display power characteristics

Post on 20-Feb-2016

41 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Display Power Characteristics. Lin Zhong ELEC518, Spring 2011. Display power. Display power (Contd.). iPAQ 4350, 2004. Display power (Contd.). Audiovox 5600, 2004. LCD principle. Lighting. Electrode: indium tin oxide (ITO). Dot. Dot addressing. Luminance controller. Color filter. - PowerPoint PPT Presentation

TRANSCRIPT

1

Display Power Characteristics

Lin ZhongELEC518, Spring 2011

2

Display power

3

Display power (Contd.)

Basic idle; 244; 12%

Computing; 383; 19%

LCD; 82; 4%

Lighting; 444; 22%

Speaker; 367; 18%

Earphone; 65; 3%

Bluetooth; 470; 23%

Power profile of HP iPAQ 4350 (mW)

iPAQ 4350, 2004

4

Display power (Contd.)

Lighting: Keyboard; 72.937037227937; 3%

Lighting: Display I; 147.835647317401; 5%

Lighting: Display II; 61.2835089189648; 2%

LCD; 12.8726439856928; 0%

Speaker; 45; 2%

Bluetooth; 440; 16%

GPRS; 1600; 58%

Compute; 370; 13%

Cellular network; 17; 1%

Flight mode: Sleep; 3; 0%

Audiovox 5600, 2004

5

LCD principle

Luminance controller

Dot addressing

Lighting

DotElectrode: indium tin oxide (ITO)

Color filter

Lighting

• Cavity/direct backlight

• Edge-lit light-guide backlight6Abileah’08, Information Display

Edge-lit light-guide backlight• Reflector• Guide• Diffuser

7Abileah’08, Information Display

Edge-lit backlight (Contd.)

8

Backlighting

• Cold cathode fluorescent tube (CCFL)• LED (better white and brighter)

9

10

Addressing• Direct addressing

– Numeric LED display• Dot matrix: passive

– Slow response, poor contrast– Low-cost, low-power, small

displays• Dot matrix: active

– Higher power consumption

Common electrode

Switch for each pixel

Passive matrix addressing

• Cross talk between neighboring pixels

• Long latency due to scanning

11http://www.hitachi-displays-eu.com/doc/AN-002_Passive_and_Active_Matrix.pdf

Active matrix addressing• More expensive

12

13

Thin-film transistor (TFT) LCD

Cross-sectional diagram of an active-matrix LCD. The LC cell modulates light intensity according to the driving voltages. ITO = indium tin oxide

Flynn et al, 1999Switch

Storage capacitor

TFT ≈ Active Matrix

14

LCD power consumption• Liquid crystal cell

requires polarization• TFT panel must be on

– DRAM– Refreshing at 60Hz

15

Bistable display (Zero power)• Cholesteric liquid crystal cell stays polarized

without voltage• Long response time

– Fine for ebook, bulletin board, light interaction– Impossible for video

Kent display

Passive or Active addressing?

16

E-Ink: Electrophoretic ink

TFT on 75um-thick steel-foil substrateNature, 2003

L.G. Philips---E-Ink

http://www.eink.com/

17

E-Ink product

• No back light• Paper quality

– High contrast– High resolution

18

OLED display• LCD: filter white external light for colors• OLED: generate different colors

– Potential lower power• Luminance for each pixel can be changed

– Much larger view angle– Bright & high contrast– Broad color gamut (better colors)– Thin & light– Faster response

Commercial product

• Sony OLED TV– XEL-1, 11”, $2,500, 3mm-think Panel

– http://www.youtube.com/watch?v=FTEt5o_jt3019

Commercial products (Contd.)

• Samsung 12.1’’ OLED for laptops

20

21

Power efficiency

• Green is the most efficient

Color Power Model of OLED

0 0.2 0.4 0.6 0.8 10

2

4

6

8

sRGB Value

Pow

er (µ

W)

(a)

0 0.2 0.4 0.6 0.8 10

2

4

6

8

Linear RGB Value

Pow

er (µ

W)

(b)

0 0.2 0.4 0.6 0.8 10

2

4

6

sRGB Value

Pow

er (µ

W)

(c)

0 0.2 0.4 0.6 0.8 10

2

4

6

Linear RGB Value

Pow

er (µ

W)

(d)

0.0 0.2 0.4 0.6 0.8 1.00

1

2

sRGB Value

Pow

er (μ

W)

0.0 0.2 0.4 0.6 0.8 1.00

1

2

Linear RGB ValuePo

wer

(μW

)

uOLED N85

23

OLED display power management

• Darken unused areas

2.5 times power reduction

HP Labs, MobileHCI 2004

24

OLED display power management

• Luminance inversion

HP Labs, MobileHCI 2004

5 times power reduction

DarkR’ = λRG’ = λGB’ = λB

↓25%

GreenR’ = λRRG’ = λGGB’ = λBB

↓34%

ArbitraryR’ = R*G’ = G*B’ = B*

↓72%

InversionR’= λ(1-R)G’= λ(1-G)B’= λ(1-B)

↓66%

Original

Human visual system

Normalized response spectra of human cones, S, M, and L types, to monochromatic spectral stimuli, with wavelength given in nanometers.

http://en.wikipedia.org/wiki/Color_vision

Color sensitivity

Single color sensitivity diagram of the human eye.

top related