ) ( ) |

~ | (0) (0; ) (

,

|) )

( )

( ,

N

A

q

q

f x k

f

N y y N

x yk A y A

LL

More FSI !

kT - broadening of PDF in a nucleusRelations between nucleon and nuclear PDFs

simplify under “maximal two-gluon exchange ” approximation.

It is just Gaussian broadening.2 /

( , ) ( )NqN

k

qef x k f x

22( )

2

/

, ((

( ) ))

FNq

F

kAq

ef x k Af x

2 ˆ( )F d q

2F

22( ) /2

2

( , ) ( , )

Fk lqA N

qF

Af x k d l e f x l

More FSI diffuse the scattered parton!

Nuclear modification of ˂cosφ>˂cos2φ> Nuclear twist-3/4 parton correlation function

Gaussian ansatz for distributionTake identical Gaussian parameter for parton

distribution/correlation functions

22

22

( ) /2

2

( ) /(1)

2

22 (1)

2

2

222

( , ) ( , )

(ˆ2( ), ) ( , )

F

F

k lA Nq q

l

F

A

F

k N

Af x k d l e f x l

Ax k d l e

k lk

k ll lk

x

2

2 2

cos cos 2,

cos cos 2eA eA

N F e Fe N

Tk

˂cosφ>˂cos2φ> are Suppressed!

Nuclear modification for

depend on dependence

Nuclear modification of ˂sinφ>LU sin LU

2F

2 22

2 2 2

sin 1 1 1 1exp .sin

( ) [( ) ]eALU FeNLU F F F

k

2(twist-2), (twist-3), F

kT - dependence

Nuclear modification of ˂sinφ>LU

Sensitive to the ratio of γ/α !

Discussions and outlook Collinear expansion is the systematic and essential method

to calculate higher twist effects to SIDIS. Gauge invariance of correlation functions are automatically

fulfilled as a result of collinear expansion. Azimuthal asymmetries for doubly polarized e+N →e+q+X are

obtained up to twist-3, and for unpolarized case up to twist-4. Much more abundant azimuthal asymmetries at high twist, and their gauge invariant expressions are obtained.

Extension to hadronic production process are interesting and are underway.

Thanks for your attention!

top related