differential game logicaplatzer/pub/dgl-slides-mod.pdf · outline 1 cps game motivation 2 di...

Post on 19-Jun-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Differential Game Logic

Andre Platzer

Summer School Marktoberdorf 2017

0.20.4

0.60.8

1.00.10.20.30.40.5

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 40

Outline

1 CPS Game Motivation2 Differential Game Logic

SyntaxExample: Push-around CartExample: Robot DanceDifferential Hybrid GamesDenotational SemanticsDeterminacyStrategic Closure Ordinals

3 AxiomatizationAxiomaticsExample: Robot SoccerSoundness and CompletenessSeparating Axioms

4 Expressiveness5 Differential Hybrid Games6 Summary

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 40

Outline

1 CPS Game Motivation2 Differential Game Logic

SyntaxExample: Push-around CartExample: Robot DanceDifferential Hybrid GamesDenotational SemanticsDeterminacyStrategic Closure Ordinals

3 AxiomatizationAxiomaticsExample: Robot SoccerSoundness and CompletenessSeparating Axioms

4 Expressiveness5 Differential Hybrid Games6 Summary

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 40

Cyber-Physical Systems Analysis: Aircraft Example

Which control decisions are safe for aircraft collision avoidance?

Cyber-Physical Systems

CPSs combine cyber capabilities with physical capabilitiesto solve problems that neither part could solve alone.

Andre Platzer (CMU) Differential Game Logic MOD’17 2 / 40

Can you trust a computer to control physics?

1 Depends on how it has been programmed

2 And on what will happen if it malfunctions

Rationale1 Safety guarantees require analytic foundations.

2 A common foundational core helps all application domains.

3 Foundations revolutionized digital computer science & our society.

4 Need even stronger foundations when software reaches out into ourphysical world.

CPSs deserve proofs as safety evidence!

Andre Platzer (CMU) Differential Game Logic MOD’17 3 / 40

Can you trust a computer to control physics?

1 Depends on how it has been programmed

2 And on what will happen if it malfunctions

Rationale1 Safety guarantees require analytic foundations.

2 A common foundational core helps all application domains.

3 Foundations revolutionized digital computer science & our society.

4 Need even stronger foundations when software reaches out into ourphysical world.

CPSs deserve proofs as safety evidence!

Andre Platzer (CMU) Differential Game Logic MOD’17 3 / 40

CPSs are Multi-Dynamical Systems

dis

cre

te contin

uo

us

nondet

sto

chastic

advers

arial

CPS Dynamics

CPS are characterized by multiplefacets of dynamical systems.

CPS Compositions

CPS combines multiplesimple dynamical effects.

Descriptive simplification

Tame Parts

Exploiting compositionalitytames CPS complexity.

Analytic simplificationAndre Platzer (CMU) Differential Game Logic MOD’17 4 / 40

CPS Analysis: Robot Control

Challenge (Hybrid Systems)

Fixed rule describing stateevolution with both

Discrete dynamics(control decisions)

Continuous dynamics(differential equations)

2 4 6 8 10t

-0.8

-0.6

-0.4

-0.2

0.2

a

2 4 6 8 10t

0.2

0.4

0.6

0.8

1.0

v

2 4 6 8 10t

2

4

6

8

p

px

py

Andre Platzer (CMU) Differential Game Logic MOD’17 5 / 40

CPS Analysis: Robot Control

Challenge (Hybrid Systems)

Fixed rule describing stateevolution with both

Discrete dynamics(control decisions)

Continuous dynamics(differential equations)

2 4 6 8 10t

-0.8

-0.6

-0.4

-0.2

0.2

a

2 4 6 8 10t

-1.0

-0.5

0.5

Ω

2 4 6 8 10t

-0.5

0.5

1.0

d

dx

dy

Andre Platzer (CMU) Differential Game Logic MOD’17 5 / 40

CPS Analysis: Robot Control

Challenge (Games)

Game rules describing playevolution with both

Angelic choices(player Angel)

Demonic choices(player Demon)

0,0

2,1

1,2

3,1

\ Tr Pl

Trash 1,2 0,0Plant 0,0 2,1

8rmbl0skZ7ZpZ0ZpZ060Zpo0ZpZ5o0ZPo0Zp4PZPZPZ0O3Z0Z0ZPZ020O0J0ZPZ1SNAQZBMR

a b c d e f g h

Andre Platzer (CMU) Differential Game Logic MOD’17 6 / 40

CPS Analysis: Robot Control

Challenge (Hybrid Games)

Game rules describing playevolution with

Discrete dynamics(control decisions)

Continuous dynamics(differential equations)

Adversarial dynamics(Angel vs. Demon )

2 4 6 8 10t

-0.6

-0.4

-0.2

0.2

0.4

a

2 4 6 8 10t

0.2

0.4

0.6

0.8

1.0

1.2

v

2 4 6 8 10t

1

2

3

4

5

6

7

p

px

py

Andre Platzer (CMU) Differential Game Logic MOD’17 7 / 40

CPS Analysis: Robot Control

Challenge (Hybrid Games)

Game rules describing playevolution with

Discrete dynamics(control decisions)

Continuous dynamics(differential equations)

Adversarial dynamics(Angel vs. Demon )

2 4 6 8 10t

-0.6

-0.4

-0.2

0.2

0.4

a

2 4 6 8 10t

-1.0

-0.5

0.5

Ω

2 4 6 8 10t

-0.5

0.5

1.0

d

dx

dy

Andre Platzer (CMU) Differential Game Logic MOD’17 7 / 40

CPS Analysis: RoboCup Soccer

Challenge (Hybrid Games)

Game rules describing playevolution with

Discrete dynamics(control decisions)

Continuous dynamics(differential equations)

Adversarial dynamics(Angel vs. Demon )

2 4 6 8 10t

-0.6

-0.4

-0.2

0.2

0.4

a

2 4 6 8 10t

-1.0

-0.5

0.5

Ω

2 4 6 8 10t

-0.5

0.5

1.0

d

dx

dy

Andre Platzer (CMU) Differential Game Logic MOD’17 8 / 40

CPSs are Multi-Dynamical Systems

dis

cre

te contin

uo

us

nondet

sto

chastic

advers

arial

CPS Dynamics

CPS are characterized by multiplefacets of dynamical systems.

CPS Compositions

CPS combines multiplesimple dynamical effects.

Descriptive simplification

Tame Parts

Exploiting compositionalitytames CPS complexity.

Analytic simplificationAndre Platzer (CMU) Differential Game Logic MOD’17 9 / 40

Dynamic Logics for Dynamical Systems

dis

cre

te contin

uo

us

nondet

sto

chastic

advers

arial

differential dynamic logic

dL = DL + HP[α]φ φ

α

stochastic differential DL

SdL = DL + SHP

〈α〉φφ

differential game logic

dGL = GL + HG

〈α〉φφ

quantified differential DL

QdL = FOL + DL + QHPJAR’08,CADE’11,LMCS’12,LICS’12,LICS’12 TOCL’15,CADE’15,JAR’17,TOCL’17

Andre Platzer (CMU) Differential Game Logic MOD’17 10 / 40

Dynamic Logics for Dynamical Systems

Dynamic Logics

DL has been introduced for programsPratt’76,Harel,Kozen

Its real calling are dynamical systems

DL excels at providing simple+elegantlogical foundations for dynamical systems

CPSs are multi-dynamical systems

DL for CPS are multi-dynamical

dis

cre

te contin

uo

us

nondet

sto

chastic

advers

arial

JAR’08,CADE’11,LMCS’12,LICS’12,LICS’12 TOCL’15,CADE’15,JAR’17,TOCL’17

Andre Platzer (CMU) Differential Game Logic MOD’17 10 / 40

Contributions

Logical foundations for hybrid games

1 Compositional programming language for hybrid games

2 Compositional logic and proof calculus for winning strategy existence

3 Hybrid games determined

4 Winning region computations terminate after ≥ωCK1 iterations

5 Separate truth (∃ winning strategy) vs. proof (winning certificate) vs.proof search (automatic construction)

6 Sound & relatively complete

7 Expressiveness

8 Fragments successful in applications

9 Generalizations in logic enable more applications

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 11 / 40

Outline

1 CPS Game Motivation2 Differential Game Logic

SyntaxExample: Push-around CartExample: Robot DanceDifferential Hybrid GamesDenotational SemanticsDeterminacyStrategic Closure Ordinals

3 AxiomatizationAxiomaticsExample: Robot SoccerSoundness and CompletenessSeparating Axioms

4 Expressiveness5 Differential Hybrid Games6 Summary

Andre Platzer (CMU) Differential Game Logic MOD’17 11 / 40

Differential Game Logic: Syntax

Definition (Hybrid game α)

x := f (x) | ?Q | x ′ = f (x) | α ∪ β | α;β | α∗ | αd

Definition (dGL Formula P)

p(e1, . . . , en) | e ≥ e | ¬P | P ∧ Q | ∀x P | ∃x P | 〈α〉P | [α]P

DiscreteAssign

TestGame

DifferentialEquation

ChoiceGame

Seq.Game

RepeatGame

AllReals

SomeReals

DualGame

AngelWins

DemonWins

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 12 / 40

Differential Game Logic: Syntax

Definition (Hybrid game α)

x := f (x) | ?Q | x ′ = f (x) | α ∪ β | α;β | α∗ | αd

Definition (dGL Formula P)

p(e1, . . . , en) | e ≥ e | ¬P | P ∧ Q | ∀x P | ∃x P | 〈α〉P | [α]P

DiscreteAssign

TestGame

DifferentialEquation

ChoiceGame

Seq.Game

RepeatGame

AllReals

SomeReals

DualGame

AngelWins

DemonWins

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 12 / 40

Differential Game Logic: Syntax

Definition (Hybrid game α)

x := f (x) | ?Q | x ′ = f (x) | α ∪ β | α;β | α∗ | αd

Definition (dGL Formula P)

p(e1, . . . , en) | e ≥ e | ¬P | P ∧ Q | ∀x P | ∃x P | 〈α〉P | [α]P

DiscreteAssign

TestGame

DifferentialEquation

ChoiceGame

Seq.Game

RepeatGame

AllReals

SomeReals

DualGame

AngelWins

DemonWins

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 12 / 40

Differential Game Logic: Syntax

Definition (Hybrid game α)

x := f (x) | ?Q | x ′ = f (x) | α ∪ β | α;β | α∗ | αd

Definition (dGL Formula P)

p(e1, . . . , en) | e ≥ e | ¬P | P ∧ Q | ∀x P | ∃x P | 〈α〉P | [α]P

DiscreteAssign

TestGame

DifferentialEquation

ChoiceGame

Seq.Game

RepeatGame

AllReals

SomeReals

DualGame

AngelWins

DemonWins

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 12 / 40

Differential Game Logic: Syntax

Definition (Hybrid game α)

x := f (x) | ?Q | x ′ = f (x) | α ∪ β | α;β | α∗ | αd

Definition (dGL Formula P)

p(e1, . . . , en) | e ≥ e | ¬P | P ∧ Q | ∀x P | ∃x P | 〈α〉P | [α]P

DiscreteAssign

TestGame

DifferentialEquation

ChoiceGame

Seq.Game

RepeatGame

AllReals

SomeReals

DualGame

AngelWins

DemonWins

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 12 / 40

Differential Game Logic: Syntax

Definition (Hybrid game α)

x := f (x) | ?Q | x ′ = f (x) | α ∪ β | α;β | α∗ | αd

Definition (dGL Formula P)

p(e1, . . . , en) | e ≥ e | ¬P | P ∧ Q | ∀x P | ∃x P | 〈α〉P | [α]P

DiscreteAssign

TestGame

DifferentialEquation

ChoiceGame

Seq.Game

RepeatGame

AllReals

SomeReals

DualGame

AngelWins

DemonWins“Angel has Wings 〈α〉”

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 12 / 40

Definable

Game Operators

Angel Ops

∪ choice∗ repeatx ′ = f (x) evolve?Q challenge

Demon Ops

∩ choice× repeatx ′ = f (x)d evolve?Qd challenge

d

d

if(Q)α elseβ ≡

(?Q;α) ∪ (?¬Q;β)

while(Q)α ≡

(?Q;α)∗; ?¬Q

α ∩ β ≡

(αd ∪ βd)d

α× ≡

((αd)∗)d

(x ′ = f (x) &Q)d

6≡

x ′ = f (x) &Q

(x := f (x))d

x := f (x)

?Qd

6≡

?Q

Duality operator d passes control between players80Z0Z0s0Z7o0Z0Z0j06Po0o0ZpZ5Z0oPZ0Z040Z0Z0Znl3Z0Z0Z0Z020OPZ0OQZ1Z0Z0Z0ZB

a b c d e f g h

Andre Platzer (CMU) Differential Game Logic MOD’17 13 / 40

Definable

Game Operators

Angel Ops

∪ choice∗ repeatx ′ = f (x) evolve?Q challenge

Demon Ops

∩ choice× repeatx ′ = f (x)d evolve?Qd challenge

d

d

if(Q)α elseβ ≡

(?Q;α) ∪ (?¬Q;β)

while(Q)α ≡

(?Q;α)∗; ?¬Q

α ∩ β ≡

(αd ∪ βd)d

α× ≡

((αd)∗)d

(x ′ = f (x) &Q)d

6≡

x ′ = f (x) &Q

(x := f (x))d

x := f (x)

?Qd

6≡

?Q

Duality operator d passes control between players

80Z0Z0s0Z

7o0Z0Z0j0

6Po0o0ZpZ

5Z0oPZ0Z0

40Z0Z0Znl

3Z0Z0Z0Z0

20OPZ0OQZ

1Z0Z0Z0ZBabcdefgh

Andre Platzer (CMU) Differential Game Logic MOD’17 13 / 40

Definable Game Operators

Angel Ops

∪ choice∗ repeatx ′ = f (x) evolve?Q challenge

Demon Ops

∩ choice× repeatx ′ = f (x)d evolve?Qd challenge

d

d

if(Q)α elseβ ≡

(?Q;α) ∪ (?¬Q;β)

while(Q)α ≡

(?Q;α)∗; ?¬Q

α ∩ β ≡

(αd ∪ βd)d

α× ≡

((αd)∗)d

(x ′ = f (x) &Q)d

6≡

x ′ = f (x) &Q

(x := f (x))d

x := f (x)

?Qd

6≡

?Q

Andre Platzer (CMU) Differential Game Logic MOD’17 13 / 40

Definable Game Operators

Angel Ops

∪ choice∗ repeatx ′ = f (x) evolve?Q challenge

Demon Ops

∩ choice× repeatx ′ = f (x)d evolve?Qd challenge

d

d

if(Q)α elseβ ≡ (?Q;α) ∪ (?¬Q;β)

while(Q)α ≡ (?Q;α)∗; ?¬Qα ∩ β ≡ (αd ∪ βd)d

α× ≡ ((αd)∗)d

(x ′ = f (x) &Q)d 6≡ x ′ = f (x) &Q

(x := f (x))d ≡ x := f (x)

?Qd 6≡ ?Q

Andre Platzer (CMU) Differential Game Logic MOD’17 13 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→[((d := 1 ∪ d :=−1)d ; (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

x ≥ 0 ∧ v ≥ 0→[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]x ≥ 0⟨(

(d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d)∗⟩

x ≥ 0⟨((d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→[((d := 1 ∪ d :=−1)d ; (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

x ≥ 0 ∧ v ≥ 0→[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]x ≥ 0⟨(

(d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d)∗⟩

x ≥ 0⟨((d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

x ≥ 0 ∧ v ≥ 0→[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]x ≥ 0⟨(

(d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d)∗⟩

x ≥ 0⟨((d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

x ≥ 0 ∧ v ≥ 0→[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]x ≥ 0

⟨((d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0⟨(

(d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

x ≥ 0 ∧ v ≥ 0→[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]x ≥ 0

⟨((d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0⟨(

(d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

x ≥ 0

∧ v ≥ 0

→⟨((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0

⟨((d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0⟨(

(d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

x ≥ 0

∧ v ≥ 0

→ boring by skip⟨((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0

⟨((d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0⟨(

(d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

x ≥ 0

∧ v ≥ 0

⟨((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0

⟨((d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0⟨(

(d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

2

x ≥ 0

∧ v ≥ 0

counterstrategy d :=−1⟨((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0

⟨((d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0⟨(

(d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

2

x ≥ 0

∧ v ≥ 0

counterstrategy d :=−1⟨((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0⟨(

(d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d)∗⟩

x ≥ 0

⟨((d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

2

x ≥ 0

∧ v ≥ 0

counterstrategy d :=−1⟨((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0

⟨(

(d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d)∗⟩

x ≥ 0

⟨((d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

2

x ≥ 0

∧ v ≥ 0

counterstrategy d :=−1⟨((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0

⟨(

(d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d)∗⟩

x ≥ 0⟨((d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2);

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: Push-around Cart

xv

d a

v ≥ 1→ d before a can compensate[((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗]v ≥ 0

2

x ≥ 0

∧ v ≥ 0

counterstrategy d :=−1⟨((d := 1 ∩ d :=−1); (a := 1 ∪ a :=−1); x ′ = v , v ′ = a + d

)∗⟩x ≥ 0

⟨(

(d := 1 ∩ d :=−1); (a := 2 ∪ a :=−2); x ′ = v , v ′ = a + d)∗⟩

x ≥ 0

⟨(

(d := 2 ∩ d :=−2); (a := 2 ∪ a :=−2); a := d then a := 2 sign v

t := 0; x ′ = v , v ′ = a + d , t ′ = 1 & t ≤ 1)∗⟩

x2 ≥ 100

Andre Platzer (CMU) Differential Game Logic MOD’17 14 / 40

Example: EVE and WALL·E

and the World

(w − e)2 ≤ 1 ∧ v = f →⟨((u := 1 ∩ u :=−1);

(g := 1 ∪ g :=−1);

t := 0;

(w ′ = v , v ′ = u, e ′ = f , f ′ = g , t ′ = 1 & t ≤ 1)d)×⟩(w − e)2 ≤ 1

EVE at e plays Angel’s part controlling g

WALL·E at w plays Demon’s part controlling u

EVE assigned environment’s time to WALL·E

Andre Platzer (CMU) Differential Game Logic MOD’17 15 / 40

Example: EVE and WALL·E and the World

(w − e)2 ≤ 1 ∧ v = f →⟨((u := 1 ∩ u :=−1);

(g := 1 ∪ g :=−1);

t := 0;

(w ′ = v , v ′ = u, e ′ = f , f ′ = g , t ′ = 1 & t ≤ 1)d)×⟩(w − e)2 ≤ 1

EVE at e plays Angel’s part controlling g

WALL·E at w plays Demon’s part controlling u

EVE assigned environment’s time to WALL·E

Andre Platzer (CMU) Differential Game Logic MOD’17 15 / 40

Example: WALL·E and EVE

(w − e)2 ≤ 1 ∧ v = f →[((u := 1 ∩ u :=−1);

(g := 1 ∪ g :=−1);

t := 0;

(w ′ = v , v ′ = u, e ′ = f , f ′ = g , t ′ = 1 & t ≤ 1))×](w − e)2 > 1

WALL·E at w plays Demon’s part controlling u

EVE at e plays Angel’s part controlling g

WALL·E assigned environment’s time to EVE

Andre Platzer (CMU) Differential Game Logic MOD’17 16 / 40

Zeppelin Obstacle Parcours

avoid obstacleschanging windlocal turbulence

TOCL’17Andre Platzer (CMU) Differential Game Logic MOD’17 17 / 40

Zeppelin Obstacle Parcours

avoid obstacleschanging windlocal turbulence

TOCL’17Andre Platzer (CMU) Differential Game Logic MOD’17 17 / 40

Zeppelin Obstacle Parcours

avoid obstacleschanging windlocal turbulence

TOCL’17Andre Platzer (CMU) Differential Game Logic MOD’17 17 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α) [[·]] : HG→ (℘(S)→ ℘(S))

ςx :=f (x)(X ) = s ∈ S : s[[f (x)]]sx ∈ X

ςx ′=f (x)(X ) = ϕ(0) ∈ S : ϕ(r) ∈ X , dϕ(t)(x)dt (ζ) = [[f (x)]]ϕ(ζ) for all ζ

ς?Q(X ) = [[Q]] ∩ Xςα∪β(X ) = ςα(X ) ∪ ςβ(X )ςα;β(X ) = ςα(ςβ(X ))ςα∗(X ) =

⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

ςαd (X ) = (ςα(X ))

Definition (dGL Formula P) [[·]] : Fml→ ℘(S)

[[e1 ≥ e2]] = s ∈ S : [[e1]]s ≥ [[e2]]s[[¬P]] = ([[P]])

[[P ∧ Q]] = [[P]] ∩ [[Q]][[〈α〉P]] = ςα([[P]])[[[α]P]] = δα([[P]])

WinningRegion

Andre Platzer (CMU) Differential Game Logic MOD’17 18 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςx :=f (x)(X ) =

s ∈ S : s[[f (x)]]sx ∈ X

X

ςx :=f (x)(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςx :=f (x)(X ) = s ∈ S : s[[f (x)]]sx ∈ X

X

ςx :=f (x)(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςx ′=f (x)(X ) =

ϕ(0) ∈ S : ϕ(r) ∈ X , dϕ(t)(x)dt (ζ) = [[f (x)]]ϕ(ζ) for all ζ

Xx′ =

f (x)

ςx ′=f (x)(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςx ′=f (x)(X ) = ϕ(0) ∈ S : ϕ(r) ∈ X , dϕ(t)(x)dt (ζ) = [[f (x)]]ϕ(ζ) for all ζ

Xx′ =

f (x)

ςx ′=f (x)(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ς?Q(X ) =

[[Q]] ∩ X

X

[[Q]]

ς?Q(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ς?Q(X ) = [[Q]] ∩ X

X

[[Q]]

ς?Q(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα∪β(X ) =

ςα(X ) ∪ ςβ(X )

ςα (X )

ςβ(X )

X

ςα∪β(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα∪β(X ) = ςα(X ) ∪ ςβ(X )

ςα (X )

ςβ(X )

Xςα∪β(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα;β(X ) =

ςα(ςβ(X ))

ςα(ςβ(X )) ςβ(X )

X

ςα;β(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα;β(X ) = ςα(ςβ(X ))

ςα(ςβ(X )) ςβ(X ) X

ςα;β(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα∗(X ) =

⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

≥ωCK1 iterations

ςα(ςα∗(X )) \ ςα∗(X )∅

ς∞α (X ) · · · ς3α(X ) ς2

α(X ) ςα(X )

X

ςα∗(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα∗(X ) =

⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

≥ωCK1 iterations

ςα(ςα∗(X )) \ ςα∗(X )∅

ς∞α (X ) · · · ς3α(X ) ς2

α(X )

ςα(X ) X

ςα∗(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα∗(X ) =

⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

≥ωCK1 iterations

ςα(ςα∗(X )) \ ςα∗(X )∅

ς∞α (X ) · · · ς3α(X )

ς2α(X ) ςα(X ) X

ςα∗(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα∗(X ) =

⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

≥ωCK1 iterations

ςα(ςα∗(X )) \ ςα∗(X )∅

ς∞α (X ) · · ·

ς3α(X ) ς2

α(X ) ςα(X ) X

ςα∗(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα∗(X ) =

⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

≥ωCK1 iterations

ςα(ςα∗(X )) \ ςα∗(X )∅

ς∞α (X ) · · · ς3α(X ) ς2

α(X ) ςα(X ) X

ςα∗(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

≥ωCK1 iterations

ςα(ςα∗(X )) \ ςα∗(X )∅

ς∞α (X ) · · · ς3α(X ) ς2

α(X ) ςα(X ) X

ςα∗(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςαd (X ) =

(ςα(X ))

X

X

ςα(X )

ςα(X )

ςαd (X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςαd (X ) =

(ςα(X ))

X

X

ςα(X )

ςα(X )

ςαd (X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςαd (X ) =

(ςα(X ))

X

X

ςα(X )

ςα(X )

ςαd (X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Differential Game Logic: Denotational Semantics

Definition (Hybrid game α: denotational semantics)

ςαd (X ) = (ςα(X ))

X

X

ςα(X )

ςα(X )

ςαd (X )

Andre Platzer (CMU) Differential Game Logic MOD’17 19 / 40

Filibusters

& The Significance of Finitude

〈(x := 0 ∩ x := 1)∗〉x = 0

wfd; false unless x = 0

〈(x := 0; x ′ = 1d)∗〉x = 0

〈(x ′ = 1d ; x := 0)∗〉x = 0

<∞; true

X

X

1

1

10

0

10

repeat

0

stop

repeat

1

stop

0

0

10

repeat

0

stop

repeat

X

stop

Andre Platzer (CMU) Differential Game Logic MOD’17 20 / 40

Filibusters & The Significance of Finitude

〈(x := 0 ∩ x := 1)∗〉x = 0

wfd; false unless x = 0

〈(x := 0; x ′ = 1d)∗〉x = 0

〈(x ′ = 1d ; x := 0)∗〉x = 0

<∞; true

X

X

1

1

10

0

10

repeat

0

stop

repeat

1

stop

0

0

10

repeat

0

stop

repeat

X

stop

Andre Platzer (CMU) Differential Game Logic MOD’17 20 / 40

Filibusters & The Significance of Finitude

〈(x := 0 ∩ x := 1)∗〉x = 0

wfd; false unless x = 0

〈(x := 0; x ′ = 1d)∗〉x = 0

〈(x ′ = 1d ; x := 0)∗〉x = 0

<∞; true

X

X

1

1

10

0

10

repeat

0

stop

repeat

1

stop

0

0

10

repeat

0

stop

repeat

X

stop

Andre Platzer (CMU) Differential Game Logic MOD’17 20 / 40

Filibusters & The Significance of Finitude

〈(x := 0 ∩ x := 1)∗〉x = 0

wfd; false unless x = 0

〈(x := 0; x ′ = 1d)∗〉x = 0

〈(x ′ = 1d ; x := 0)∗〉x = 0

<∞; trueX

X

1

1

10

0

10

repeat

0

stop

repeat

1

stop

0

0

10

repeat

0

stop

repeat

X

stop

Andre Platzer (CMU) Differential Game Logic MOD’17 20 / 40

Filibusters & The Significance of Finitude

〈(x := 0 ∩ x := 1)∗〉x = 0

wfd; false unless x = 0

〈(x := 0; x ′ = 1d)∗〉x = 0

〈(x ′ = 1d ; x := 0)∗〉x = 0

<∞; trueX

X

1

1

10

0

10

repeat

0

stop

repeat

1

stop

0

0

10

repeat

0

stop

repeat

X

stop

Well-defined gamescan’t be postponed forever

Andre Platzer (CMU) Differential Game Logic MOD’17 20 / 40

Consistency & Determinacy

Theorem (Consistency & determinacy)

Hybrid games are consistent and determined, i.e. ¬〈α〉¬φ↔ [α]φ.

Corollary (Determinacy: At least one player wins)

¬〈α〉¬φ→ [α]φ, thus 〈α〉¬φ ∨ [α]φ.

Corollary (Consistency: At most one player wins)

[α]φ→ ¬〈α〉¬φ, thus ¬([α]φ ∧ 〈α〉¬φ)

Proof Sketch.

ςα∪β(X ) = (ςα(X ) ∪ ςβ(X )) = ςα(X ) ∩ ςβ(X ) = δα(X ) ∩ δβ(X ) =δα∪β(X )

Andre Platzer (CMU) Differential Game Logic MOD’17 21 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

= ς∞α (X ) (Knaster-Tarski)

ςα∗(X ) · · · ς3α(X ) ς2

α(X ) ςα(X ) X

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

= ς∞α (X ) (Knaster-Tarski)

ςα∗(X ) · · · ς3α(X ) ς2

α(X ) ςα(X )

X

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

= ς∞α (X ) (Knaster-Tarski)

ςα∗(X ) · · · ς3α(X ) ς2

α(X )

ςα(X ) X

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

= ς∞α (X ) (Knaster-Tarski)

ςα∗(X ) · · · ς3α(X )

ς2α(X ) ςα(X ) X

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z

= ς∞α (X ) (Knaster-Tarski)

ςα∗(X ) · · ·

ς3α(X ) ς2

α(X ) ςα(X ) X

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z = ς∞α (X ) (Knaster-Tarski)

ςα∗(X ) · · · ς3α(X ) ς2

α(X ) ςα(X ) X

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z = ς∞α (X ) (Knaster-Tarski)

Alternative (Advance notice semantics)

ςα∗(X )?=⋃

n<ω ςαn(X ) where αn+1 ≡ αn;α α0 ≡ ?true

11

11

01

01

01

10

10

00

00

repeat

10

stop

repeat

01

stop

10

10

00

00

repeat

10

stop

repeat

11

stop

11

11

01

01

01

10

10

00

00

10

00

00

00

00

00

00

3

11

01

01

10

10

00

00

2

11

01

10

1

11

0 . . .

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z = ς∞α (X ) (Knaster-Tarski)

Alternative (ω semantics)

ςα∗(X )?=⋃

n<ω ςnα(X )

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1)

ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z = ς∞α (X ) (Knaster-Tarski)

Alternative (ω semantics)

ςα∗(X )?=⋃

n<ω ςnα(X )

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1) ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Winning Region Fixpoint Iterations

Definition (Hybrid game α)

ςα∗(X ) =⋂Z ⊆ S : X ∪ ςα(Z ) ⊆ Z = ς∞α (X ) (Knaster-Tarski)

Alternative (ω semantics)

ςα∗(X )?=⋃

n<ω ςnα(X )

ς0α(X )

def= X

ςκ+1α (X )

def= X ∪ ςα(ςκα(X ))

ςλα(X )def=⋃κ<λ

ςκα(X ) λ 6= 0 a limit ordinal

Example

〈(x := 1; x ′ = 1d ∪ x := x − 1)∗〉 (0 ≤ x < 1) ςnα([0, 1)) = [0, n) 6= R

Andre Platzer (CMU) Differential Game Logic MOD’17 22 / 40

Strategic Closure Ordinal ≥ ωCK1

Theorem

Hybrid game closure ordinal ≥ωCK1

0

1

2

3

ω

ω+1

ω+2

ω+3

ω·2

ω·3

ω·2+1

ω·2+2

ω·4

ω²

ω²+1

ω²+2

ω²+ω

ω²+ω·2

ω²·2

ω²·3

ω²·4

ω³

ω³+ω

ω³+ω²

ω·5

4

5

ω+4

ωωω4

ω³·2

ω·2+3

Andre Platzer (CMU) Differential Game Logic MOD’17 23 / 40

Outline

1 CPS Game Motivation2 Differential Game Logic

SyntaxExample: Push-around CartExample: Robot DanceDifferential Hybrid GamesDenotational SemanticsDeterminacyStrategic Closure Ordinals

3 AxiomatizationAxiomaticsExample: Robot SoccerSoundness and CompletenessSeparating Axioms

4 Expressiveness5 Differential Hybrid Games6 Summary

Andre Platzer (CMU) Differential Game Logic MOD’17 23 / 40

Differential Game Logic: Axiomatization

[·] [α]P ↔

¬〈α〉¬P

〈:=〉 〈x := f (x)〉p(x)↔

p(f (x))

〈′〉 〈x ′ = f (x)〉P ↔

∃t≥0 〈x := y(t)〉P

〈?〉 〈?Q〉P ↔

(Q ∧ P)

〈∪〉 〈α ∪ β〉P ↔

〈α〉P ∨ 〈β〉P

〈;〉 〈α;β〉P ↔

〈α〉〈β〉P

〈∗〉 〈α∗〉P ↔

P ∨ 〈α〉〈α∗〉P

〈d〉 〈αd〉P ↔

¬〈α〉¬P

M

P → Q

〈α〉P → 〈α〉Q

FP

P ∨ 〈α〉Q → Q

〈α∗〉P → Q

MP

P P → Q

Q

p → Q

p → ∀x Q(x 6∈ FV(p))

US

ϕ

ϕψ(·)p(·)

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 24 / 40

Differential Game Logic: Axiomatization

[·] [α]P ↔ ¬〈α〉¬P

〈:=〉 〈x := f (x)〉p(x)↔ p(f (x))

〈′〉 〈x ′ = f (x)〉P ↔ ∃t≥0 〈x := y(t)〉P

〈?〉 〈?Q〉P ↔ (Q ∧ P)

〈∪〉 〈α ∪ β〉P ↔ 〈α〉P ∨ 〈β〉P

〈;〉 〈α;β〉P ↔ 〈α〉〈β〉P

〈∗〉 〈α∗〉P ↔ P ∨ 〈α〉〈α∗〉P

〈d〉 〈αd〉P ↔ ¬〈α〉¬P

MP → Q

〈α〉P → 〈α〉Q

FPP ∨ 〈α〉Q → Q

〈α∗〉P → Q

MPP P → Q

Q

∀p → Q

p → ∀x Q(x 6∈ FV(p))

USϕ

ϕψ(·)p(·)

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 24 / 40

Defining Evolution Domain Constraints x ′0 = 1

x ′ = f (x) &Q

≡ t0 := x0;

x ′ = f (x); ?(Q)

t

~x

Q

tx′ = f (x)

r

Andre Platzer (CMU) Differential Game Logic MOD’17 25 / 40

Defining Evolution Domain Constraints x ′0 = 1

x ′ = f (x) &Q

≡ t0 := x0;

x ′ = f (x); ?(Q)

t

~x

Q

t Qx′ = f (x)

r

Andre Platzer (CMU) Differential Game Logic MOD’17 25 / 40

Defining Evolution Domain Constraints x ′0 = 1

x ′ = f (x) &Q

≡ t0 := x0;

x ′ = f (x); (z := x ; z ′ = −f (z))d ; ?(Q(z))

t

~x

Q

t revert flow,Demon checks Qbackwards

x′ = f (x)

r

z ′ = −f (z)

Andre Platzer (CMU) Differential Game Logic MOD’17 25 / 40

Defining Evolution Domain Constraints x ′0 = 1

x ′ = f (x) &Q

≡ t0 := x0;

x ′ = f (x); (z := x ; z ′ = −f (z))d ; ?(Q(z))

t

~x

Q

t

¬Q

revert flow,Demon checks Qbackwards

x′ = f (x)

r

z ′ = −f (z)

Andre Platzer (CMU) Differential Game Logic MOD’17 25 / 40

Defining Evolution Domain Constraints x ′0 = 1

x ′ = f (x) &Q ≡ t0 := x0; x ′ = f (x); (z := x ; z ′ = −f (z))d ; ?(z0≥t0 → Q(z))

t

~x

Q

t revert flow, time x0;Demon checks Qbackwards

x′ = f (x)

t0 := x0 r

z ′ = −f (z)

Andre Platzer (CMU) Differential Game Logic MOD’17 25 / 40

“There and Back Again” Game

x ′ = f (x) &Q ≡ t0 := x0; x ′ = f (x); (z := x ; z ′ = −f (z))d ; ?(z0≥t0 → Q(z))

t

~x

Q

t revert flow, time x0;Demon checks Qbackwards

x′ = f (x)

t0 := x0 r

z ′ = −f (z)

Lemma

Evolution domains definable by games

Andre Platzer (CMU) Differential Game Logic MOD’17 25 / 40

Example Proof: Dual Filibuster

∗R x = 0 →0 = 0 ∨ 1 = 0〈:=〉x = 0 →〈x := 0〉x = 0 ∨ 〈x := 1〉x = 0〈∪〉 x = 0 →〈x := 0 ∪ x := 1〉x = 0〈d 〉 x = 0 →¬〈x := 0 ∩ x := 1〉¬x = 0[·] x = 0 →[x := 0 ∩ x := 1]x = 0ind x = 0 →[(x := 0 ∩ x := 1)∗]x = 0〈d 〉 x = 0 →〈(x := 0 ∪ x := 1)×〉x = 0

X

X

1

1

10

0

10

repeat

0

stop

repeat

1

stop

0

0

10

repeat

0

stop

repeatX

stop

Andre Platzer (CMU) Differential Game Logic MOD’17 26 / 40

Example: Goalie in Robot Soccer

x

y , g

(v,+w)

(v ,−w)

+u

−u

(x , y) g

(xv

)2(u − w)2 ≤ 1 ∧

x < 0 ∧ v > 0 ∧ y = g

→⟨(w := +w ∩ w :=−w);((u := +u ∪ u :=−u); x ′ = v , y ′ = w , g ′ = u

)∗⟩x2 + (y − g)2 ≤ 1

Andre Platzer (CMU) Differential Game Logic MOD’17 27 / 40

Example: Goalie in Robot Soccer

x

y , g

(v,+w)

(v ,−w)

+u

−u

(x , y) g

(xv

)2(u − w)2 ≤ 1 ∧

x < 0 ∧ v > 0 ∧ y = g

→⟨(w := +w ∩ w :=−w);((u := +u ∪ u :=−u); x ′ = v , y ′ = w , g ′ = u

)∗⟩x2 + (y − g)2 ≤ 1

Andre Platzer (CMU) Differential Game Logic MOD’17 27 / 40

Example: Goalie in Robot Soccer

x

y , g

(v,+w)

(v ,−w)

+u

−u

(x , y) g

(xv

)2(u − w)2 ≤ 1 ∧

x < 0 ∧ v > 0 ∧ y = g

→⟨(w := +w ∩ w :=−w);((u := +u ∪ u :=−u); x ′ = v , y ′ = w , g ′ = u

)∗⟩x2 + (y − g)2 ≤ 1

Andre Platzer (CMU) Differential Game Logic MOD’17 27 / 40

Example: Goalie in Robot Soccer

x

y , g

(v,+w)

(v ,−w)

+u

−u

(x , y) g

(xv

)2(u − w)2 ≤ 1 ∧

x < 0 ∧ v > 0 ∧ y = g

→⟨(w := +w ∩ w :=−w);((u := +u ∪ u :=−u); x ′ = v , y ′ = w , g ′ = u

)∗⟩x2 + (y − g)2 ≤ 1

Andre Platzer (CMU) Differential Game Logic MOD’17 27 / 40

Example: Goalie in Robot Soccer

x

y , g

(v,+w)

(v ,−w)

+u

−u(x , y) g

(xv

)2(u − w)2 ≤ 1 ∧

x < 0 ∧ v > 0 ∧ y = g

→⟨(w := +w ∩ w :=−w);((u := +u ∪ u :=−u); x ′ = v , y ′ = w , g ′ = u

)∗⟩x2 + (y − g)2 ≤ 1

Andre Platzer (CMU) Differential Game Logic MOD’17 27 / 40

Example: Goalie in Robot Soccer

x

y , g

(v,+w)

(v ,−w)

+u

−u(x , y) g

(xv

)2(u − w)2 ≤ 1 ∧

x < 0 ∧ v > 0 ∧ y = g

→⟨(w := +w ∩ w :=−w);((u := +u ∪ u :=−u); x ′ = v , y ′ = w , g ′ = u

)∗⟩x2 + (y − g)2 ≤ 1

Andre Platzer (CMU) Differential Game Logic MOD’17 27 / 40

Soundness

Theorem (Soundness)

dGL proof calculus is sound i.e. all provable formulas are valid

Proof.

〈∪〉 [[〈α ∪ β〉P]] = ςα∪β([[P]]) = ςα([[P]]) ∪ ςβ([[P]]) = [[〈α〉P]] ∪ [[〈β〉P]] =[[〈α〉P ∨ 〈β〉P]]

〈∪〉 〈α ∪ β〉P ↔ 〈α〉P ∨ 〈β〉P

〈;〉 [[〈α;β〉P]] = ςα;β([[P]]) = ςα(ςβ([[P]])) = ςα([[〈β〉P]]) = [[〈α〉〈β〉P]]

〈;〉 〈α;β〉P ↔ 〈α〉〈β〉P

[·] is sound by determinacy

[·] [α]P ↔ ¬〈α〉¬P

M Assume the premise P → Q is valid, i.e. [[P]] ⊆ [[Q]].Then the conclusion 〈α〉P → 〈α〉Q is valid, i.e.[[〈α〉P]] = ςα([[P]]) ⊆ ςα([[Q]]) = [[〈α〉Q]] by monotonicity.

MP → Q

〈α〉P → 〈α〉Q

Axiomatics

Syntax Semantics

Andre Platzer (CMU) Differential Game Logic MOD’17 28 / 40

Soundness

Theorem (Soundness)

dGL proof calculus is sound i.e. all provable formulas are valid

Proof.

〈∪〉 [[〈α ∪ β〉P]] = ςα∪β([[P]]) = ςα([[P]]) ∪ ςβ([[P]]) = [[〈α〉P]] ∪ [[〈β〉P]] =[[〈α〉P ∨ 〈β〉P]]

〈∪〉 〈α ∪ β〉P ↔ 〈α〉P ∨ 〈β〉P

〈;〉 [[〈α;β〉P]] = ςα;β([[P]]) = ςα(ςβ([[P]])) = ςα([[〈β〉P]]) = [[〈α〉〈β〉P]]

〈;〉 〈α;β〉P ↔ 〈α〉〈β〉P

[·] is sound by determinacy

[·] [α]P ↔ ¬〈α〉¬P

M Assume the premise P → Q is valid, i.e. [[P]] ⊆ [[Q]].Then the conclusion 〈α〉P → 〈α〉Q is valid, i.e.[[〈α〉P]] = ςα([[P]]) ⊆ ςα([[Q]]) = [[〈α〉Q]] by monotonicity.

MP → Q

〈α〉P → 〈α〉Q

Andre Platzer (CMU) Differential Game Logic MOD’17 28 / 40

Soundness

Theorem (Soundness)

dGL proof calculus is sound i.e. all provable formulas are valid

Proof.

〈∪〉 [[〈α ∪ β〉P]] = ςα∪β([[P]]) = ςα([[P]]) ∪ ςβ([[P]]) = [[〈α〉P]] ∪ [[〈β〉P]] =[[〈α〉P ∨ 〈β〉P]] 〈∪〉 〈α ∪ β〉P ↔ 〈α〉P ∨ 〈β〉P

〈;〉 [[〈α;β〉P]] = ςα;β([[P]]) = ςα(ςβ([[P]])) = ςα([[〈β〉P]]) = [[〈α〉〈β〉P]]〈;〉 〈α;β〉P ↔ 〈α〉〈β〉P

[·] is sound by determinacy [·] [α]P ↔ ¬〈α〉¬PM Assume the premise P → Q is valid, i.e. [[P]] ⊆ [[Q]].

Then the conclusion 〈α〉P → 〈α〉Q is valid, i.e.[[〈α〉P]] = ςα([[P]]) ⊆ ςα([[Q]]) = [[〈α〉Q]] by monotonicity.

MP → Q

〈α〉P → 〈α〉Q

Andre Platzer (CMU) Differential Game Logic MOD’17 28 / 40

Soundness & Completeness

Theorem (Completeness)

dGL calculus is a sound & complete axiomatization of hybrid gamesrelative to any (differentially) expressive logic L.

ϕ iff TautL ` ϕ

TOCL’15Andre Platzer (CMU) Differential Game Logic MOD’17 29 / 40

Soundness & Completeness: Consequences

Corollary (Constructive)

Constructive and Moschovakis-coding-free. (Minimal: x ′ = f (x), ∃, [α∗])

Remark (Coquand & Huet) (Inf.Comput’88)

Modal analogue for 〈α∗〉 of characterizations in Calculus of Constructions

Corollary (Meyer & Halpern) (J.ACM’82)

F → 〈α〉G semidecidable for uninterpreted programs.

Corollary (Schmitt) (Inf.Control.’84)

[α]-free semidecidable for uninterpreted programs.

Corollary

Uninterpreted game logic with even d in 〈α〉 is semidecidable.

Andre Platzer (CMU) Differential Game Logic MOD’17 30 / 40

Soundness & Completeness: Consequences

Corollary

Harel’77 convergence rule unnecessary for hybrid games, hybrid systems,discrete programs.

Corollary (Characterization of hybrid game challenges)

[α∗]G : Succinct invariants discrete Π02

[x ′ = f (x)]G and 〈x ′ = f (x)〉G : Succinct differential (in)variants ∆11

∃x G : Complexity depends on Herbrand disjunctions: discrete Π11

X uninterpreted X reals × ∃x [α∗]G Π11-complete for discrete α

Corollary (Hybrid version of Parikh’s result) (FOCS’83)∗-free dGL complete relative to dL, relative to continuous, or to discreted -free dGL complete relative to dL, relative to continuous, or to discrete

Andre Platzer (CMU) Differential Game Logic MOD’17 31 / 40

Soundness & Completeness: Consequences

Corollary

Harel’77 convergence rule unnecessary for hybrid games, hybrid systems,discrete programs.

Corollary (Characterization of hybrid game challenges)

[α∗]G : Succinct invariants discrete Π02

[x ′ = f (x)]G and 〈x ′ = f (x)〉G : Succinct differential (in)variants ∆11

∃x G : Complexity depends on Herbrand disjunctions: discrete Π11

X uninterpreted X reals × ∃x [α∗]G Π11-complete for discrete α

set is Π0n iff it’s x : ∀y1 ∃y2 ∀y3 . . . yn ϕ(x , y1, . . . , yn) for a decidable ϕ

set is Σ0n iff it’s x : ∃y1 ∀y2 ∃y3 . . . yn ϕ(x , y1, . . . , yn) for a decidable ϕ

set is Π11 iff it’s x : ∀f ∃y ϕ(x , y , f ) for a decidable ϕ and functions f

set is Σ11 iff it’s x : ∃f ∀y ϕ(x , y , f ) for a decidable ϕ and functions f

∆in = Σi

n ∩ Πin

Andre Platzer (CMU) Differential Game Logic MOD’17 31 / 40

Soundness & Completeness: Consequences

Corollary (ODE Completeness) (+LICS’12)

dGL complete relative to ODE for hybrid games with finite-rank Borelwinning regions.

Corollary (Continuous Completeness)

dGL complete relative to LµD, continuous modal µ, over R

Corollary (Discrete Completeness) (+LICS’12)

dGL + Euler axiom complete relative to discrete Lµ over R

Andre Platzer (CMU) Differential Game Logic MOD’17 32 / 40

Soundness & Completeness: Consequences

〈(x := 1; x ′ = 1d︸ ︷︷ ︸β

∪ x := x − 1︸ ︷︷ ︸γ

)

︸ ︷︷ ︸α

∗〉0 ≤ x < 1

Fixpoint style proof technique

∗R ∀x (0≤x<1 ∨ ∀t≥0 p(1 + t) ∨ p(x − 1)→ p(x))→ (true → p(x))

〈:=〉 ∀x (0≤x<1∨〈x := 1〉¬∃t≥0 〈x := x+t〉¬p(x)∨p(x−1)→p(x))→ (true→p(x))

〈′〉 ∀x (0≤x<1 ∨ 〈x := 1〉¬〈x ′ = 1〉¬p(x) ∨ p(x − 1)→ p(x))→ (true → p(x))

〈;〉,〈d〉 ∀x (0≤x<1 ∨ 〈β〉p(x) ∨ 〈γ〉p(x)→ p(x))→ (true → p(x))

〈∪〉 ∀x (0≤x<1 ∨ 〈β ∪ γ〉p(x)→ p(x))→ (true → p(x))

US ∀x (0≤x<1∨〈α〉〈α∗〉0≤x<1→ 〈α∗〉0≤x<1)→ (true → 〈α∗〉0≤x<1)

〈∗〉 true → 〈α∗〉0≤x<1

Andre Platzer (CMU) Differential Game Logic MOD’17 33 / 40

More Axioms

Theorem (Axiomatic separation: hybrid systems vs. hybrid games)

Axiomatic separation is exactly K, I, C, B, V, G. dGL is a subregular,sub-Barcan, monotonic modal logic without loop induction axioms.

K [α](P → Q)→ ([α]P → [α]Q) M[·]P → Q

[α]P → [α]Q←−M 〈α〉(P ∨ Q)→ 〈α〉P ∨ 〈α〉Q M 〈α〉P ∨ 〈α〉Q → 〈α〉(P ∨ Q)

I [α∗](P → [α]P)→ (P → [α∗]P) ∀I (P→[α]P)→ (P→[α∗]P)

B 〈α〉∃x P → ∃x 〈α〉P (x 6∈α)←−B ∃x 〈α〉P → 〈α〉∃x P

GP

[α]PM[·]

P → Q

[α]P → [α]Q

RP1 ∧ P2 → Q

[α]P1 ∧ [α]P2 → [α]QM[·]

P1 ∧ P2 → Q

[α](P1 ∧ P2)→ [α]Q

FA 〈α∗〉P → P ∨ 〈α∗〉(¬P ∧ 〈α〉P)←−[∗] [α∗]P ↔ P ∧ [α∗][α]P

Andre Platzer (CMU) Differential Game Logic MOD’17 34 / 40

More Axioms ???

Theorem (Axiomatic separation: hybrid systems vs. hybrid games)

Axiomatic separation is exactly K, I, C, B, V, G. dGL is a subregular,sub-Barcan, monotonic modal logic without loop induction axioms.

K [α](P → Q)→ ([α]P → [α]Q) M[·]P → Q

[α]P → [α]Q←−M 〈α〉(P ∨ Q)→ 〈α〉P ∨ 〈α〉Q M 〈α〉P ∨ 〈α〉Q → 〈α〉(P ∨ Q)

I [α∗](P → [α]P)→ (P → [α∗]P) ∀I (P→[α]P)→ (P→[α∗]P)

B 〈α〉∃x P → ∃x 〈α〉P (x 6∈α)←−B ∃x 〈α〉P → 〈α〉∃x P

GP

[α]PM[·]

P → Q

[α]P → [α]Q

RP1 ∧ P2 → Q

[α]P1 ∧ [α]P2 → [α]QM[·]

P1 ∧ P2 → Q

[α](P1 ∧ P2)→ [α]Q

FA 〈α∗〉P → P ∨ 〈α∗〉(¬P ∧ 〈α〉P)←−[∗] [α∗]P ↔ P ∧ [α∗][α]P

Andre Platzer (CMU) Differential Game Logic MOD’17 34 / 40

Separating Axioms

Theorem (Axiomatic separation: hybrid systems vs. hybrid games)

Axiomatic separation is exactly K, I, C, B, V, G. dGL is a subregular,sub-Barcan, monotonic modal logic without loop induction axioms.

K [α](P → Q)→ ([α]P → [α]Q) M[·]P → Q

[α]P → [α]Q←−M 〈α〉(P ∨ Q)→ 〈α〉P ∨ 〈α〉Q M 〈α〉P ∨ 〈α〉Q → 〈α〉(P ∨ Q)

I [α∗](P → [α]P)→ (P → [α∗]P) ∀I (P→[α]P)→ (P→[α∗]P)

B 〈α〉∃x P → ∃x 〈α〉P (x 6∈α)←−B ∃x 〈α〉P → 〈α〉∃x P

GP

[α]PM[·]

P → Q

[α]P → [α]Q

RP1 ∧ P2 → Q

[α]P1 ∧ [α]P2 → [α]QM[·]

P1 ∧ P2 → Q

[α](P1 ∧ P2)→ [α]Q

FA 〈α∗〉P → P ∨ 〈α∗〉(¬P ∧ 〈α〉P)←−[∗] [α∗]P ↔ P ∧ [α∗][α]P

Andre Platzer (CMU) Differential Game Logic MOD’17 34 / 40

Outline

1 CPS Game Motivation2 Differential Game Logic

SyntaxExample: Push-around CartExample: Robot DanceDifferential Hybrid GamesDenotational SemanticsDeterminacyStrategic Closure Ordinals

3 AxiomatizationAxiomaticsExample: Robot SoccerSoundness and CompletenessSeparating Axioms

4 Expressiveness5 Differential Hybrid Games6 Summary

Andre Platzer (CMU) Differential Game Logic MOD’17 34 / 40

Expressiveness

Theorem (Expressive Power: hybrid systems < hybrid games)

dGL for hybrid games strictly more expressive than dL for hybrid games:

dL < dGL

Clue: recursive open game quantifier expressible in dGL but not dL

ay ϕ(x , y)def≡ ∀y0 ∃y1 ∀y2 ∃y3 . . .

∨n<ω

ϕ(x , (|y0, . . . , yn|))

Andre Platzer (CMU) Differential Game Logic MOD’17 35 / 40

Expressiveness

Theorem (Expressive Power: hybrid systems < hybrid games)

dGL for hybrid games strictly more expressive than dL for hybrid games:

dL < dGL

First-orderadm. R

Inductiveadm. R

Clue: recursive open game quantifier expressible in dGL but not dL

ay ϕ(x , y)def≡ ∀y0 ∃y1 ∀y2 ∃y3 . . .

∨n<ω

ϕ(x , (|y0, . . . , yn|))

Andre Platzer (CMU) Differential Game Logic MOD’17 35 / 40

Outline

1 CPS Game Motivation2 Differential Game Logic

SyntaxExample: Push-around CartExample: Robot DanceDifferential Hybrid GamesDenotational SemanticsDeterminacyStrategic Closure Ordinals

3 AxiomatizationAxiomaticsExample: Robot SoccerSoundness and CompletenessSeparating Axioms

4 Expressiveness5 Differential Hybrid Games6 Summary

Andre Platzer (CMU) Differential Game Logic MOD’17 35 / 40

Zeppelin Obstacle Parcours

avoid obstacleschanging windlocal turbulence

TOCL’17Andre Platzer (CMU) Differential Game Logic MOD’17 36 / 40

Zeppelin Obstacle Parcours

avoid obstacleschanging windlocal turbulence

TOCL’17Andre Platzer (CMU) Differential Game Logic MOD’17 36 / 40

Zeppelin Obstacle Parcours

avoid obstacleschanging windlocal turbulence

TOCL’17Andre Platzer (CMU) Differential Game Logic MOD’17 36 / 40

Zeppelin Obstacle Parcours

c > 0 ∧ ‖x − o‖2 ≥ c2 →[(v := ∗; o := ∗; c := ∗; ?C ;

x ′ = v + py + rz&dy ∈ B&z ∈ B)∗] ‖x − o‖2 ≥ c2

r > p

hopeless

p > ‖v‖ + r

super-powered

‖v‖ + r > p > r

our challenge

X airship at x ∈ R2

X propeller p controlled in any direction y ∈ B, i.e. y21 + y2

2 ≤ 1

× sporadically changing homogeneous wind field v ∈ R2

× sporadically changing obstacle o ∈ R2 of size c subject to C

× continuously local turbulence of magnitude r in any direction z ∈ B

Andre Platzer (CMU) Differential Game Logic MOD’17 37 / 40

Zeppelin Obstacle Parcours

c > 0 ∧ ‖x − o‖2 ≥ c2 →[(v := ∗; o := ∗; c := ∗; ?C ;

x ′ = v + py + rz&dy ∈ B&z ∈ B)∗] ‖x − o‖2 ≥ c2

r > p

hopeless

p > ‖v‖ + r

super-powered

‖v‖ + r > p > r

our challenge

X airship at x ∈ R2

X propeller p controlled in any direction y ∈ B, i.e. y21 + y2

2 ≤ 1

× sporadically changing homogeneous wind field v ∈ R2

× sporadically changing obstacle o ∈ R2 of size c subject to C

× continuously local turbulence of magnitude r in any direction z ∈ B

Andre Platzer (CMU) Differential Game Logic MOD’17 37 / 40

Zeppelin Obstacle Parcours

c > 0 ∧ ‖x − o‖2 ≥ c2 →[(v := ∗; o := ∗; c := ∗; ?C ;

x ′ = v + py + rz&dy ∈ B&z ∈ B)∗] ‖x − o‖2 ≥ c2

× r > p hopeless

p > ‖v‖ + r

super-powered

‖v‖ + r > p > r

our challenge

X airship at x ∈ R2

X propeller p controlled in any direction y ∈ B, i.e. y21 + y2

2 ≤ 1

× sporadically changing homogeneous wind field v ∈ R2

× sporadically changing obstacle o ∈ R2 of size c subject to C

× continuously local turbulence of magnitude r in any direction z ∈ B

Andre Platzer (CMU) Differential Game Logic MOD’17 37 / 40

Zeppelin Obstacle Parcours

c > 0 ∧ ‖x − o‖2 ≥ c2 →[(v := ∗; o := ∗; c := ∗; ?C ;

x ′ = v + py + rz&dy ∈ B&z ∈ B)∗] ‖x − o‖2 ≥ c2

× r > p hopeless

X p > ‖v‖ + r super-powered

‖v‖ + r > p > r

our challenge

X airship at x ∈ R2

X propeller p controlled in any direction y ∈ B, i.e. y21 + y2

2 ≤ 1

× sporadically changing homogeneous wind field v ∈ R2

× sporadically changing obstacle o ∈ R2 of size c subject to C

× continuously local turbulence of magnitude r in any direction z ∈ B

Andre Platzer (CMU) Differential Game Logic MOD’17 37 / 40

Zeppelin Obstacle Parcours

c > 0 ∧ ‖x − o‖2 ≥ c2 →[(v := ∗; o := ∗; c := ∗; ?C ;

x ′ = v + py + rz&dy ∈ B&z ∈ B)∗] ‖x − o‖2 ≥ c2

× r > p hopeless

X p > ‖v‖ + r super-powered

? ‖v‖ + r > p > r our challenge

X airship at x ∈ R2

X propeller p controlled in any direction y ∈ B, i.e. y21 + y2

2 ≤ 1

× sporadically changing homogeneous wind field v ∈ R2

× sporadically changing obstacle o ∈ R2 of size c subject to C

× continuously local turbulence of magnitude r in any direction z ∈ B

Andre Platzer (CMU) Differential Game Logic MOD’17 37 / 40

Differential Game Invariants

Theorem (Differential Game Invariants)

DGI∃y ∈ Y ∀z ∈ Z [x ′:=f (x , y , z)](F )′

F → [x ′ = f (x , y , z)&dy ∈ Y&z ∈ Z ]F

Theorem (Differential Game Refinement)

∀u ∈ U ∃y ∈ Y ∀z ∈ Z ∃v ∈ V ∀x (f (x , y , z) = g(x , u, v))

[x ′ = g(x , u, v)&du ∈ U&v ∈ V ]F → [x ′ = f (x , y , z)&dy ∈ Y&z ∈ Z ]F

F¬F

∃y∈I ∀z∈I 0 ≤ 3x2(−1+2y+z)

?? ∃y∈I ∀z∈I [x ′:=−1+2y+z ]0≤3x2x ′

DGI1≤x3 →[x ′ = −1+2y+z&dy ∈ I&z ∈ I ]1≤x3

where y ∈ Idef≡ −1 ≤ y ≤ 1

TOCL’17Andre Platzer (CMU) Differential Game Logic MOD’17 38 / 40

Differential Game Invariants

Theorem (Differential Game Invariants)

DGI∃y ∈ Y ∀z ∈ Z [x ′:=f (x , y , z)](F )′

F → [x ′ = f (x , y , z)&dy ∈ Y&z ∈ Z ]F

Theorem (Differential Game Refinement)

∀u ∈ U ∃y ∈ Y ∀z ∈ Z ∃v ∈ V ∀x (f (x , y , z) = g(x , u, v))

[x ′ = g(x , u, v)&du ∈ U&v ∈ V ]F → [x ′ = f (x , y , z)&dy ∈ Y&z ∈ Z ]F

F¬F

∗∃y∈I ∀z∈I 0 ≤ 3x2(−1+2y+z)

?? ∃y∈I ∀z∈I [x ′:=−1+2y+z ]0≤3x2x ′

DGI1≤x3 →[x ′ = −1+2y+z&dy ∈ I&z ∈ I ]1≤x3

where y ∈ Idef≡ −1 ≤ y ≤ 1 TOCL’17

Andre Platzer (CMU) Differential Game Logic MOD’17 38 / 40

Outline

1 CPS Game Motivation2 Differential Game Logic

SyntaxExample: Push-around CartExample: Robot DanceDifferential Hybrid GamesDenotational SemanticsDeterminacyStrategic Closure Ordinals

3 AxiomatizationAxiomaticsExample: Robot SoccerSoundness and CompletenessSeparating Axioms

4 Expressiveness5 Differential Hybrid Games6 Summary

Andre Platzer (CMU) Differential Game Logic MOD’17 38 / 40

Future Work

Several extensions . . .

1 Draws

2 Cooperative games with coalitions

3 Rewards

4 Payoffs other than ±1

. . . are all expressible already. Direct syntactic support?

1 Compositional concurrent hybrid games

2 Imperfect information hybrid games

3 Constructive dGL to retain winning strategies as proof terms

Andre Platzer (CMU) Differential Game Logic MOD’17 39 / 40

Differential Game Logic

differential game logic

dGL = GL + HG = dL+ d〈α〉φ

φ

Logic for hybrid games

Compositional PL + logic

Discrete + continuous + adversarial

Winning region iteration ≥ωCK1

Sound & rel. complete axiomatization

Hybrid games > hybrid systemsd radical challenge yet smooth extension

Stochastic ≈ adversarial

dis

cre

te contin

uo

us

nondet

sto

chastic

advers

arial

Andre Platzer (CMU) Differential Game Logic MOD’17 40 / 40

LogicalFoundations

ofCyber-Physical

Systems

Logic

TheoremProving

ProofTheory

ModalLogic Model

Checking

Algebra

ComputerAlgebra

RAlgebraicGeometry

DifferentialAlgebra

LieAlgebra

Analysis

DifferentialEquations

CarathedorySolutions

ViscosityPDE

Solutions

DynamicalSystems

Stochastics Doob’sSuper-

martingales

Dynkin’sInfinitesimalGenerators

DifferentialGenerators

StochasticDifferentialEquations

Numerics

HermiteInterpolation

WeierstraßApprox-imation

ErrorAnalysis

NumericalIntegration

Algorithms

DecisionProcedures

ProofSearch

Procedures

Fixpoints& Lattices

ClosureOrdinals

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 2

Andre Platzer.Differential game logic.ACM Trans. Comput. Log., 17(1):1:1–1:51, 2015.doi:10.1145/2817824.

Andre Platzer.Differential hybrid games.ACM Trans. Comput. Log., 18(3):19:1–19:44, 2017.doi:10.1145/3091123.

Andre Platzer.Logics of dynamical systems.In LICS [13], pages 13–24.doi:10.1109/LICS.2012.13.

Andre Platzer.Logic & proofs for cyber-physical systems.In Nicola Olivetti and Ashish Tiwari, editors, IJCAR, volume 9706 ofLNCS, pages 15–21. Springer, 2016.doi:10.1007/978-3-319-40229-1_3.

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 2

Andre Platzer.Differential dynamic logic for hybrid systems.J. Autom. Reas., 41(2):143–189, 2008.doi:10.1007/s10817-008-9103-8.

Andre Platzer.A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 59(2):219–265, 2017.doi:10.1007/s10817-016-9385-1.

Andre Platzer.The complete proof theory of hybrid systems.In LICS [13], pages 541–550.doi:10.1109/LICS.2012.64.

Andre Platzer.A complete axiomatization of quantified differential dynamic logic fordistributed hybrid systems.Log. Meth. Comput. Sci., 8(4):1–44, 2012.

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 2

Special issue for selected papers from CSL’10.doi:10.2168/LMCS-8(4:17)2012.

Andre Platzer.Stochastic differential dynamic logic for stochastic hybrid programs.In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, CADE,volume 6803 of LNCS, pages 431–445. Springer, 2011.doi:10.1007/978-3-642-22438-6_34.

Andre Platzer.A uniform substitution calculus for differential dynamic logic.In Amy Felty and Aart Middeldorp, editors, CADE, volume 9195 ofLNCS, pages 467–481. Springer, 2015.doi:10.1007/978-3-319-21401-6_32.

Andre Platzer.Logical Foundations of Cyber-Physical Systems.Springer, Switzerland, 2017.URL: http://www.springer.com/978-3-319-63587-3.

Andre Platzer.

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 2

Logical Analysis of Hybrid Systems: Proving Theorems for ComplexDynamics.Springer, Heidelberg, 2010.doi:10.1007/978-3-642-14509-4.

Proceedings of the 27th Annual ACM/IEEE Symposium on Logic inComputer Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012.IEEE, 2012.

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 2

Outline

7 Operational Semantics

Andre Platzer (CMU) Differential Game Logic MOD’17 1 / 2

Differential Game Logic: Operational Semantics

Definition (Hybrid game α: operational semantics)

s

x := f (x)

s[[f (x)]]sx

x:=

f(x

)

s

x ′ = f (x) &Q

ϕ(r)

r

ϕ(t)

t

ϕ(0)

0

s

?Q

s

?Q s |= Q

s

α ∪ β

s

β

tj

β

t1

β

right

s

α

si

α

s1

α

left

s

α;β

rλ1λ

β

r jλ

β

r1λ

β

α

ti

rλii

β

r1i

β

α

t1

rλ11

β

r j1

β

r11

β

α

s

α∗

s

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

α

repeatstop

α

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

αrepeatst

op

α

repeat

s

stop

s

α

t0

tκtjt1

s0

sλsis1

sαd

t0

tκtjt1

s0

sλsis1

d

Andre Platzer (CMU) Differential Game Logic MOD’17 2 / 2

Differential Game Logic: Operational Semantics

Definition (Hybrid game α: operational semantics)

s

x := f (x)

s[[f (x)]]sx

x:=

f(x

)

s

x ′ = f (x) &Q

ϕ(r)

r

ϕ(t)

t

ϕ(0)

0

s

?Q

s

?Q s |= Q

s

α ∪ β

s

β

tj

β

t1

β

right

s

α

si

α

s1

α

left

s

α;β

rλ1λ

β

r jλ

β

r1λ

β

α

ti

rλii

β

r1i

β

α

t1

rλ11

β

r j1

β

r11

β

α

s

α∗

s

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

α

repeatstop

α

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

αrepeatst

op

α

repeat

s

stop

s

α

t0

tκtjt1

s0

sλsis1

sαd

t0

tκtjt1

s0

sλsis1

d

Andre Platzer (CMU) Differential Game Logic MOD’17 2 / 2

Differential Game Logic: Operational Semantics

Definition (Hybrid game α: operational semantics)

s

x := f (x)

s[[f (x)]]sx

x:=

f(x

) s

x ′ = f (x) &Q

ϕ(r)

r

ϕ(t)

t

ϕ(0)

0

s

?Q

s

?Q s |= Q

s

α ∪ β

s

β

tj

β

t1

β

right

s

α

si

α

s1

α

left

s

α;β

rλ1λ

β

r jλ

β

r1λ

β

α

ti

rλii

β

r1i

β

α

t1

rλ11

β

r j1

β

r11

β

α

s

α∗

s

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

α

repeatstop

α

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

αrepeatst

op

α

repeat

s

stop

s

α

t0

tκtjt1

s0

sλsis1

sαd

t0

tκtjt1

s0

sλsis1

d

Andre Platzer (CMU) Differential Game Logic MOD’17 2 / 2

Differential Game Logic: Operational Semantics

Definition (Hybrid game α: operational semantics)

s

x := f (x)

s[[f (x)]]sx

x:=

f(x

) s

x ′ = f (x) &Q

ϕ(r)

r

ϕ(t)

t

ϕ(0)

0

s

?Q

s

?Q s |= Q

s

α ∪ β

s

β

tj

β

t1

β

right

s

α

si

α

s1

αlef

t

s

α;β

rλ1λ

β

r jλ

β

r1λ

β

α

ti

rλii

β

r1i

β

α

t1

rλ11

β

r j1

β

r11

β

α

s

α∗

s

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

α

repeatstop

α

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

αrepeatst

op

α

repeat

s

stop

s

α

t0

tκtjt1

s0

sλsis1

sαd

t0

tκtjt1

s0

sλsis1

d

Andre Platzer (CMU) Differential Game Logic MOD’17 2 / 2

Differential Game Logic: Operational Semantics

Definition (Hybrid game α: operational semantics)

s

x := f (x)

s[[f (x)]]sx

x:=

f(x

) s

x ′ = f (x) &Q

ϕ(r)

r

ϕ(t)

t

ϕ(0)

0

s

?Q

s

?Q s |= Q

s

α ∪ β

s

β

tj

β

t1

β

right

s

α

si

α

s1

α

left

s

α;β

rλ1λ

β

r jλ

β

r1λ

β

α

ti

rλii

β

r1i

β

α

t1

rλ11

β

r j1

β

r11

β

α

s

α∗

s

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

α

repeatstop

α

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

αrepeatst

op

α

repeat

s

stop

s

α

t0

tκtjt1

s0

sλsis1

sαd

t0

tκtjt1

s0

sλsis1

d

Andre Platzer (CMU) Differential Game Logic MOD’17 2 / 2

Differential Game Logic: Operational Semantics

Definition (Hybrid game α: operational semantics)

s

x := f (x)

s[[f (x)]]sx

x:=

f(x

) s

x ′ = f (x) &Q

ϕ(r)

r

ϕ(t)

t

ϕ(0)

0

s

?Q

s

?Q s |= Q

s

α ∪ β

s

β

tj

β

t1

β

right

s

α

si

α

s1

α

left

s

α;β

rλ1λ

β

r jλ

β

r1λ

β

α

ti

rλii

β

r1i

β

α

t1

rλ11

β

r j1

β

r11

β

α

s

α∗

s

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

α

repeatstop

α

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

αrepeatst

opα

repeat

s

stop

s

α

t0

tκtjt1

s0

sλsis1

sαd

t0

tκtjt1

s0

sλsis1

d

Andre Platzer (CMU) Differential Game Logic MOD’17 2 / 2

Differential Game Logic: Operational Semantics

Definition (Hybrid game α: operational semantics)

s

x := f (x)

s[[f (x)]]sx

x:=

f(x

) s

x ′ = f (x) &Q

ϕ(r)

r

ϕ(t)

t

ϕ(0)

0

s

?Q

s

?Q s |= Q

s

α ∪ β

s

β

tj

β

t1

β

right

s

α

si

α

s1

α

left

s

α;β

rλ1λ

β

r jλ

β

r1λ

β

α

ti

rλii

β

r1i

β

α

t1

rλ11

β

r j1

β

r11

β

α

s

α∗

s

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

α

repeatstop

α

...

α

...

α

repeatst

op

α

...

α

...

α

repeatst

op

αrepeatst

op

α

repeat

s

stop

s

α

t0

tκtjt1

s0

sλsis1

sαd

t0

tκtjt1

s0

sλsis1

d

Andre Platzer (CMU) Differential Game Logic MOD’17 2 / 2

top related