coulomb excitation of the band-terminating 12 + yrast trap in 52 fe

Post on 07-Feb-2016

49 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

IFIC, CSIC – University of Valencia, Spain University and INFN-Sezione di Padova, Italy INFN-Laboratori Nazionali di Legnaro, Padova, Italy University and INFN-Sezione di Milano, Italy Department of Physics, Texas A&M University, USA Department of Physics, Lund University, Sweden - PowerPoint PPT Presentation

TRANSCRIPT

Coulomb excitation of the band-terminating 12+ yrast trap in 52Fe

IFIC, CSIC – University of Valencia, SpainUniversity and INFN-Sezione di Padova, ItalyINFN-Laboratori Nazionali di Legnaro, Padova, ItalyUniversity and INFN-Sezione di Milano, ItalyDepartment of Physics, Texas A&M University, USADepartment of Physics, Lund University, SwedenIEM – CSIC Madrid, SpainUniversity of York, York, United KingdomCEA-Saclay, SPhN, FranceLRI – University of Salamanca, SpainGSI-Darmstadt, Germany

and the AGATA, PRESPEC, LYCCA and FRS collaborations

A.Gadea(IFIC Valencia) C.A.Ur (Univ. and INFN Padova)M.Gorska (GSI Contact Person)

The fp-Shell: Laboratory for Nuclear Models

N=Z

48Cr E.Caurier et al., PRL 75

25492424

4925 CrMn

A. P. Zuker et al., PRL 89

S. M. Lenzi et al., PRC 56

Extended experimental information + Large Scale Shell Model calculationsObservation

of rotational properties

Comparison of LSSM and CHFB descriptions

Accurate description of

the nuclear excitations

The 52Fe level scheme

C.A.Ur et al., Phys. Rev. C58 (1998) 3163F.Brandolini and C.A.Ur, Phys. Rev. C71 (2005) 054316A.Gadea et al., Phys. Lett. B619 (2005) 88

SpinSpin

K=0: (g.s.)K=6: or [312]5/2- [303]7/2-

K=12: K=12: and and [312]5/2- [303]7/2- [312]5/2- [303]7/2-

Exp. GASP@LNL +MS@GSI

LSSM withKB3G

12+ seniority isomer & yrast

trap

Rotor with

=0.26

Hint of Collectivity in the 12+ state

The S.M. calculations do not reproduce the B(E4), specially the B(E4, 12+ 8+

1) . “Best” agreement with the more collective 12+ calculated with FPD6A.Gadea et al., Phys. Lett. B619 (2005) 88

Exp. GSI mass separator

Minimum p3/2 occupancy

52Fe 52Mn

C.A.Ur et al., PRC58 (1998) 3163

M.Axiotis et al., PRC76 (2007) 014303

D.Rudolph et al., PRC78 (2008) 021301(R)

Unexpected low energy negative parity states in 52Fe and 52Mn

Large l proton decay of the deformed states in

56Ni, 58Ni, 58Cu and the 10+ isomer in 54Ni

fp-Shell LSSM Calculations fp-Shell LSSM

calculation performed with the GXPF1

interaction and the code ANTOINE

B(E2 12+2 12+

1) = 21 e2fm4

B(E2 14+1 12+

1) = 27 e2fm4

B(E2 14+2 12+

1) = 6 e2fm4

Preliminary Beyond-Mean Field calculation suggest oblate deformation for the

12+ and 14+ states with quadrupole moments

Q=-53 fm2 and -218 fm2

58Ni Primary Beam Fragmentation

0 .0 20.0 40 .0 60.0 80.0 100.0 120 .0 140 .0N (A-Z)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Zr-processpath

rp-processpath

RI yield in ions/s

>1012

1010

108

102

1.0110-410-6

106

104

R e g io n o fK n o w n N u c lei

Light target

Production of the 12+ isomeric beam b y fragmentation of 58Ni on a 9Be

target Separation of 52Fe at FRS Coulomb excitation on a 750mg/cm2

208Pb or 197Au target Detection of gamma-rays with AGATA

Identification of secondary products with LYCCA

GSI-FRS

Experimental DetailsExperiment to be performed with the GSI-FRS secondary isomeric beam at

the AGATA-PRESPEC setup

9Be target

LYCCA

S4

52Fe12+ 52Fe*

=0.51 =0.48

~3.5 ps to cross the target: fast raytransition(~ 0.2ps) FWHM given by in target calculated to be max. 3% for AGATA

H.J. Wollersheim et al., NIM A537

• Relativistic Coulom Excitation for the 12+ isomer calculated with the DWEIKO code (C.A.Bertulani et al.) 5mb for the LSSM B(E2) (B(E2,12+

114+1)= 31 e2fm4 pessimistic value of band terminating)

•Primary SIS beam 58Ni 109 ions per spill.•MOCADI and LISE++ predict 105 per spill 52Fe ions at FRS focal plane•Isomeric yield estimated ≥ 10% (example 10+ isomer in 54Ni)•-ray energy Emitted by the ion at =0.51 5.5 MeV •AGATAefficiency for 5.5 MeV -ray (with Lorentz Boost) ~3%•Solid angle efficiency for LYCCA-0 in this reaction 79% •With 2 s spill 1000 counts in 15 shifts

Special requirements segmented SC detector at S2 (under construction) and digital readout at the MUSIC and TPC detectors (under development)

750mg/cm2

Experimental DetailsSecondary

target

A.Gadea, A.Algora IFIC, CSIC – University of Valencia, SpainC.A.Ur, S.M. Lenzi, S.Lunardi, E.Farnea, D.Bazzacco, R.Menegazzo, D.Mengoni, F.Recchia University and INFN-Sezione di Padova, ItalyM.Górska, P.Boutachkov, J.Gerl, S.Pietri, H.J.Wollersheim, H.Grawe, C.Domingo-Pardo, I.Kojouharov, H.Schaffner, N.Goel, R.Hoischen, T.EngelGSI-Darmstadt, Germany J.J.Valiente-Dobón, G.de Angelis, D.R.Napoli, E.Sahin, C.MichelagnoliINFN-Laboratori Nazionali di Legnaro, Padova, ItalyA.Bracco, G.Benzoni, S.Brambilla, F.Camera, F.Crespi, S.Leoni, B.Million, D.Montanari, N.Blasi, O.Wieland University and INFN-Sezione di Milano, ItalyC.A.Bertulani Department of Physics, Texas A&M University, USAD.Di Julio, C.Fahlander, J.Gellanki, P.Golubev, R.Hoischen, D.RudolphDepartment of Physics, Lund University, SwedenA.Jungclaus IEM – CSIC Madrid, SpainM.A.Bentley University of York, York, United KingdomA.Obertelli, W.Korten CEA-Saclay, SPhN, FranceB.Quintana, M.Doncel, I.Sagrado LRI – University of Salamanca, Spain and the PRESPEC, FRS and LYCCA collaborations

Collaboration:

top related