dielectric properties of insulation

Post on 31-Jan-2016

64 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

Dielectric Properties of Insulation. Introduction Basic Relations Modelling of Dielectrics Measurement of Dielectric Parameters Conclusions. Dielectric Properties of Insulation. Introduction Basic Relations Modelling of Dielectrics Measurement of Dielectric Parameters - PowerPoint PPT Presentation

TRANSCRIPT

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Dielectric Properties of InsulationDielectric Properties of Insulation

Introduction

Basic Relations

Modelling of Dielectrics

Measurement of Dielectric Parameters

Conclusions

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Dielectric Properties of InsulationDielectric Properties of Insulation

Introduction

Basic Relations

Modelling of Dielectrics

Measurement of Dielectric Parameters

Conclusions

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Insulation Materials (Dielectrics) gaseous [air, SF6, N2, …]

liquid [Oil (mineral, silicon, ..), H2O, Glycerin, ..]

solid [Cellulose (Paper), Thermoplastics (PVC, PE, …),

Duroplastics (EP, Siliconrubber, ..),

anorganic materials (Porcelain, Ceramics, ..)] which are the most important electrical properties

for manufacturing, design, construction, operation,

diagnosis ( Recycling ) ?

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

electrical strength [kV/mm]

dielectric parameters

permittivity ε

conductivity κ [S/m]

dissipation (loss) factor tanδ

(other) electrical, thermal, mechanical, chemical

parameters

Dielectric PropertiesDielectric Properties

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Dielectric Properties of InsulationDielectric Properties of Insulation

Introduction

Basic Relations

Modelling of Dielectrics

Measurement of Dielectric Parameters

Conclusions

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

PolarizationPolarization

D = ε0·E + P bzw. P = ε0·E·(εr – 1) = ε0·E· χ

Polarization requests time (relaxation time )

and losses (dissipation factor tan δ)

Polarization depends on material (kind of polarization)

frequency f ) of applied

amplitude Emax ) el. field

temperature T

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Relative Permittivity Relative Permittivity εεrr

gaseousgaseous air, SFair, SF66, N, N22, …, … ~ ~ 11

liquidliquid MineraloilMineraloil 2,22,2

SiliconoilSiliconoil 2,72,7

RhizinusoilRhizinusoil 55

WaterWater 8181

solidsolid PVCPVC 44

PEPE 2,42,4

PolyamidPolyamid 77

EpoxyresinEpoxyresin 3,8 .. 5,83,8 .. 5,8

Hard- paperHard- paper 55

paperpaper 2,82,8

PorcelainPorcelain 66

BaTiOBaTiO33 3000 .. 50003000 .. 5000

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Electrical Conductivity Electrical Conductivity

physically: free movable charged particles (electrons, ions)

J = · E = (n+q+b+ + n-q-b- + neqebe)

technically: depends on material (ions, electrons)

pollutions (H2O, ..)

operating parameters

(E, t, T)

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Electrical Conductivity Electrical Conductivity

typical values: gaseous ( 10-16 …. 10-19 )

(T = 20 °C) liquids/ solids ( 10- 8 …. 10-15 )

Water ( 10- 4 …. 10- 7 )

Semiconductors ( 10+2 …. 10- 7 )

Conductors ( 10+6 …. 10+8 )

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Dissipation Factor tan Dissipation Factor tan δδ characterizing of losses (polarization, conductivity)

Pδ = tan δ · Qc = tan δ · (ωC·U2)

depends on ( t (f), E, T)

typical values: mineral oil (10-3 …. 10-1)

(T = 20 °C) oilimpregnated paper (10- 3 …. 100)

( f = 50 Hz) PVC, PA, paper (10- 2 …. 10-1)

PE, PTFE (10-4 …. 10- 5)

EP, porcelain (10-1 …. 10-2)

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

tan tan δδ and and εεrr vs. frequency vs. frequencybiological tissue dispersion area

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

tan tan δδ and and εεrr vs. frequency vs. frequency

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

5-10 s Materialpolarisation

conductor

2

311

2

3

30-80 s Grenzschichten

200-500 s Tree-Strukturen

Relaxationszeiten verschiedener Mechanismen

insulation

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

inner electrode outer electrode

water tree

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

water tree & electrical tree

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Knowledge of dielectric properties is necessary for whole life cycle of electrical equipment

Dielectric properties can be determined by

calculation (modelling, simulation)

measurement ( diagnostic/ testing)

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Dielectric Properties of InsulationDielectric Properties of Insulation

Introduction

Basic Relations

Modelling of Dielectrics

Measurement of Dielectric Parameters

Conclusions

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Modelling of DielectricsModelling of Dielectricsa) simple circuit

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Modelling of DielectricsModelling of Dielectrics

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Maxwell- Wagner- ModelMaxwell- Wagner- Model

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Modelling of DielectricsModelling of Dielectricsb) complex circuit

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Polarization Effects (i, u)Polarization Effects (i, u)

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Dielectric Properties of InsulationDielectric Properties of Insulation

Introduction

Basic Relations

Modelling of Dielectrics

Measurement of Dielectric Parameters

Conclusions

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Schering- BridgeSchering- Bridge

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

PC- based measuring bridgePC- based measuring bridge

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

RVM- and IRC- principleRVM- and IRC- principle

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

RRecoverecoverVVoltageoltageMMeasurementeasurement

S1

AD PCHV

DC

RU

testobject

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Feuchtigkeitseinfluß in papierisolierten Kabeln Anstieg des Maximums bei tm und Verschiebung zu kürzeren Messzeiten

Cable 1 701 m

Cable 2 932 m

time (min)

Return Voltage (V)

Kabel 1: alt gemessen mit 1 kV und 2 kV

Kabel 2: gut gemessen mit 1 kV und 2 kV

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

RVM measurement on 10 kV cabel with paper insulation

Qa: 2,0-1,87 trockenQa: 1,86-1,65 feuchtQa < 1,65 nass

Bewertung des Gradientenim Spannungsanstieg bei 1 und 2 kV :

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

RVM Diagnose an 1 kV Papierkabel - Stromversorgung der Löschwasseranlage eines großen Chemie-Unternehmens

• Speisekabel mit hoher Wichtigkeit für Löschwasserpumpen• 700m Zuleitung im Elbdüker NAKRAA 3x185• T-Muffe und 300 m bzw. 560 m NAKBA 3x185 bis zu den Pumpenhäusern

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Meßprinzip der IRC-MessungMeßprinzip der IRC-Messung

1: Formierung 1800s

I

1kV

CDS

2: Entladung 5s

3: Messung 1800s

testobject

PCAD

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

new (normal) aged critical

IRC- Diagnosis on Power Cables

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Measurement of PolarizationMeasurement of Polarization

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Dielectric Properties of InsulationDielectric Properties of Insulation

Introduction

Basic Relations

Modelling of Dielectrics

Measurement of Dielectric Parameters

Conclusions

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

ConclusionsConclusions

dielectric properties will be characterized by:

relative permittivity εr

electrical conductivity

dissipation factor tan δ

knowledge of dielectric properties is important

for manufacturing, design, operation (diagnosis)

and recycling of electrical insulation

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

ConclusionsConclusions

dielectric properties can be determined by

- calculation / simulation

- measurement/ testing

© Prof.Dr.R.Haller© Prof.Dr.R.Haller

Thank you

Questions ?

& Answers !

top related