ee292: fundamentals of eceb1morris/ee292/docs/slides15.pdfΒ Β· rl example β€’current before switch...

Post on 16-Aug-2020

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

http://www.ee.unlv.edu/~b1morris/ee292/

EE292: Fundamentals of ECE

Fall 2012

TTh 10:00-11:15 SEB 1242

Lecture 15

121016

Outline

β€’ Review General RC Circuit

β€’ RL Circuits

2

General 1st-Order RC Solution

β€’ Notice both the current and voltage in an RC circuit has an exponential form

β€’ The general solution for current/voltage is: β–« π‘₯ – represents current or voltage β–« 𝑑0 βˆ’ represents time when source switches β–« π‘₯𝑓 - final (asymptotic) value of current/voltage

β–« 𝜏 – time constant (𝑅𝐢)

β€’ Find values and plug into general solution

3

Example

β€’ Solve for 𝑣𝑐(𝑑)

β–« 𝑣𝑓 = 𝑉𝑠 steady-state analysis

β–« 𝑣𝑐 0+ = 0 no voltage when switch open

β–« 𝜏 = 𝑅𝐢 equivalent resistance/capacitance

β€’ 𝑣𝑐 𝑑 = 𝑉𝑠 + 0 βˆ’ 𝑉𝑠 π‘’βˆ’π‘‘/(𝑅𝐢) = 𝑉𝑠 βˆ’ π‘‰π‘ π‘’βˆ’π‘‘/(𝑅𝐢)

β€’ Solve for 𝑖𝑐(𝑑)

β–« 𝑖𝑓 = 0 fully charged cap no current

β–« 𝑖𝑐 0+ =π‘‰π‘ βˆ’π‘£π‘(0+)

𝑅=

π‘‰π‘ βˆ’0

𝑅=

𝑉𝑠

𝑅

β€’ 𝑖𝑐 𝑑 = 0 +𝑉𝑠

π‘…βˆ’ 0 π‘’βˆ’π‘‘/(𝑅𝐢) =

𝑉𝑠

π‘…π‘’βˆ’π‘‘/(𝑅𝐢)

4

𝑖𝑐

RC Current β€’ Voltage

β–« 𝑣𝑐 𝑑 = 𝑉𝑠 βˆ’ π‘‰π‘ π‘’βˆ’π‘‘/(𝑅𝐢)

β€’ Current

β–« 𝑖𝑐 =π‘‰π‘ βˆ’π‘£π‘(𝑑)

𝑅= 𝐢

𝑑𝑣𝑐(𝑑)

𝑑𝑑

β–« 𝑖𝑐 = 𝐢𝑉𝑠

π‘…πΆπ‘’βˆ’π‘‘/(𝑅𝐢)

β–« 𝑖𝑐 =𝑉𝑠

π‘…π‘’βˆ’π‘‘/(𝑅𝐢)

5

𝑖𝑐

http://www.electronics-tutorials.ws/rc/rc_1.html

First-Order RL Circuits β€’ Contains DC sources, resistors, and a single inductance

β€’ Same technique to analyze as for RC circuits 1. Apply KCL and KVL to write circuit equations 2. If the equations contain integrals, differentiate each

term in the equation to produce a pure differential equation

β–« Use differential forms for I/V relationships for inductors and capacitors

3. Assume solution of the form 𝐾1 + 𝐾2𝑒𝑠𝑑 4. Substitute the solution into the differential equation to

determine the values of 𝐾1and 𝑠 5. Use initial conditions to determine the value of 𝐾2 6. Write the final solution

6

RL Example β€’ Current before switch

β–« 𝑖 0βˆ’ = 0

β€’ KVL around loop

β–« 𝑉𝑠 βˆ’ 𝑅𝑖 𝑑 βˆ’ 𝐿𝑑𝑖 𝑑

𝑑𝑑= 0

β–« 𝑖 𝑑 +𝐿

𝑅

𝑑𝑖 𝑑

𝑑𝑑=

𝑉𝑠

𝑅

Notice this is the same equation form as the charging capacitor example

β€’ Solution of the form

β–« 𝑖 𝑑 = 𝐾1 + 𝐾2𝑒𝑠𝑑

β€’ Solving for 𝐾1, 𝑠

β–« 𝐾1 + 𝐾2𝑒𝑠𝑑 +𝐿

𝑅𝐾2𝑠𝑒𝑠𝑑 =

𝑉𝑠

𝑅

𝐾1 =𝑉𝑠

𝑅

1 +𝐿

𝑅𝑠 = 0 β†’ 𝑆 = βˆ’

𝑅

𝐿

β€’ Solving for 𝐾2

β–« 𝑖 0+ = 0 = 𝑉𝑠

𝑅+ 𝐾2π‘’βˆ’π‘‘π‘…/𝐿

β–« 0 =𝑉𝑠

𝑅+ 𝐾2𝑒0

β–« 𝐾2 = βˆ’π‘‰π‘ 

𝑅

β€’ Final Solution

β–« 𝑖 𝑑 =𝑉𝑠

π‘…βˆ’

𝑉𝑠

π‘…π‘’βˆ’π‘‘π‘…/𝐿

β–« 𝑖 𝑑 = 2 βˆ’ 2π‘’βˆ’500𝑑

7

RL Example β€’ 𝑖 𝑑 = 2 βˆ’ 2π‘’βˆ’500𝑑

β€’ Notice this is in the general form we used for RC circuits

β–« 𝜏 =𝐿

𝑅

β€’ Find voltage 𝑣(𝑑)

β–« 𝑣𝑓 = 0, steady-state short

β–« 𝑣 0+ = 100

No current immediately

through 𝑅, 𝑣 = 𝐿𝑑𝑖(𝑑)

𝑑𝑑

β€’ 𝑣 𝑑 = 100π‘’βˆ’π‘‘/𝜏

8

Exercise 4.5

β€’ Initial conditions

β€’ For 𝑑 < 0 β–« All source current goes

through switched wire

β–« 𝑖𝑅 𝑑 = 𝑖𝐿 𝑑 = 0 𝐴

β–« 𝑣 𝑑 = 𝑖𝑅 𝑑 R = 0 V

β€’ For 𝑑 = 0+ (right after switch)

β–« 𝑖𝐿 𝑑 = 0 Current can’t change

immediately through an inductor

β–« 𝑖𝑅 𝑑 = 2 A, by KCL

β–« 𝑣 𝑑 = 𝑖𝑅 𝑑 R = 20 V

β€’ Steady-state β–« Short inductor

β€’ 𝑣 𝑑 = 0 β–« Short circuit across inductor

β€’ 𝑖𝑅 = 0 β–« All current through short

β€’ 𝑖𝐿 = 2 𝐴 β–« By KCL

9

Exercise 4.5

β€’ Can use network analysis to come up with a differential equation, but you would need to solve it

β€’ Instead, use the general 1st-order solution

β€’ Time constant 𝜏

β–« 𝜏 =𝐿

𝑅=

2

10= 0.2

β€’ Voltage 𝑣(𝑑) β–« 𝑣 𝑑 = 0 + 20 βˆ’ 0 π‘’βˆ’π‘‘/0.2 = 20π‘’βˆ’π‘‘/0.2 V

β€’ Current 𝑖𝐿(𝑑), 𝑖𝑅(𝑑) β–« 𝑖𝐿 𝑑 = 2 + 0 βˆ’ 2 π‘’βˆ’π‘‘/0.2 = 2 βˆ’ 2π‘’βˆ’π‘‘/0.2 A β–« 𝑖𝑅 𝑑 = 0 + 2 βˆ’ 0 π‘’βˆ’π‘‘/0.2 = 2π‘’βˆ’π‘‘/0.2 A

10

RC/RL Circuits with General Sources

β€’ Previously,

β–« 𝑅𝐢𝑑𝑣𝑐(𝑑)

𝑑𝑑+ 𝑣𝑐(𝑑) = 𝑉𝑠

β€’ What if 𝑉𝑠 is not constant

β–« 𝑅𝐢𝑑𝑣𝑐(𝑑)

𝑑𝑑+ 𝑣𝑐(𝑑) = 𝑣𝑠(𝑑)

β–« Now have a general source that is a function of time

β€’ The solution is a differential equation of the form

β–« πœπ‘‘π‘₯(𝑑)

𝑑𝑑+ π‘₯(𝑑) = 𝑓(𝑑)

β–« Where 𝑓(𝑑) is known as the forcing function (the circuit source)

11

𝑣𝑠(𝑑)

General Differential Equations

β€’ General differential equation

β€’ πœπ‘‘π‘₯(𝑑)

𝑑𝑑+ π‘₯(𝑑) = 𝑓(𝑑)

β€’ The solution to the diff equation is

β€’ π‘₯ 𝑑 = π‘₯𝑝 𝑑 + π‘₯β„Ž(𝑑)

β€’ π‘₯𝑝 𝑑 is the particular solution

β€’ π‘₯β„Ž(𝑑) is the homogeneous solution

12

Particular Solution

β€’ πœπ‘‘π‘₯𝑝 𝑑

𝑑𝑑+ π‘₯𝑝 𝑑 = 𝑓(𝑑)

β€’ The solution π‘₯𝑝 𝑑 is called the forced response

because it is the response of the circuit to a particular forcing input 𝑓 𝑑

β€’ The solution π‘₯𝑝 𝑑 will be of the same functional

form as the forcing function

β–« E.g.

β–« 𝑓 𝑑 = 𝑒𝑠𝑑 β†’ π‘₯𝑝 𝑑 = 𝐴𝑒𝑠𝑑

β–« 𝑓 𝑑 = cos πœ”π‘‘ β†’ π‘₯𝑝 𝑑 = 𝐴cos πœ”π‘‘ + 𝐡sin(πœ”π‘‘)

13

Homogeneous Solution

β€’ πœπ‘‘π‘₯β„Ž 𝑑

𝑑𝑑+ π‘₯β„Ž 𝑑 = 0

β€’ π‘₯β„Ž 𝑑 is the solution to the differential equation when there is no forcing function

β€’ Does not depend on the sources

β€’ Dependent on initial conditions (capacitor voltage, current through inductor)

β€’ π‘₯β„Ž 𝑑 is also known as the natural response

β€’ Solution is of the form

β€’ π‘₯β„Ž 𝑑 = πΎπ‘’βˆ’π‘‘/𝜏

14

General Differential Solution

β€’ Notice the final solution is the sum of the particular and homogeneous solutions

β–« π‘₯ 𝑑 = π‘₯𝑝 𝑑 + π‘₯β„Ž(𝑑)

β€’ It has an exponential term due to π‘₯β„Ž(𝑑) and a term π‘₯𝑝 𝑑 that matches the input source

15

Second-Order Circuits

β€’ RLC circuits contain two energy storage elements

β–« This results in a differential equation of second order (has a second derivative term)

β€’ This is like a mass spring system from physics

16

RLC Series Circuit

β€’ KVL around loop

β–« 𝑣𝑠 𝑑 βˆ’ 𝐿𝑑𝑖 𝑑

π‘‘π‘‘βˆ’ 𝑖 𝑑 𝑅 βˆ’ 𝑣𝑐 𝑑 = 0

β€’ Solve for 𝑣𝑐 𝑑

β–« 𝑣𝑐 𝑑 = 𝑣𝑠 𝑑 βˆ’ 𝐿𝑑𝑖 𝑑

π‘‘π‘‘βˆ’ 𝑖 𝑑 𝑅

β€’ Take derivative

▫𝑑𝑣𝑐 𝑑

𝑑𝑑=

𝑑𝑣𝑠 𝑑

π‘‘π‘‘βˆ’ 𝐿

𝑑2𝑖 𝑑

𝑑𝑑2 βˆ’ 𝑅𝑑𝑖 𝑑

𝑑𝑑

β€’ Solve for current through capacitor

β€’ 𝑖 𝑑 = 𝐢𝑑𝑣𝑐 𝑑

𝑑𝑑

β€’ 𝑖 𝑑 = 𝐢𝑑𝑣𝑠 𝑑

π‘‘π‘‘βˆ’ 𝐿

𝑑2𝑖 𝑑

𝑑𝑑2 βˆ’ 𝑅𝑑𝑖 𝑑

𝑑𝑑

‒𝑑2𝑖 𝑑

𝑑𝑑2 βˆ’π‘…

𝐿

𝑑𝑖 𝑑

𝑑𝑑+

1

𝐿𝐢𝑖 𝑑 =

1

𝐿

𝑑𝑣𝑠 𝑑

𝑑𝑑

β€’ The general 2nd-order constant coefficient equation

17

top related