durero task: wp 4: water scarcity and droughts indicators grupo de investigación en hidrobiología...

Post on 26-Dec-2015

213 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

DURERO Task: WP 4: Water Scarcity and Droughts indicators

Grupo de Investigación en Hidrobiología

Lisboa, 19 December 2014

E.T.S. Ingeniería de Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid

Deliverable 1. Development of a WS&D riparian indicator

Judit Maroto, Marta González del Tánago, Diego García de Jalón, Vanesa Martínez Fernández

1.-Hydro-meteorological analysis

2. Land cover assessment

3.-Riparian vegetation characterization

1.-Hydro-meteorological analysis

Decreasing trend in annual runoff

Water table decline Period Station GW(m) τ

1985-2000 Lastras de Cuellar

-2.48 -0.236 *

2000-2008 Boecillo -10.38 -0.461**

Observations3.48 Hm3 (1942-1959) Mann-Kendall Test 0.236*3.70 Hm3 (1960-2008) Mann-Kendall Test -0.461*

Increase of intermittency Perennial Runoff (1942-1978): 0 days with 0 m3/s /year

Intermittent Runoff (1979-2011): 14.7 days with 0 m3/s /year

Interpretation

Probably increase of evapotranspirationNo trend in precipitationIncreasing trend in temperature (0.320**)

Groundwater explotation (although no data previous to 1978 found for piezometers)

Deliverable 1. Development of a WS&D riparian indicator (Cega River)

Deliverable 1. Development of a WS&D riparian indicator (Cega River)

2.-Land cover assessment

1956 20060%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Shrub and/herbaceous vegetation

Pastures

Open spaces with little or no vegetation

Forest

Artificial surfaces

Agricultural areas

Methodology: Air photo 1956 – Corine 2006

No significant temporal changes over time in forest area

Decrease of the agricultural area

Increase of shrub and herbaceous vegetation

Reinforcement of the hypothesis of groundwater extraction as the main cause of water decline

Deliverable 1. Development of a WS&D riparian indicator (Cega River)

3.-Riparian vegetation: Composition and structure

Cega River1956

1956 20120

20

40

60

80

100

Poplar plantationPasturesNatural vegetationActive Channel

Active Channel

Natural vegetation

Pastures

Poplar plantation

-80 -60 -40 -20 0 20 40

Composition Structure

River bank mixed Salicaceae formation Seedling of Salix and Fraxinus angustifolia. Mature shrubs and trees of Salicacea species.

Floodplain Fraxinus angustifolia formation Mature forest of Fraxinus angustifolia, with shrub strata of terrestrial species

Deliverable 1. Development of a WS&D riparian indicator (Cega River)

3.-Riparian vegetation: Composition and structure

Riparian forest expansion

Salicacea formation recruitment in contact with the water flow

Ash formation stabilized and mature

What we are working in:Indicators-Species composition -Recruitment-Age-size structure

Deliverable 2.Development of a river connectivity WS&D indicator

Gonzalo Rincón, Carlos Alonso, Joaquín Solana, Diego García de Jalón, Santiago Saura

1.-Objective and graph-based representation

2.-Passability Index (PI) application

3.- Importance of nodes

1.-Main objetive: understand and quantify the loss of connectivity in the rivers Cega and Pirón due the presence of transversal obstacles and their impact in the natural movement of representative fish species like brown trout (Salmo trutta), barbel (Luciobarbus bocagei) and the northern straight-mouth nase (Pseudochondrostoma duriense).

Transform the Cega and Pirón fluvial network into a graph-based representation.

Nodes (grey circles) represent the stream segments of the

rivers.

Black circles represent transversal obstacles that alter longitudinal connectivity in this water basin.

Deliverable 2.Development of a river connectivity WS&D indicator (Cega and Pirón rivers)

2.-Passability Index (PI) (González Fernández et al 2010)

PI= P upstream + P downstream (for each species)

Cega River

Pirón River

PI = 100 Insurmountable.PI = 0 Totally surmountable.Intermediate values of PI crossing depends of flow conditions and the characteristics of the fish specie.

PI value Obstacles

0 - 9 13

10 – 30 10

31 – 50 2

51 – 80 4

80 – 100 39

PI Value

Deliverable 2.Development of a river connectivity WS&D indicator (Cega and Pirón rivers)

3.-Connectivity values (BC and PC index*):Importance of nodes (stream segments) in Cega-Pirón graph.

NodeBetweenness

Centrality

22 0.076

7 0.066

6 0.063

11 0.048

26 0.034

23 0.034

13 0.018

19 0.004

36 0.001

32 0.001

* Saura S, Pascual-Hortal L (2007)

The results of this index determines which are the main nodes in Cega and Pirón rivers for the connectivity and conservation of ecological processes and the importance of

its preservation for maintaining fish migration pathways.

Node dPC

11 62.56

7 55.09

22 50.43

6 45.34

26 41.16

13 21.01

30 19.71

27 12.04

8 7.53

23 6.32

Node dPCintra

11 10.06

4 4.76

30 1.21

13 1.10

21 0.77

26 0.73

22 0.66

7 0.55

27 0.43

29 0.17

Node dPCflux

11 40.10

30 18.50

13 17.73

26 14.77

22 14.16

7 13.06

27 11.61

8 7.36

6 3.60

23 2.58

Deliverable 2.Development of a river connectivity WS&D indicator (Cega and Pirón rivers)

Still working in:

• Application of a probabilistic index of connectivity to measure the connectivity upstream and downstream for the selected fish species.

• Determine the importance of each obstacle for the overall connectivity in a water scarcity context.

Deliverable 2.Development of a river connectivity WS&D indicator (Cega and Pirón rivers)

Deliverable 3.Fish based WS&D indicator

José María Santiago, Carlos Alonso, Diego García de Jalón

1.-Goal and methodology2.-Still working in

1.-Goal: assess climate change impact on the stream temperature and on the natural flow regimen in the Cega River basin

Deliverable 3.Fish based WS&D indicator (Cega and Pirón rivers)

What has been done

• Thermal behaviour of Cega and Pirón modelled relating water temperature and air temperature (11 termographs)

• 38 electrofishing sampling plots in Cega and Pirón river

• Climate change modelling with IPCC5 scenarios(air temperature and precipitation)

• General conclusion• Precipitation is predicted to decline at the end of the century• A severe increase in the air temperatures may exacerbate the

hydrological stress

Climate warming might drive a retraction up to 56% of the current brown trout thermal habitat

Deliverable 3.Fish based WS&D indicator (Cega and Pirón rivers)

2.-Still working in:Artificial neural networks methodology is being used to model the instantaneous flow from Cega and Pirón gauging stations data, and from meteorological data (precipitation

and air temperature) from several AEMET stations using different delays.

To predict trout response to increase in water temperature exarcerbated by hydrological stress

Ingrid Maldonado, Diego García de Jalón

Deliverable 4. Ecological Flow Regime WS&D indicator

1.-Ecological Flow of Cega River2.-Ecological Flow or Adaja River

Cega River: underground extractions

Deliverable 4. Ecological Flow Regime WS&D indicator

1 19 37 55 73 91 1091271451631811992172352532712893073253433610

2

4

6

8

10

12

14

Annual discharge

Periodo 1942-1969

Periodo 1970- 2011

Disc

harg

e m

3/s

0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 50

20406080

100120140160180

WUA and discharge

barbo adulto

barbo juvenil

barbo alevin

Discharge (m3/s)

WUA

(m2)

Octubre

Noviembre

Diciembre

Enero

FebreroMarzo Abril

MayoJunio

Julio

Agosto

Septiembre0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Ecological Flow

Q Min Lower quartileQ Ecol Casimir

Disc

harg

e m

3/s

Adaja River: flow regulation

Deliverable 4. Ecological Flow Regime WS&D indicator

1 20 39 58 77 96 11513415317219121022924826728630532434336202468

1012141618

Pre-1994 Post-1994

Days of the year from 1st october to 30th september

Med

ian

disc

harg

e m

3/s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 70

50

100

150

200

250

300

350

400WUA and discharge barbo adulto

barbo juvenilbarbo alevin

Discharge [m³/s]

WUA

Octubre

Noviembre

Diciembre

Enero

FebreroMarzo Abril

MayoJunio

Julio

Agosto

Septiembre0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Ecological Flow

QminLower quartileQ ecol Casimir

Disc

harg

e m

3/s

Oct Nov Dic Ene Feb Mar Abr May Jun Jul Ago Set0

50

100

150

200

250

WUA along the year

Qecol Casimir Q Min Q Medio

WUA

m2

SummaryD1.Riparian Indicator D2.River connectivity D3.Fish based

IndicatorD4.Ecological Flow regime

What has been done

1.Hydrologic, climatic, diagnosis. 2.Temporal changes in vegetation covers.3.Composition and structure of riparian vegetation 1-km reach

1.Fluvial network into a graph-based representation. 2.Passability Index (PI) 3.Connectivity values: Importance of nodes (stream segments)

1.Thermal behaviour of Cega and Pirón modelled relating data of termographs and air temperature. 2.Climate change modelling

1.Ecological Flow regime for Cega River2. Ecological Flow regime for Adaja River

Problems encountered

Lack of historical discharge information downstreamLack of conexion with water table level information

-Determine the number and value of nodes and links in the graph representation.-Obtaining information to quantify the values of the stream segments.

-problems arose when simulating rare events

Still working in

Riparian Indicators Application of a probabilistic index of connectivity to measure the connectivity upstream and downstream for the selected fish species

Modelling flow from existing gauging stations and existing meteorological data

Indicators

Timetable to fullfill

February 2015 February 2015 February 2015 February 2015

Muito obrigado

Deliverable 1. contact: Judit Maroto judit.maroto@gmail.com

Deliverable 2. contact: Gonzalo Rincón gonzalorinconsanz@gmail.com

Deliverable 3. contact: Jose María Santiago jmsant@picos.com

Deliverable 4. contact: Diego García de Jalón diego.gjalon@upm.es

Grupo de Investigación en Hidrobiología

Cross section of river Cega in Lastras de Cuellar

Active channel in 2012

Active channel in 1956

top related