complex patterns in reactive-wetting interface dynamics€¦ · hg-ag (au) reactive-wetting in room...

Post on 23-Jun-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Persistence in Reactive-Wetting Interfaces

Haim TaitelbaumDepartment of Physics

Bar-Ilan University, Ramat-Gan, Israel

With:

Avraham Be’er, Inbal Hecht

Tal Ya’akov, Ya’el Efraim, Meital Har’el

Yossi Lereah (TAU), Aviad Frydman

Hg-Ag (Au) Reactive-Wetting in Room Temperature

Side-view Top-view

Hg

Ag, Au Glass

Ag, Au 1000A-0.1mm

Hg 100mm

Optical microscope + DIC

CCD Camera

50mm

Silver 4200A t = 5, 10, 15 sec

Bulk Spreading

Kinetic Roughening

t = 5 sec

t = 10 sec t = 15 sec

Sn spreading on 1mm Au-coated 12mm Cu (Singler et al 2008)

Kinetic Roughening in High Temperature

Dynamics of Classical Wetting

t1 t2

Side view

q(t)

R(t)

H(r=0,t)

Tanner’s Law

1/10t

3/10t

12

( ) ( )R t tq

Reactive wetting ?

Droplet placement

Spreading & reaction

Touching the glass

Halo – fast flow

Final stage

50mm

Side-View ??

Dynamical 3-D Shape Reconstruction

Side View from a Top View !

Be’er & Lereah, JOM 2002

50mm

180

110

80

30

00

0

5

10

15

20

25

30

-300 -200 -100 0 100 200 300

R (mm)

H (

mm

)

t=5, 15, 25 sec

Silver 4200 A

0

5

10

15

20

25

30

35

40

0 5 10 15 20

q(deg)

time (sec)

t

0

5

10

15

20

25

30

35

40

0 5 10 15 20

0

5

10

15

20

25

30

35

40

45

Bulk spreading

R(mm)

R ~ t

Silver 4200 A

Halo

step

contact

angledroplet

radius

Final stage – Top-view

Ag3Hg4

Ag4Hg3

SEM

Kinetic Roughening of the Reaction Band

Screen height - about 100mm

Ag thickness = 0.1 mm (foil)

Hg initial radius - about 150 mm.

Bulk height from surface - about 1 mm.

Initial time here is 15 sec

Total time of experiment = 5 min

Complex Interface Patterns

mm20

mm2

mm2

mm2

Hg mm150

Ag 4000 Å

Glass

AAg 4000

Glass

mHg m150

Top View

W L t h x t h x t2 2 2( , ) ( , ) ( , )

In isotropic systems 2

- growth

– roughness

x

h

Hg

Ag 2 1t t

0

0),(tt

tt

L

ttLW

00 Lt

W

Family-Vicsek scaling

222 ),(),(),( txhtxhtLW

L0

L1L2

L1

02.046.0

Silver 2000 A

Crossover behavior

47.076.0

“”

Scaling Exponents

Correlation Length

Summary of Results

+/=2 ?

1.000.963000A

0.760.881500A

Gold

0.600.770.1mm

0.460.662000A

Silver

ThicknessMaterial

03.076.0 02.046.0

04.082.0 02.060.0

03.085.0 03.076.0

04.086.0 04.000.1

Universality Class ??

NOISE –

Substrate Roughness

2mm

8mm

7mm

14mm

Correlation

length

What really happens

in the growth regime ???

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

log(t)

log

(w)

40 pixels

60 pixels

80 pixels

100 pixels

120 pixels

140 pixels

150 pixels

saturation

“”

Yael Efraim 2009

The persistence measure

♠ Persistence probability P(t) is

the probability that a certain

flactuative variable never

crosses a chosen reference

level within time interval t.

Universal scaling form:

Illustration

-40

-30

-20

-10

0

10

20

0 5 10 15 20 25 30

time

A

q ttP )( Derrida et al. PRL (1994)

Persistence in Reactive-Wetting Interface

h

x x

t0

t1

t2

t0

t1

t2

Intervalt

Intervalt

Flactuative variable- “location” of points on interface

Reference level- height at time t0

Persistence – the algorithm

Single point – distance from <h> vs. t

Divide t axis to intervals in length t’ where t’=1,2…Tmax sec

Count “persistent” intervals for each t.

"trajectory" of single point

-86

-66

-46

-26

-6

14

34

54

0 5 10 15 20 25 30

t (sec)

h*

(pix

) ttallforsametheremains

txhttxhsign

thatprobistttxP

'0

)],()',([

.),,(

00

00

Average over t0 & x:

)(),,( 00 tptttxP

C. Dasgupta et. al.

Survival

Constant reference level - h*=0

ttallforsametheremains

ttxhsignthat

probistttxS

'0

)]',([

.),,(

0

00

)(),,( 00 tStttxS P(t) - Power Law decay

S(t) - Exponential decay

Persistence Exponent Results

Ising model (PRL 1996) (1d, 2d, 3d)

Potts model (Physica 1996) (2d- large q)

Random walk (PRE 1997)

Linear Langevin equations (PRE 1997)

KPZ equation (Europhys. Lett. 1999)

26.0,22.0,37.0q

86.0q

q 1s

18.1q 64.1q

5.0q

Experimental results

2d Liquid crystal (PRE 1997)

Fluctuating monatomic steps on crystal (PRL 2002)

Combustion fronts in paper (PRL 2003)

2d Soap froth (PRL 1997)

03.019.0 q

03.077.0 qt

03.066.0 q

02.088.0 q

Relation q=1- is valid even though system is non-linear

Results for Reactive-Wetting

y = 0.0659x + 1.0003

y = -0.5148x - 0.131

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.5 0 0.5 1 1.5

log (t [sec])L=150 pix

log (w [pix])

log (P)

First time regime:

Random walk

05.055.0 q

consttW )(

Persistence in growth regime new calculation !

Persistence – growth regime

q 1sy = 0.6679x + 1.3568

R2 = 0.9091

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.5 0 0.5 1 1.5

log tgrowth

log

w

y = -0.3085x - 0.1669

R2 = 0.9574-0.8

-0.6

-0.4

-0.2

0

0 0.5 1 1.5

log tgrowthlo

g p

,

Relation is valid:

07.068.0 05.037.0 q

08.004.1 qq 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.5 0 0.5 1 1.5 2

Persistence – saturation regime

Random walk again:

y = -0.4829x - 0.2152

R2 = 0.9617

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

log tsat

log

p

01.047.0 q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.5 0 0.5 1 1.5 2

Global interpretation

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.35 -0.15 0.05 0.25 0.45 0.65 0.85 1.05 1.25

log (t [sec])L=150 pix

log (w [pix])

log (P)

Noise

Non-linear

growth

Surface

tension

evidence: q~0.5

Persistence Summary

Three kinetic regimes in experiment:

Transient regime - random walk mechanism

Growth regime -

Saturation regime - random walk again

Growth:

Persistence:

1 q

070680 ..β

05.037.0 q

Validity of “Linear” relation in a non-linear system

Summary

• Reactive-Wetting - Room Temperature

Side view from Top View

Bulk Spreading – q(t), R(t)

• Interface Kinetic Roughening

Spatio - Roughness Exponent , Lateral Correlation Length

Temporal - Growth Exponent, The Persistence Measure

References

A. Be’er, Y. Lereah, H. Taitelbaum, Physica A 285, 156 (2000)

A. Be’er, Y. Lereah, I. Hecht, H. Taitelbaum, Physica A 302, 297 (2001)

A. Be’er, Y. Lereah, A. Frydman, H. Taitelbaum, Physica A 314, 325 (2002)

A. Be’er, Y. Lereah, J. of Microscopy, 208, 148 (2002).

I. Hecht, H. Taitelbaum, Phys. Rev. E 70, 046307 (2004).

A. Be’er, I. Hecht, H. Taitelbaum, Phys. Rev. E 72, 031606 (2005).

I. Hecht, A. Be’er, H. Taitelbaum, FNL, 5, L319 (2005).

A. Be’er, Y. Lereah, A. Frydman, H. Taitelbaum, Phys. Rev. E 75, 051601 (2007).

A. Be’er, Y. Lereah, H. Taitelbaum, Mater. Sci. Eng. A 495, 102 (2008).

Y. Efraim, H. Taitelbaum, Cent. Eur. J. Phys. 7, 503 (2009).

L. Lin, B.T. Murray, S. Su, Y. Sun,

Y. Efraim, H. Taitelbaum and T.J. Singler, JPCM (2009).

top related