dynamic stiffness of ageing rubber vibration isolators kth.pdf · the marcus wallenberg laboratory...

Post on 16-Apr-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Dynamic stiffness of ageing rubber vibration isolators

Leif Kari

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Structure-borne sound

Source Receiver

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Physical principle

”Hard”

”Hard”

”Soft”

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fwithout FwithFwithFwithout

Force transmissibility TF =

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fwith

FwithFwithout

TF =Fwith

Fe

− ω2mue = Fe - Fwithue ≠ 0

Ideal isolator

k

k

m

Fwith = k ue

1

1−= ω2

ω02

ω02 = k /m

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

100

101

102

103

104

10−8

10−6

10−4

10−2

100

102

Fo

rce

tran

smis

sib

ilit

y

Frequency [Hz]

No isolatorIdeal isolator

Rigid foundation – ideal isolator

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

100

101

102

103

104

10−8

10−6

10−4

10−2

100

102

Fo

rce

tran

smis

sib

ilit

y

Frequency [Hz]

No isolatorIdeal isolator

η

Rigid foundation – ideal isolator

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fwithout Fwith

Nonrigid foundation

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

uf

Foundation stiffness

FfFf

uf

kf = Ff / uf → ∞)1(12

8ωi 2f

ff2ff ν

ρ

−=

Ehk

hf

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

100

101

102

103

104

10−8

10−6

10−4

10−2

100

102

Fo

rce

tran

smis

sib

ilit

y

Frequency [Hz]

No isolatorNonrigid foundationRigid foundation

Nonrigid foundation – Ideal isolator

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Acoustic radiation

Wall

Wave fronts

1 W/m2 ⇔ 120 dB !

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fideal

Fideal

ideal isolator

k

m

non-ideal isolator

Fin

Fout

m

uin uout

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fideal

Fideal

ideal isolator

k

non-ideal isolator

Fin

Fout

uin uoutue

Fideal = k ueFin = kinin uin + kinout uoutFout = koutin uin+ koutout uout

with kinout = koutin

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Spherical part

Constitutive preliminaries

tr � = 3���(, � �, �� �)div �

dev � = 2��(, � �, �� �) dev �� + � ��(, � �, �� �; � − �) �dev ��(�)�� d�� �

Deviatoric part

limt→∞ µ1 = 0

limt→∞ µ = µ∞

[Kari 2016a,b]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Equilibrium elastic modulus

Density

�� , � �, �� � = "#$"$ �� � �, �� � ,

ρT

(equlibrium)≈ (1 − α ∆T)ρ0

α = −1ρ

�ρ�

∆T = T − T0

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Specific relaxation function

�� , � �, �� �; � = ∆() −∆ ��*+, �+#) ℎ(�)

() . =/ .0Γ(1 + β3)�

04$

+# = 10 67∆#689∆#

Non-dimensional relaxation intensity ∆ » 1

0 < β ≤ 1

[Kari 2016a,b]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Physical ageing

[Cangialosi et al Soft Matter 2013]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Physical ageing cont

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling physical ageing

[Greiner & Schwarzl 1984, Kovacs 1963, Doolittle 1953, Cohen & Turnbull 1959]

:# = ;# − ;$;$:#� = limt→∞:# = ;#� − ;$;$

<# d:#d� = :#� − :#<# = <̂ exp @:#

:#� = :#A� + BC�D∆BC�D = BCEFF�CG − B D�HHG

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling physical ageing modified

<# d:#d� = :#� − :# <# �I )D�) :# = :#� − :#

D�) :# = 1Γ(1 − K)� 1(� − �))�$

d(:#(�))d� d�

<# �I = <̂ exp @:# = <̂10MNOP

@Q = @log�$ e = @0.434294…

[Kari 2016a,b]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

WLF shift function

+# = 10 67∆#689∆#

:#� = :#A� + BC�D∆

<#� �I = <̂10 MNOPY

<#A� �I = <̂10MNOPAY

+# = <#� �I<#A� �I

Z� = @Q:#A� Z[ = :#A�BC�D

[Greiner & Schwarzl 1984, Kovacs 1963, Doolittle 1953, Cohen & Turnbull 1959]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Cont

+, � = <# �I<#� �I = 10

67 OPYOP �

<#� �I = �*+#∆�)

+, �+# = <# �I<#� �I

<#� �I<#A� �I =<# �I<#A� �I

�� , � �, �� �; � = ∆() −∆ ��*+, �+#) ℎ(�)

[Kari 2016a,b]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling chemical ageing

Scission of polymer chains

�� � �, �� � = 1 − \H]^ ��$<H]^ _D�`ab_ \H]^ = 1 − \H]^<H]^ = <̂H]^e cdefg#̀ ab

\H]^ = 1 − (_ − �� �<H]^_

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling chemical ageing contPlus reformation of new polymer links

<C�h iD�`abi \C�h = 1 − \C�h<C�h = <̂H]^e cjbkg#̀ ab

\C�h = 1 − (i − �� �<C�hi

�� � �, �� � = 1 − \H]^ + \C�h\C�hl ��$

[Kari 2016a,b]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling chemical ageing cont

Scission and reformation of new polymer links

�� � �, �� � = (_ − �� �<H]^_ + 1 − (i − �� �<C�h

i \C�hl ��$

[Kari 2016a,b]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Vibration isolator

[Kari et al. 2001]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Fideal

Fideal

ideal isolator

k

non-ideal isolator

Fin

Fout

uin uoutue

Fideal = k ueFin = kinin uin + kinout uoutFout = koutin uin+ koutout uout

with kinout = koutin

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Modelling approaches- Wave-guides

Traction free surface

Infinite beam

Wave equations Bessel

Trig.

Exp. harm.

Satisfy traction free B.C:s � Dispersion relation

[Kari 2001a,b, Östberg et al. 2011]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

100

101

102

103

104

10−8

10−6

10−4

10−2

100

102

Forc

e tr

ansm

issi

bil

ity

Frequency [Hz]

No isolatorReal isolatorIdeal isolatorIdeal isolator − Rigid foundation

Nonrigid foundation – Real isolator

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

DMTA measurements and modelling

[Kari et al. 2001]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

Cont

101

102

103

104

103

104

105

106

107

a)

Tra

nsfe

r S

tiffn

ess [

N/m

] -60ºC

-25ºC

0ºC

+25ºC

+60ºC

101

102

103

104

102

104

106

b)

Drivin

g P

oin

t S

tiffn

ess [N

/m]

Frequency [Hz]

-60ºC

-25ºC 0ºC

+25ºC

+60ºC

[Kari et al. 2001]

The Marcus Wallenberg Laboratory

for Sound and Vibration Research

References• Cangialosi, D., Boucher, V.M., Alegria, A., Colmenero, J.: Physical aging in polymers and polymer nanocomposites:

recent results and open questions. Soft Matter 9, 8619–8630 (2013)

• Cohen, M.H., Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959)

• Doolittle, A.K.: Studies in newtonian flow. II. The dependence of the viscosity of liquids on free-space. J. Appl. Phys. 22, 1471–1475 (1951)

• Greiner, R., Schwarzl, F.R.: Thermal contraction and volume relaxation of amorphous polymers. Rheol. Acta 23, 378–395 (1984)

• Kari, L.: On the waveguide modelling of dynamic stiffness of cylindrical vibraitnoso iltaors. Part I: The model, solution and experimental comparison. J. Sound. Vib. 244, 211–233 (2001a)

• Kari, L.: On the waveguide modelling of dynamic stiffness of cylindrical vibration isolators. Part I: The dispersion relation solution, convergence analysis and comparison with simple models. J. Sound. Vib. 244, 235–257 (2001b)

• Kari, L.: Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 1: Constitutive equations. Continuum Mech. Thermodyn. Submitted (2016a)

• Kari, L.: Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 2: Waveguide solution. Continuum Mech. Thermodyn. Submitted (2016b)

• Kari, L., Eriksson, P., Stenberg, B.: Dynamic stiffness of natural rubber cylinders in the audible frequency range using wave guides. Kaut. Gummi Kunstst. 54, 106–111 (2001)

• Kovacs, A.J., Aklonis, J.J., Hutchinson, J.M., Ramos, A.R.: Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci., Part B: Polym Phys 17, 1097–1162 (1979)

• Odegard, G.M., Bandyopadhyay, A.: Physical aging of epoxy polymers and their composites. J. Polym. Sci., Part B: Polym Phys 49, 1695–1716 (2011)

• Östberg, M., Kari, L.: Transverse, tilting and cross-coupling stiffness of cylindrical rubber isolators in

• the audible frequency range—the wave-guide solution. J. Sound. Vib. 330, 3222–3244 (2011)

top related