elements of mechanical engineering - r. k. rajput

Post on 04-Mar-2016

653 Views

Category:

Documents

166 Downloads

Preview:

Click to see full reader

DESCRIPTION

Scilab - Elements of Mechanical Engineering.

TRANSCRIPT

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 1/137

Scilab Textbook Companion for

Elements of Mechanical Engineering

by R. K. Rajput1

Created byVatsal Shah

B.TECHMechanical Engineering

Institute of Technology,Nirma UniversityCollege Teacher

NoneCross-Checked byBhavani Jalkrish

September 25, 2014

1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the ”Textbook Companion Project”section at the website http://scilab.in

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 2/137

Book Description

Title:  Elements of Mechanical Engineering

Author:   R. K. Rajput

Publisher:   Laxmi Publications, New Delhi.

Edition:   1

Year:   2009

ISBN:   978-81-318-0677-7

1

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 3/137

Scilab numbering policy used in this document and the relation to theabove book.

Exa  Example (Solved example)

Eqn  Equation (Particular equation of the above book)

AP  Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

2

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 4/137

Contents

List of Scilab Codes   4

2 Fuels and Combustion   8

3 Properties of Gases   11

4 Properties of Steam   23

5 Heat Engines   51

6 Steam Boilers   80

7 Internal Combustion Engines   96

10 Air Compressors   115

13 Transmission of Motion and Power   123

3

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 5/137

List of Scilab Codes

Exa 2.1 Example 1   . . . . . . . . . . . . . . . . . . . . . . . . 8Exa 2.2 Example 2   . . . . . . . . . . . . . . . . . . . . . . . . 9Exa 3.1 Example 1   . . . . . . . . . . . . . . . . . . . . . . . . 11Exa 3.2 Example 2   . . . . . . . . . . . . . . . . . . . . . . . . 11Exa 3.3 Example 3   . . . . . . . . . . . . . . . . . . . . . . . . 12Exa 3.4 Example 4   . . . . . . . . . . . . . . . . . . . . . . . . 13Exa 3.5 Example 5   . . . . . . . . . . . . . . . . . . . . . . . . 14Exa 3.6 Example 6   . . . . . . . . . . . . . . . . . . . . . . . . 14Exa 3.8 Example 8   . . . . . . . . . . . . . . . . . . . . . . . . 15Exa 3.10 Example 10  . . . . . . . . . . . . . . . . . . . . . . . . 17Exa 3.11 Example 11  . . . . . . . . . . . . . . . . . . . . . . . . 18Exa 3.12 Example 12  . . . . . . . . . . . . . . . . . . . . . . . . 20Exa 3.13 Example 13  . . . . . . . . . . . . . . . . . . . . . . . . 21

Exa 4.1 Example 1   . . . . . . . . . . . . . . . . . . . . . . . . 23Exa 4.2 Example 2   . . . . . . . . . . . . . . . . . . . . . . . . 23Exa 4.3 Example 3   . . . . . . . . . . . . . . . . . . . . . . . . 24Exa 4.4 Example 4   . . . . . . . . . . . . . . . . . . . . . . . . 26Exa 4.5 Example 5   . . . . . . . . . . . . . . . . . . . . . . . . 27Exa 4.6 Example 6   . . . . . . . . . . . . . . . . . . . . . . . . 28Exa 4.7 Example 7   . . . . . . . . . . . . . . . . . . . . . . . . 29Exa 4.8 Example 8   . . . . . . . . . . . . . . . . . . . . . . . . 30Exa 4.9 Example 9   . . . . . . . . . . . . . . . . . . . . . . . . 30Exa 4.10 Example 10  . . . . . . . . . . . . . . . . . . . . . . . . 32Exa 4.11 Example 11  . . . . . . . . . . . . . . . . . . . . . . . . 34

Exa 4.12 Example 12  . . . . . . . . . . . . . . . . . . . . . . . . 35Exa 4.13 Example 13  . . . . . . . . . . . . . . . . . . . . . . . . 36Exa 4.14 Example 14  . . . . . . . . . . . . . . . . . . . . . . . . 37Exa 4.15 Example 15  . . . . . . . . . . . . . . . . . . . . . . . . 38

4

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 6/137

Exa 4.16 Example 16  . . . . . . . . . . . . . . . . . . . . . . . . 38

Exa 4.17 Example 17  . . . . . . . . . . . . . . . . . . . . . . . . 39Exa 4.18 Example 18  . . . . . . . . . . . . . . . . . . . . . . . . 40Exa 4.19 Example 19  . . . . . . . . . . . . . . . . . . . . . . . . 41Exa 4.20 Example 20  . . . . . . . . . . . . . . . . . . . . . . . . 42Exa 4.21 Example 21  . . . . . . . . . . . . . . . . . . . . . . . . 43Exa 4.22 Example 22  . . . . . . . . . . . . . . . . . . . . . . . . 44Exa 4.23 Example 23  . . . . . . . . . . . . . . . . . . . . . . . . 45Exa 4.24 Example 24  . . . . . . . . . . . . . . . . . . . . . . . . 46Exa 4.25 Example 25  . . . . . . . . . . . . . . . . . . . . . . . . 47Exa 4.26 Example 26  . . . . . . . . . . . . . . . . . . . . . . . . 48Exa 4.27 Example 27  . . . . . . . . . . . . . . . . . . . . . . . . 49

Exa 5.1 Example 1   . . . . . . . . . . . . . . . . . . . . . . . . 51Exa 5.2 Example 2   . . . . . . . . . . . . . . . . . . . . . . . . 53Exa 5.3 Example 3   . . . . . . . . . . . . . . . . . . . . . . . . 54Exa 5.4 Example 4   . . . . . . . . . . . . . . . . . . . . . . . . 55Exa 5.5 Example 5   . . . . . . . . . . . . . . . . . . . . . . . . 57Exa 5.6 Example 6   . . . . . . . . . . . . . . . . . . . . . . . . 58Exa 5.7 Example 7   . . . . . . . . . . . . . . . . . . . . . . . . 60Exa 5.8 Example 8   . . . . . . . . . . . . . . . . . . . . . . . . 61Exa 5.9 Example 9   . . . . . . . . . . . . . . . . . . . . . . . . 62Exa 5.10 Example 10  . . . . . . . . . . . . . . . . . . . . . . . . 63

Exa 5.11 Example 11  . . . . . . . . . . . . . . . . . . . . . . . . 65Exa 5.12 Example 12  . . . . . . . . . . . . . . . . . . . . . . . . 66Exa 5.13 Example 13  . . . . . . . . . . . . . . . . . . . . . . . . 67Exa 5.14 Example 14  . . . . . . . . . . . . . . . . . . . . . . . . 68Exa 5.15 Example 15  . . . . . . . . . . . . . . . . . . . . . . . . 69Exa 5.16 Example 16  . . . . . . . . . . . . . . . . . . . . . . . . 70Exa 5.17 Example 17  . . . . . . . . . . . . . . . . . . . . . . . . 73Exa 5.18 Example 18  . . . . . . . . . . . . . . . . . . . . . . . . 74Exa 5.19 Example 19  . . . . . . . . . . . . . . . . . . . . . . . . 75Exa 5.20 Example 20  . . . . . . . . . . . . . . . . . . . . . . . . 76Exa 5.21 Example 21  . . . . . . . . . . . . . . . . . . . . . . . . 76

Exa 6.1 Example 1   . . . . . . . . . . . . . . . . . . . . . . . . 80Exa 6.2 Example 2   . . . . . . . . . . . . . . . . . . . . . . . . 81Exa 6.3 Example 3   . . . . . . . . . . . . . . . . . . . . . . . . 82Exa 6.4 Example 4   . . . . . . . . . . . . . . . . . . . . . . . . 83Exa 6.5 Example 5   . . . . . . . . . . . . . . . . . . . . . . . . 84

5

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 7/137

Exa 6.6 Example 6   . . . . . . . . . . . . . . . . . . . . . . . . 85

Exa 6.7 Example 7   . . . . . . . . . . . . . . . . . . . . . . . . 86Exa 6.8 Example 8   . . . . . . . . . . . . . . . . . . . . . . . . 88Exa 6.9 Example 9   . . . . . . . . . . . . . . . . . . . . . . . . 89Exa 6.10 Example 10  . . . . . . . . . . . . . . . . . . . . . . . . 90Exa 6.11 Example 11  . . . . . . . . . . . . . . . . . . . . . . . . 91Exa 6.12 Example 12  . . . . . . . . . . . . . . . . . . . . . . . . 92Exa 6.13 Example 13  . . . . . . . . . . . . . . . . . . . . . . . . 94Exa 6.14 Example 14  . . . . . . . . . . . . . . . . . . . . . . . . 95Exa 7.1 Example 1   . . . . . . . . . . . . . . . . . . . . . . . . 96Exa 7.2 Example 2   . . . . . . . . . . . . . . . . . . . . . . . . 97Exa 7.3 Example 3   . . . . . . . . . . . . . . . . . . . . . . . . 97

Exa 7.4 Example 4   . . . . . . . . . . . . . . . . . . . . . . . . 98Exa 7.5 Example 5   . . . . . . . . . . . . . . . . . . . . . . . . 98Exa 7.6 Example 6   . . . . . . . . . . . . . . . . . . . . . . . . 99Exa 7.7 Example 7   . . . . . . . . . . . . . . . . . . . . . . . . 101Exa 7.8 Example 8   . . . . . . . . . . . . . . . . . . . . . . . . 102Exa 7.9 Example 9   . . . . . . . . . . . . . . . . . . . . . . . . 103Exa 7.10 Example 10  . . . . . . . . . . . . . . . . . . . . . . . . 104Exa 7.11 Example 11  . . . . . . . . . . . . . . . . . . . . . . . . 105Exa 7.12 Example 12  . . . . . . . . . . . . . . . . . . . . . . . . 107Exa 7.13 Example 13  . . . . . . . . . . . . . . . . . . . . . . . . 108

Exa 7.14 Example 14  . . . . . . . . . . . . . . . . . . . . . . . . 109Exa 7.15 Example 15  . . . . . . . . . . . . . . . . . . . . . . . . 110Exa 7.16 Example 16  . . . . . . . . . . . . . . . . . . . . . . . . 111Exa 7.17 Example 17  . . . . . . . . . . . . . . . . . . . . . . . . 113Exa 10.1 Example 1   . . . . . . . . . . . . . . . . . . . . . . . . 115Exa 10.2 Example 2   . . . . . . . . . . . . . . . . . . . . . . . . 116Exa 10.3 Example 3   . . . . . . . . . . . . . . . . . . . . . . . . 117Exa 10.4 Example 4   . . . . . . . . . . . . . . . . . . . . . . . . 118Exa 10.5 Example 5   . . . . . . . . . . . . . . . . . . . . . . . . 119Exa 10.6 Example 6   . . . . . . . . . . . . . . . . . . . . . . . . 121Exa 13.1 Example 1   . . . . . . . . . . . . . . . . . . . . . . . . 123

Exa 13.2 Example 2   . . . . . . . . . . . . . . . . . . . . . . . . 124Exa 13.3 Example 3   . . . . . . . . . . . . . . . . . . . . . . . . 124Exa 13.4 Example 4   . . . . . . . . . . . . . . . . . . . . . . . . 125Exa 13.5 Example 5   . . . . . . . . . . . . . . . . . . . . . . . . 126Exa 13.6 Example 6   . . . . . . . . . . . . . . . . . . . . . . . . 127

6

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 8/137

Exa 13.7 Example 7   . . . . . . . . . . . . . . . . . . . . . . . . 128

Exa 13.8 Example 8   . . . . . . . . . . . . . . . . . . . . . . . . 130Exa 13.9 Example 9   . . . . . . . . . . . . . . . . . . . . . . . . 131Exa 13.10 Example 10  . . . . . . . . . . . . . . . . . . . . . . . . 132Exa 13.11 Example 11  . . . . . . . . . . . . . . . . . . . . . . . . 133Exa 13.12 Example 12  . . . . . . . . . . . . . . . . . . . . . . . . 134Exa 13.13 Example 13  . . . . . . . . . . . . . . . . . . . . . . . . 135

7

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 9/137

Chapter 2

Fuels and Combustion

Scilab code Exa 2.1  Example 1

1   clc

2   clear

3   //DATA GIVEN4   c = 8 8 ;   //% o f c ar bo n i n c o a l5   h = 4 . 2 ;   //% o f h yd ro ge n i n c o a l6   W f = 0 . 8 4 8 ;   // w e ig ht o f c o al i n g

7   W f w = 0 . 0 2 7 ;   // w ei gh t o f f u s e w ir e i nc a l o r i m e t e r i n g

8   W = 1 9 5 0 ;   // w e ig h t o f w at er i nc a l o r i m e t e r i n g

9   W e = 3 8 0 ;   // w at er e q u i v al e n t o f  c a l o r i m e t e r

10   D t = 3 . 0 6 ;   // o b s er v e d t e mp e r at u r e r i s e( t2−t 1 ) i n deg c e l s i u s

11   t c = 0 . 0 1 7 ;   // c o o l i n g c o r r e c t i o n i n degc e l s i u s

12   c f w = 6 7 0 0 ;   / / c a l o r i f i c v a l u e o f f u s ew ir e i n J / g13

14   //CALCULATIONS15   c t r = ( D t ) + t c ;   // c o r r e c t e d temp . r i s e

8

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 10/137

16   H w = ( W + W e ) * 4 . 1 8 * [ c t r ] ;   // h ea t r e c i e v e d by w a te r i n

J17   H f w = W f w * c f w ;   // h ea t g i ve n o ut by f u s ew i re i n J

18   H c f = H w - H f w ;   / / h e a t p r od u ce d d ue t oc o m b us t i o n o f f u e l i n J

19   H C V = H c f / W f ;   / / h i g h e r c a l o r i f i c v a l u e o f  f u e l i n kJ /kg

20   M s = 9 * h / 1 0 0 ;   // s te am p ro du ce d p e r kg o f  c o a l

21   LCV=HCV -2465* Ms;   / / l o w e r c a l o r i f i c v a l u e o f  f u e l i n kJ /kg

2223   printf ( ’ The H i g he r c a l o r i f i c v a l u e o f f u e l , H . C .V .

i s : %5 . 1 f kJ / k g .   \n ’ , H C V ) ;

24   printf ( ’ The L ower c a l o r i f i c v a l u e o f f u e l , L . C . V .i s : %5 . 1 f kJ / k g .   \n ’ , L C V ) ;

Scilab code Exa 2.2  Example 2

1   clc2   clear

3   //DATA GIVEN4   V 1 = 0 . 0 8 ;   // g a s b ur nt i n c a l o r i m e t e r

i n m ˆ 35   P g = 5 . 2 ;   // p r e s s ur e o f g as s up pl y i n

cm o f w at er6   P b = 7 5 . 5 ;   / / b a ro m et er r e a d i n g i n cm

o f Hg7   W w = 2 8 ;   / / w e ig h t o f w at er h e at e d by

g as i n kg8   T g = 1 3 ;   // t em p er at u re o f g as i n degc e l s i u s

9   T w i = 1 0 ;   / / t e mp e r at u r e o f w at er a ti n l e t i n deg c e l s i u s

9

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 11/137

10   T w o = 2 3 . 5 ;   / / t e mp e r at u r e o f w at er a t

o u t l e t i n deg c e l s i u s11   M s = 0 . 0 6 ;   / / st ea m c o nd e ns e d i n kg12

13   //CALCULATIONS14   / / by u s i ng g e n e r a l g as e qu at io n , r e d uc i n g t he volume

t o S . T . P .15   //p1∗V1/T1=p2∗V2/T216   p 1 = P b + ( P g / 1 3 . 6 ) ;   / / i n cm o f Hg17   T 1 = T g + 2 7 3 ;   / / i n K18   p 2 = 7 6 ;   / / i n cm o f Hg19   T 2 = 1 5 + 2 7 3 ;   / / i n K

20   V 2 = p 1 * V 1 * T 2 / T 1 / p 2 ;   // in mˆ321   H w = W w * 4 . 1 8 * ( T w o - T w i ) ;   // h ea t r e c i e v e d by w at er i n

kJ22   H C V = H w / V 1 ;   / / h i g h e r c a l o r i f i c v a l u e o f  

f u e l i n kJ /mˆ 323   LCV=HCV -2465* Ms/V1;   / / l o w e r c a l o r i f i c v a l u e o f  

f u e l i n kJ /mˆ324

25   printf ( ’ The C a l o r i f i c v al u e s o f f u e l p e r mˆ3 o f g a sa t 15 deg c e l s i u s and 76 cm o f Hg p r e s s u r e a re :

\n ’) ;

26   printf ( ’ The H i gh er c a l o r i f i c v a l u e o f f u e l , H . C. V.i s : %5 . 1 f k J /mˆ 3 .   \n ’ , H C V ) ;

27   printf ( ’ The L ow er c a l o r i f i c v a l u e o f f u e l , L . C . V .i s : %5 . 1 f kJ /mˆ 3 .   \n ’ , L C V ) ;

10

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 12/137

Chapter 3

Properties of Gases

Scilab code Exa 3.1  Example 1

1   clc

2   clear

3   //DATA GIVEN4   Q = - 5 0 ;   // h ea t r e j e c t e d t o

c o o l i n g w a te r i n kJ /kg5   W = - 1 0 0 ;   // w ork i n p u t i n kJ /

kg6

7   / / u s i n g F i r s t Law o f T he rm od yn am ic s , Q=( u2−u1 )+W8   D u = Q - W ;   / / ( u 2−u1 ) c ha ng e i n

i n t e r n a l e ne rg y i n kJ /kg9   // s i n c e Du i s +ve , t h er e i s g ai n i n i n t e r n a l e ne rg y

10

11   printf ( ’ The GAIN i n i n t e r n a l e n er g y i s : %2 . 0 f kJ / kg .\n ’ , D u ) ;

Scilab code Exa 3.2  Example 2

11

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 13/137

1   clc

2   clear3   //DATA GIVEN4   u 1 = 4 5 0 ;   // i n t e r n a l e ne rg y a t

b e gi n ni n g o f t he e xp an si on i n kJ /kg5   u 2 = 2 2 0 ;   // i n t e r n a l e ne rg y

a f t e r e xp an si on i n kJ /kg6   W = 1 2 0 ;   / / wor k d on e by t h e

a i r d ur in g e xp an si on i n kJ /kg7

8   / / u s i n g F i r s t Law o f T he rm od yn am ic s , Q=( u2−u1 )+W9   Q = ( u 2 - u 1 ) + W ;   // h e at f l o w i n kJ / kg

10   // s i n c e Q i s   −ve , t he r e i s r e j e c t i o n o f h e a t11

12   printf ( ’ T he h e a t REJECTED b y a i r i s : %3 . 0 f k J / k g .   \n’ , ( - Q ) ) ;

Scilab code Exa 3.3  Example 3

1   clc

2   clear3   //DATA GIVEN4   m = 0 . 3 ;   // mass o f n i t r o g e n

i n kg5   p 1 = 0 . 1 ;   / / p r e s s u r e i n MPa6   T 1 = 4 0 + 2 7 3 ;   / / t e m p e ra t u r e b e f o r e

c o mp r es s io n i n K7   p 2 = 1 ;   / / p r e s s u r e i n MPa8   T 2 = 1 6 0 + 2 7 3 ;   // t e mp e ra t u re a f t e r

c o mp r es s io n i n K

9   W = - 3 0 ;   / / wor k d on e d u r i n gt he c o mp r es s io n i n kJ / kg10   C v = 0 . 7 5   // i n k J /kgK11

12   / / u s i n g F i r s t Law o f T he rm od yn am ic s , Q=( u2−u1 )+W

12

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 14/137

13   / / ( u 2−u1 )=m∗Cv∗ ( T2−T1 )

14   D u = m * C v * ( T 2 - T 1 ) ;15   Q = D u + W ;   // h e at f l o w i n kJ / kg16   // s i n c e Q i s   −ve , t he r e i s r e j e c t i o n o f h e a t17

18   printf ( ’ T he h e a t REJECTED b y a i r i s : %1 . 0 f k J .   \n ’, ( - Q ) ) ;

Scilab code Exa 3.4  Example 4

1   clc

2   clear

3   //DATA GIVEN4   // i n i t i a l s t a t e5   p 1 = 0 . 1 0 5 ;   // p r e s s ur e o f g as i n

MPa6   V 1 = 0 . 4 ;   // v olume o f g as i n m

ˆ37   // f i n a l s t a t e8   p 2 = 0 . 1 0 5 ;   // p r e s s ur e o f g as i n

MPa9   V 2 = 0 . 2 0 ;   // v olume o f g as i n m

ˆ310

11   Q = - 4 2 . 5 ;   // h ea t t r a n s f e r r e di n kJ

12   p = p 1 ;

13

14   / / p r o c e s s u se d−   ISOBARIC ( C onst an t pr e s su r e )15   W 1 2 = p * ( V 2 - V 1 ) * 1 0 0 0 ;   // w ork i n kJ

16   / / u s i n g F i r s t Law o f T he rm od yn am ic s , Q=( u2−u1 )+W17   D u = Q - W 1 2 ;   / / ( u 2−u1 ) c ha ng e i ni n t e r n a l e ne rg y i n kJ

18   / / s i n c e Du i s   −ve , t h e re i s d e c r e a s e i n i n t e r n a le n e r g y

13

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 15/137

19

20   printf ( ’ The DECREASE i n i n t e r n a l e n e r g y i s : %2 . 1 f k J.   \n ’  , ( - D u ) ) ;

Scilab code Exa 3.5  Example 5

1   clc

2   clear

3   //DATA GIVEN

4   / / p a r t −15   // pr e s su r e =p1 , t e m pe r at u r e =T16   / / p a r t −27   // pr e s su r e =p2 , t e m pe r at u r e =T28

9   / / A cc . F i r s t Law o f T he rm o dy na mi cs , Q=( u2−u1 )+W10   / / when p a r t i t i o n moved11   D Q = 0 ;

12   D W = 0 ;

13   D U = D Q - D W ;

14   //DU=0

1516   printf ( ’ CONCLUSION :   \n ’ ) ;

17   printf ( ’ Acc . t o F i r s t Law o f T hermodynamics ,   \n ’ ) ;

18   printf ( ’ When p ar t i o n moved , t h er e i sc o n s er v a t i o n o f i n t e r n a l e ne rg y .   \n ’ ) ;

Scilab code Exa 3.6  Example 6

1   clc

2   clear

3   //DATA GIVEN4   // i n i t i a l s t a t e

14

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 16/137

5   p 1 = 1 0 ^ 5 ;   // i n i t i a l pr e s su r e

o f a i r i n Pa6   v 1 = 1 . 8 ;   // v olume o f a i r i n mˆ 3 / k g

7   T 1 = 2 5 + 2 7 3 ;   // i n i t i a lt em pe r at ur e o f a i r i n K

8   // f i n a l s t a t e9   p 2 = 5 * 1 0 ^ 5 ;   // f i n a l p r e s s u re o f  

a i r i n Pa10   T 2 = 2 5 + 2 7 3 ;   // f i n a l t e mp e r at u re

o f a i r i n K11

12   / / p r o c e s s u se d−   ISOTHERMAL ( Co ns ta nt te mp er at u re )13   W 1 2 = [ p 1 * v 1 * log ( p 1 / p 2 ) ] / 1 0 0 0 ;   / / wor k i n kJ / kg14   / / s i n c e W i s   −ve , work i s s u pp l ie d t o t h e a i r15

16   / / s i n c e t em p er a tu re i s c o n st a n t17   D u = 0 ;   / / ( u 2−u1 ) c ha ng e i n

i n t e r n a l e ne rg y i n kJ /kg18

19   / / u s i n g F i r s t Law o f T he rm od yn am ic s , Q=( u2−u1 )+W20   Q = D u + W 1 2 ;

21  // s i n c e Q i s   −ve , t he r e i s r e j e c t i o n o f h e a t froms ys te m t o s u r r ou n d i ng s

22

23   printf ( ’ ( i ) The Work d on e on t h e a i r i s : %3 . 1 f kJ /kg .   \n ’  , ( - W 1 2 ) ) ;

24   printf ( ’ ( i i ) The c ha ng e i n i n t e r n a l e ne rg y i s : %1 . 0f k J / kg .   \n ’  , ( D u ) ) ;

25   printf ( ’ ( i i i ) The Heat REJECTED i s : %3. 1 f kJ/ kg .   \n ’, ( - Q ) ) ;

Scilab code Exa 3.8  Example 8

1   clc

15

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 17/137

2   clear

3   //DATA GIVEN4   p 1 = 4 * 1 0 ^ 5 ;   // i n i t i a l pr e s su r ei n N/mˆ2

5   V 1 = 0 . 2 ;   // i n i t i a l volume inmˆ3

6   T 1 = 1 3 0 + 2 7 3 ;   // i n i t i a lt e mp e r at u r e i n K

7   p 2 = 1 . 0 2 * 1 0 ^ 5 ;   // f i n a l p r e s su r ea f t e r a d i a b a t i c e xp a ns i on i n N/mˆ2

8   Q 2 3 = 7 2 . 5 ;   // i n c r e a s e i ne nt ha l p y d ur in g c o ns t a n t p r e s su r e p r o c es s i n kJ

9   C p = 1 ;   // i n k J /kgK10   C v = 0 . 7 1 4 ;   // in kJ/khK11

12   / /gamma f o r a i r , g13   g = C p / C v ;

14   R = ( C p - C v ) * 1 0 0 0 ;

15

16   // f o r r e v e r s i b l e a d i a b a t i c p r o c e s s 1−217   //p1 ∗ (V1ˆg)=p2∗ ( V 2ˆg)18   V 2 = V 1 * ( p 1 / p 2 ) ^ ( 1 / g ) ;   // f i n a l volume i n m

ˆ319   // ( T2/T1) =( p2/p1) ˆ( ( g−1) /g ) ;20   T 2 = T 1 * ( p 2 / p 1 ) ^ ( ( g - 1 ) / g ) ; ;   // f i n a l temp . T2 i n

K21

22   m = p 1 * V 1 / R / T 1 ;   // m ass i n kg23

24   / / f o r c o ns t an t p r e s su r e p r o c es s 2−325   //Q23=m∗Cp∗( T3−T2) ;26   T 3 = Q 2 3 / m / C p + T 2 ;

27   //V2/T2=V3/T3

28   V 3 = V 2 / T 2 * T 3 ;29

30   / /Work d on e by t h e p at h 1−2−3, W123=W12+W2331   W 1 2 = ( p 1 * V 1 - p 2 * V 2 ) / ( g - 1 ) ;

32   W 2 3 = p 2 * ( V 3 - V 2 ) ;

16

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 18/137

33   W 1 2 3 = W 1 2 + W 2 3 ;

3435   // i f t he abov e p r o c e s s e s a re r e p l a c e d by a s i n g l e

r e v e r s i b l e p o l y t r o p i c p r oc e ss g i v i n g t h e samewo rk b et we en i n i t i a l and f i n a l s t a t e s ,

36   //W13=W123=(p1V1−p3V3) /( n−1)37   p 3 = p 2 ;

38   n = 1 + ( p 1 * V 1 - p 3 * V 3 ) / W 1 2 3 ;   / / i n d e x o f e x p an s i o n, n

39

40   printf ( ’ ( i ) The T o t a l Work d on e i s : %5 . 0 f Nm o r J .\n ’ , W 1 2 3 ) ;

41   printf ( ’ ( i i ) The v al ue o f i nd ex o f e xp an si on , n i s :%1. 3 f .   \n ’ , n ) ;

42

43   //NOTE:44   / / t h e r e i s s l i g h t v a r i a t i o n i n a ns we r s o f t he book

due t o r ou nd in g o f f o f t he v a lu e s

Scilab code Exa 3.10  Example 10

1   clc

2   clear

3   //DATA GIVEN4   // i n i t i a l s t a t e5   p 1 = 1 0 ^ 5 ;   // i n i t i a l pr e s su r e

o f g a s i n Pa6   V 1 = 0 . 4 5 ;   // i n i t i a l volume o f  

g a s i n mˆ 37   T 1 = 8 0 + 2 7 3 ;   // i n i t i a l

t em pe ra tu re o f g as i n K8   // f i n a l s t a t e9   p 2 = 5 * 1 0 ^ 5 ;   // f i n a l p r e s s u re o f  

g as i n Pa10   V 2 = 0 . 1 3 ;   // f i n a l volume o f  

17

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 19/137

g a s i n mˆ 3

1112   / /gamma f o r a i r , g13   g = 1 . 4 ;

14   R = 2 9 4 . 2   //J/kgK15

16   m = p 1 * V 1 / R / T 1 ;   // m ass i n kg17

18   //p1 ∗ (V1ˆn)=p2 ∗ (V2ˆn)19   n = log ( p 1 / p 2 ) / log ( V 2 / V 1 ) ;   / / i n d e x n20

21   / / I n a p o l y t r o p i c p r oc e ss

22   // (T2/T1) =(V1/V2) ˆ( n−1) ;23   T 2 = T 1 * ( V 1 / V 2 ) ^ ( n - 1 ) ;   / / temp . T2 i n K24

25   C v = R / ( g - 1 ) ;

26   D u = m * C v * ( T 2 - T 1 ) / 1 0 0 0 ;   // i n c r e a s e i ni n t e r n a l e ne rg y i n kJ

27

28   / / u s i n g F i r s t Law o f T he rm od yn am ic s , Q=( u2−u1 )+W29   //W12=(p1∗V1−p2 ∗V2) /( n−1)=mR( T2−T1) /( n−1)30   W 1 2 = m * R * ( T 1 - T 2 ) / ( n - 1 ) / 1 0 0 0 ;

31   Q = D u + W 1 2 ;

32   // s i n c e Q i s   −ve , t he r e i s r e j e c t i o n o f h e a t froms ys te m t o s u r r ou n d i ng s

33

34   printf ( ’ ( i ) The Mass o f t he g as i s : %1 . 3 f kg .   \n ’  ,(

 m ) ) ;

35   printf ( ’ ( i i ) The i n d ex n i s : %1 . 3 f .   \n ’  ,(n)) ;

36   printf ( ’ ( i i i ) The c ha ng e i n i n t e r n a l e n er g y i s : %2 . 1f kJ .   \n ’ , ( D u ) ) ;

37   printf ( ’ ( iv ) The Heat REJECTED i s : %2. 2 f kJ .   \n ’  ,( -

Q ) ) ;

Scilab code Exa 3.11  Example 11

18

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 20/137

1   clc

2   clear3   //DATA GIVEN4   // i n i t i a l s t a t e5   p 1 = 1 . 0 2 ;   // i n i t i a l pr e s su r e

o f a i r i n ba r6   V 1 = 0 . 0 1 5 ;   // i n i t i a l volume o f  

a i r i n mˆ37   T 1 = 2 2 + 2 7 3 ;   // i n i t i a l

t em pe r at ur e o f a i r i n K8   // f i n a l s t a t e9   p 2 = 6 . 8 ;   // f i n a l p r e s s u re o f  

a i r i n ba r10   / / Law o f a d i a b a t i c c o m p r e s s i o n , pVˆ g=C11

12   / /gamma f o r a i r , g13   g = 1 . 4

14   R = 0 . 2 8 7 ;

15

16   / / I n a a d i a b a t i c p r o c e s s17   // ( T2/T1) =( p2/p1) ˆ( ( g−1) /g ) ;18   T 2 = T 1 * ( p 2 / p 1 ) ^ ( ( g - 1 ) / g ) ; ;   // f i n a l temp . T2 i n

K19

20   //p1 ∗ (V1ˆg)=p2∗ ( V 2ˆg)21   V 2 = V 1 * ( p 1 / p 2 ) ^ ( 1 / g ) ;   // f i n a l volume i n m

ˆ322

23   m = p 1 * 1 0 ^ 5 * V 1 / 1 0 ^ 3 / R / T 1 ;   // m ass i n kg24

25   //W=(p1∗V1−p2∗V2) /( g−1)=mR( T2−T1) /( g−1)26   W = m * R * ( T 1 - T 2 ) / ( g - 1 ) ;

27   / / s i n c e W i s   −ve , t he work i s done on t he a i r

2829   printf ( ’ ( i ) The F i n a l t e m pe r a tu r e i s : %3 . 2 f d eg .

c e l s i u s .   \n ’  , ( T2 - 2 7 3 ) ) ;

30   printf ( ’ ( i i ) The F i n a l Volume i s : %1 . 5 f mˆ 3 .   \n ’ , V2

) ;

19

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 21/137

31   printf ( ’ ( i i i ) The Work d on e on t h e a i r i s : %1 . 3 f kJ .

\n ’ , ( - W ) ) ;

Scilab code Exa 3.12  Example 12

1   clc

2   clear

3   //DATA GIVEN4   m = 0 . 4 4 ;   // mass o f a i r i n kg

5   T 1 = 1 8 0 + 2 7 3 ;   // i n i t i a lt em pe r at ur e o f a i r i n K6   T 2 = 1 5 + 2 7 3 ;   // f i n a l t e mp e r at u re

o f a i r i n K7   W 1 2 = 5 2 . 5 ;   / / wor k d on e d u r i n g

t h e p r oc e ss i n kJ8   //V2/V1=39   V r = 3 ;   / / v ol um e r a t i o , Vr=

V2/V110

11   / / Law o f a d i a b a t i c e x p a n s i o n , pVˆ g=C

1213   // I n an a d i a b a t i c p r o c e s s14   // (T2/T1) =(V1/V2) ˆ( g−1) ;15   g = 1 + [ ( log ( T 2 / T 1 ) / log ( 1 / V r ) ) ] ;   //gamma

f o r a i r , g=Cp /Cv16

17   //W12=(p1∗V1−p2 ∗V2) /( n−1)=mR( T2−T1) /( g−1)18   R = W 1 2 / m / ( T 1 - T 2 ) * ( g - 1 ) ;

19   //R=Cp−Cv20

21   C v = R / ( g - 1 ) ;22   C p = g * C v ;

23

24   printf ( ’ ( i ) The v a l u e o f Cv i s : %1 . 3 f kJ /kgK .   \n ’ ,

C v ) ;

20

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 22/137

25   printf ( ’ ( i i ) The v a l u e o f Cp i s : %1 . 3 f kJ /kgK .   \n ’ ,

C p ) ;26

27   //NOTE:28   / / t h e r e i s s l i g h t v a r i a t i o n i n a ns we r s o f t he book

due t o r ou nd in g o f f o f t he v a lu e s

Scilab code Exa 3.13  Example 13

1   clc2   clear

3   //DATA GIVEN4   m = 1 ;   // mass o f e ta hn e g as

i n kg5   M = 3 0 ;   / / m o l e c u l a r w e i g ht

o f e th a ne6   p 1 = 1 . 1 ;   // i n i t i a l pr e s su r e

i n b ar7   T 1 = 2 7 + 2 7 3 ;   // i n i t i a l

t e mp e r at u r e i n K

8   p 2 = 6 . 6 ;   // f i n a l p r e s s u re i nb ar

9   C p = 1 . 7 5 ;   // i n k J /kgK10

11   / / Law o f c o m p r e s s i o n , pV ˆ 1. 3 =C12   n = 1 . 3 ;

13

14   // C h a r a c t e r i s t i c g as c on st an t , R = U n i ve r sa l g asc o n s t a n t ( Ro ) / M o l e c u l a r w e i g ht (M)

15   R o = 8 3 1 4 ;

16   R = R o / M / 1 0 0 0 ;   //kJ/kgK17

18   //R=Cp−Cv19   C v = C p - R ;

20   g = C p / C v ;   //gamma g

21

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 23/137

21

22   / / I n a p o l y t r o p i c p r oc e ss23   // ( T2/T1) =( p2/p1) ˆ( ( n−1)/n) ;24   T 2 = T 1 * ( p 2 / p 1 ) ^ ( ( n - 1 ) / n ) ; ;   // f i n a l temp . T2 i n

K25

26   //W=(p1∗V1−p2∗V2) /( n−1)=mR( T2−T1) /( g−1)27   W = m * R * ( T 1 - T 2 ) / ( n - 1 ) ;

28

29   Q = [ ( g - n ) / ( g - 1 ) ] * W ;   // h e at f l o w i n kJ / kg30

31   printf ( ’ The H e at SUPPLIED i s : %2. 1 f k J /k g .   \n ’  ,(Q))

;

22

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 24/137

Chapter 4

Properties of Steam

Scilab code Exa 4.1  Example 1

1   clc

2   clear

3   //DATA GIVEN4   M s = 5 0 ;   / / mass o f d ry s te am

i n kg5   M w = 1 . 5 ;   // mass o f w at er i n

s u s pe n si o n i n kg6

7   / / d r y n e s s f r a c t i o n , x =( ma ss o f d ry s te am ) / ( m as s o f  d ry s te am +mass o f w at er i n s u s p e n s i o n )

8   x = M s / ( M s + M w ) ;

9

10   printf ( ’ The D ry ne ss f r a c t i o n ( Q u al i ty ) o f stea m i s :%1. 3 f . ’ , x ) ;

Scilab code Exa 4.2  Example 2

1   clc

23

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 25/137

2   clear

3   //DATA GIVEN4   V = 0 . 6 ;   / / vo lu me o f t h ev e s s e l i n mˆ3

5   p = 0 . 5 ;   // p r e s s u r e i n b ar6   M = 3 ;   // mass o f l i q u i d and

w at er v ap ou r i n kg7

8   v = V / M ;   // s p e c i f i c volume inmˆ3/kg

9   / / At 5 b ar , f ro m s te am t a b l e s10   v g = 0 . 3 7 5 ;   //mˆ3/kg

11   v f = 0 . 0 0 1 0 9 ;   //mˆ3/kg12   v f g = v g - v f ;

13   //v=vg−(1−x ) v f g14   x = ( v - v g ) / v f g + 1 ;   // q u a l i t y o f t he

v apour15

16   / / mass and volume o f l i q u i d17   M l i q = M * ( 1 - x ) ;

18   V l i q = M l i q * v f ;

19

20  / / m as s a nd v ol um e o f v ap o ur21   M v a p = M * x ;

22   V v a p = M v a p * v g ;

23

24   printf ( ’ ( i ) The Mass and Volume o f l i q u i d i s :   \n ’ ) ;

25   printf ( ’ Ml i q . i s : %1 . 3 f kg .   \n ’ , M l i q ) ;

26   printf ( ’ V l i q . i s : %1 . 4 f mˆ 3 .   \n ’ , V l i q ) ;

27   printf ( ’ ( i i ) The Ma ss a nd Volu me o f v a p ou r i s :   \n ’ ) ;

28   printf ( ’ Mvap . i s : %1 . 3 f kg .   \n ’ , M v a p ) ;

29   printf ( ’ Vvap . i s : %1 . 4 f mˆ 3.   \n ’ , V v a p ) ;

Scilab code Exa 4.3  Example 3

24

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 26/137

1   clc

2   clear3   //DATA GIVEN4   V = 0 . 0 5 ;   // volume o f v e s s e l i n

mˆ35   M f = 1 0 ;   // mass o f l i q u i d i n

kg6   T = 2 4 5 ;   / / temp . i n d eg

c e l s i u s7

8   / / f rom stea m t a b l e s , c o r r es p o n d i ng t o 2 45 degc e l s i u s

9   P s a t = 3 6 . 5 ;   / / b a r10   v f = 0 . 0 0 1 2 3 9 ;   //mˆ3/kg11   v g = 0 . 0 5 4 6 ;   //mˆ3/kg12   h f = 1 0 6 1 . 4 ;   / / k J / k g13   h f g = 1 7 4 0 . 2 ;   / / k J / k g14   s f = 2 . 7 4 7 4 ;   //kJ/kgK15   s f g = 3 . 3 5 8 5 ;   //kJ/kgK16

17   V f = M f * v f ;   // v olume o f l i q u i d18   V g = V - V f ;   / / v ol um e o f v ap o ur19   M g = V g / v g ;

  / / ma ss o f v a po ur20   m = M f + M g ;   // t o t a l mass o f  m i x t u r e

21

22   x = M g / ( M g + M f ) ;   // q u a l i t y o f t hem i x t u r e

23   v f g = v g - v f ;

24   v = v f + x * v f g ;   // s p e c i f i c volume25

26   h = h f + x * h f g ;   // s p e c i f i c en th al py27

28   s = s f + x * s f g ;   // s p e c i f i c en tr op y29

30   u = h - P s a t * 1 0 ^ 5 * v / 1 0 ^ 3 ;   / / s p e c i f i c i n t e r n a le n e r g y

31

25

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 27/137

32

33   printf ( ’ ( i ) The P r e s s u r e i s : %2 . 1 f b ar .   \n ’ , P s a t ) ;34   printf ( ’ ( i i ) The ma ss m i s : %2 . 3 f k g .   \n ’ , m ) ;

35   printf ( ’ ( i i i ) The S p e c i f i c v ol um e v i s : %1 . 6 f mˆ 3/ k g.   \n ’ , v ) ;

36   printf ( ’ ( i v ) The S p e c i f i c e nt ha l p y h i s : %4 . 2 f kJ /kg .   \n ’ , h ) ;

37   printf ( ’ ( v ) The S p e c i f i c e n tr o py s i s : %1 . 4 f kJ /kgK.   \n ’ , s ) ;

38   printf ( ’ ( v i ) The S p e c i f i c i n t e r n a l e ne rg y u i s : %4. 2 f k J / kg .   \n ’ , u ) ;

39

40   //NOTE:41   / / t h e r e i s s l i g h t v a r i a t i o n i n a ns we r s o f book due

t o r o un di ng o f f o f t h e v a l u es i n t he book

Scilab code Exa 4.4  Example 4

1   clc

2   clear

3   //DATA GIVEN4   M w = 2 ;   // mass o f w at er t o be

c o nv e rt e d t o s team i n kg5   T w = 2 5 ;   / / temp . o f w at er i n

deg c e l s i u s6   p = 5 ;   / / p r e s s u r e7   x = 0 . 9 ;   // d r yn e s s f r a c t i o n8

9   / / At 5 b ar , f ro m s te am t a b l e s10   h f = 6 4 0 . 1 ;   / / k J / k g

11   h f g = 2 1 0 7 . 4 ;   / / k J / k g12

13   h = h f + x * h f g ;   / / s p e c i f i c e n t h a l p y (abov e 0 deg c e l s i u s )

14   h s = 1 * 4 . 1 8 * ( T w - 0 ) ;   // s e n s i b l e h ea t

26

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 28/137

a s s o c i a t e d w i t h i kg o f w a t e r

15   h n e t = h - h s ;   // n et q u a nt i t y o f  h ea t t o be s u pp l i e d p er kg o f w a t e r16   H t o t a l = M w * h n e t ;   / / t o t a l amount o f  

h ea t t o be s u p p l i e d17

18   printf ( ’ The T ot al amount o f h ea t t o be s u p p l i e d i s :%4. 2 f k J . ’ , H t o t a l ) ;

Scilab code Exa 4.5  Example 5

1   clc

2   clear

3   //DATA GIVEN4   m = 4 . 4 ;   // mass o f s tea m t o be

p ro du ce d i n kg5   p = 6 ;   / / p r e s s u r e o f s te am6   T s u p = 2 5 0 ;   / / temp . o f s te am i n

deg . c e l s i u s7   T w = 3 0 ;   / / temp . o f w at er i n

deg c e l s i u s8   C p s = 2 . 2 ;   // s p e c i f i c he at of  

s te am i n kJ / kg9

10   / / At 6 b ar , f ro m s te am t a b l e s11   T s = 1 5 8 . 8 ;   // d eg . c e l s i u s12   h f = 6 7 0 . 4 ;   / / k J / k g13   h f g = 2 0 8 5 ;   / / k J / k g14   // s i n c e t he g i v en temp . 250 deg c e l s i u s i s g r e a t e r

t han 1 5 8. 8 deg c e l s i u s , steam i s s up e r he at e d

1516   h s u p = h f + h f g + C p s * ( T s u p - T s ) ;   // e n th a lp y o f 1 kgs u p er g e at e d stea m r ec ko n ed from 0 d eg . c e l s i u s

17   h s = 1 * 4 . 1 8 * ( T w - 0 ) ;   // s e n s i b l e h ea ta s s o c i a t e d w i t h i kg o f w a t e r

27

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 29/137

18   h n e t = h s u p - h s ;   // n et q u a nt i t y o f  

h ea t t o be s u pp l i e d p er kg o f w a t e r19   H t o t a l = m * h n e t ;   / / t o t a l amount o f  h ea t t o be s u p p l i e d

20

21   printf ( ’ The T ot al amount o f h ea t t o be s u p p l i e d i s :%4. 1 f k J . ’ , H t o t a l ) ;

Scilab code Exa 4.6  Example 6

1   clc

2   clear

3   //DATA GIVEN4   V = 0 . 1 5 ;   / / v ol um e o f w et s te am

i n m ˆ 35   p = 4 ;   // p r e s s u r e o f wet

stea m i n b ar6   x = 0 . 8 ;   // d r yn e s s f r a c t i o n7

8   / / At 4 b ar , f ro m s te am t a b l e s

9   v g = 0 . 4 6 2 ;   //mˆ3/kg10   h f = 6 0 4 . 7 ;   / / k J / k g11   h f g = 2 1 3 3 ;   / / k J / k g12

13   r h o = 1 / ( x * v g ) ;   / / d e n s i t y i n kg /mˆ 314   m = r h o * V ;   // mass o f 0 . 1 5 mˆ3 o f  

steam15

16   H t o t a l = ( r h o * 1 ) * ( h f + x * h f g ) ;   // t o t a l h ea t o f 1 mˆ3o f s team whi ch h as a mass o f r ho ( 2 . 7 0 5 6 ) kg

1718   printf ( ’ ( i ) The Mass o f 0 . 1 5 mˆ 3 o f s te am i s : %1 . 4 f  kg .   \n ’ , m ) ;

19   printf ( ’ ( i i ) The T o t a l h e a t o f 1 mˆ 3 o f s te am w hi chh as a mass o f 2 . 7 05 6 kg i s : %4 . 2 f kJ .   \n ’ , H t o t a l )

28

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 30/137

;

Scilab code Exa 4.7  Example 7

1   clc

2   clear

3   //DATA GIVEN4   m = 1 0 0 0 ;   / / ma ss o f s te am

g e n er a t ed i n kg / h r

5   p = 1 6 ;   / / p r e s s u r e o f s te ami n b ar6   x = 0 . 9 ;   // d r yn e s s f r a c t i o n7   T s u p = 3 8 0 + 2 7 3 ;   / / t em p . o f  

s u p e r he a t e d s te am i n K8   T f w = 3 0 ;   / / temp . o f f e e d w at er

i n deg . c e l s i u s9   C p s = 2 . 2 ;   // s p e c i f i c he at of  

s te am i n kJ / kg10

11   / /At 1 6 b ar , f ro m s te am t a b l e s

12   T s = 2 0 1 . 4 + 2 7 3 ;   / / i n K13   h f = 8 5 8 . 6 ;   / / k J / k g14   h f g = 1 9 3 3 . 2 ;   / / k J / k g15

16   H s = m * [ ( h f + x * h f g ) - 1 * 4 .1 8 7 * ( T fw - 0 ) ] ;   // hea ts u p p li e d t o f e ed w at er p er hr t o p ro du ce wetsteam

17   H a = m * [ ( 1 - x ) * h f g + C p s * ( T s u p - T s ) ] ;   // hea ta bs o rb ed by s u p e r h ea t e r p er h ou r

18

19   printf ( ’ ( i ) The Heat s u p p l i e d t o f e e d w at er p er h ou rt o p r od u ce wet s te am i s : %4 . 2 f   ∗1 0 ˆ 3 k J .   \n ’ ,(Hs

/ 1 0 0 0 ) ) ;

20   printf ( ’ ( i i ) The H ea t a b s o r be d by s u p e r h e a t e r p e rh ou r i s : %3 . 2 f   ∗1 0 ˆ 3 k J .   \n ’  , ( H a / 1 0 0 0 ) ) ;

29

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 31/137

Scilab code Exa 4.8  Example 8

1   clc

2   clear

3

4   / / At 0 . 7 5 b a r . From s te am t a b l e s ,5   / /At 1 00 deg c e l s i u s6   T 1 = 1 0 0 ;   // deg c e l s i u s

7   h s u p 1 = 2 6 7 9 . 4 ;   / / k J / k g8   / /At 1 50 deg c e l s i u s9   T 2 = 1 5 0 ;   // deg c e l s i u s

10   h s u p 2 = 2 7 7 8 . 2 ;   / / k J / k g11   C p s 1 = ( h s u p 2 - h s u p 1 ) / ( T 2 - T 1 ) ;

12

13   / / At 0 . 5 b a r . From s te am t a b l e s ,14   / /At 3 00 deg c e l s i u s15   T 3 = 3 0 0 ;   // deg c e l s i u s16   h s u p 3 = 3 0 7 5 . 5 ;   / / k J / k g17   / /At 4 00 deg c e l s i u s18   T 4 = 4 0 0 ;   // deg c e l s i u s19   h s u p 4 = 3 2 7 8 . 9 ;   / / k J / k g20   C p s 2 = ( h s u p 4 - h s u p 3 ) / ( T 4 - T 3 ) ;

21

22   printf ( ’ ( i ) The mean s p e c i f i c h e a t f o r s u p e r h e a t e dsteam   \n ( At 0 . 7 5 bar , b e tw e en 100 and 150deg c e l s i u s ) i s : %1 . 3 f .   \n ’ , C p s 1 ) ;

23   printf ( ’ ( i i ) The mean s p e c i f i c h e a t f o r s u p e r h e a t e dsteam   \n ( At 0 .5 bar , b e tw e en 300 and 400

deg c e l s i u s ) i s : %1 . 3 f .   \n ’ , C p s 2 ) ;

Scilab code Exa 4.9  Example 9

30

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 32/137

1   clc

2   clear3   //DATA GIVEN4   m = 1 . 5 ;   / / mass o f s te am i n

c oo k e r i n kg5   p 1 = 5 ;   / / p r e s s u r e o f s te am

i n b ar6   x 1 = 1 ;   // i n i t i a l dr yn es s

f r a c t i o n o f steam7   x 2 = 0 . 6 ;   // f i n a l d r yn e ss

f r a c t i o n o f steam8

9   / / At 5 b ar , f ro m s te am t a b l e s10   T s 1 = 1 5 1 . 8 + 2 7 3 ;   / / i n K11   h f 1 = 6 4 0 . 1 ;   / / k J / k g12   h f g 1 = 2 1 0 7 . 4 ;   / / k J / k g13   v g 1 = 0 . 3 7 5 ;   //mˆ3/kg14

15   V 1 = m * v g 1 ;   //volume o f p r e s s u r e c o ok e r i n mˆ3

16   u 1 = ( h f 1 + h f g 1 ) - ( p 1 * 1 0 ^ 5 ) * ( v g 1 * 1 0 ^ - 3 ) ;   //i n t e r n a l e ne rg y o f s tea m p er kg a t i n i t i a l p o i nt

117   //V1=V218   //V1=m∗ [(1 − x2 ) ∗ vf2+x2∗vg2 ] // v f 2

i s n e g l i g i b l e19   v g 2 = V 1 / x 2 / 1 . 5 ;

20

21   / / f ro m s te am t a b l e s c o r e e s p o n d i n g t o v g2 = 0 .6 25 mˆ 3/kg

22   p 2 = 2 . 9 ;

23   T s 2 = 1 3 2 . 4 + 2 7 3 ;   / / i n K24   h f 2 = 5 5 6 . 5 ;   / / k J / k g

25   h f g 2 = 2 1 6 6 . 6 ;   / / k J / k g26

27   u 2 = ( h f 2 + x 2 * h f g 2 ) - ( p 2 * 1 0 ^ 5 ) * x 2 * ( v g 2 * 1 0 ^ - 3 ) ;   //i n t e r n a l e n e r g y o f steam p e r kg a t f i n a l p oi nt 2

28

31

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 33/137

29   h n e t = u 2 - u 1 ;   // hea t

t r a n s f e r r e d a t c o ns t a n t volume p er kg30   H t o t a l = m * h n e t ;   //t o t a l h e at t r a n s f e r r e d

31   //−ve s i gn i n d i c a t e s t ha t h ea t h as be en r e j e c t e d32   H r e j = - 1 * H t o t a l ;

33

34   printf ( ’ ( i ) The P r e s su r e a t new s t a t e i s : %1 . 1 f b ar.   \n ’ , p 2 ) ;

35   printf ( ’ The Te mper at ur e a t new s t a t e i s : %3 . 1 f  deg . c e l s i u s o r %3 . 1 f K.   \n ’ ,(Ts2 -273) ,Ts2) ;

36   printf ( ’ ( i i ) The T o t a l h e a t t o b e REJECTED i s : %4 . 2

f k J . ’ , H r e j ) ;

Scilab code Exa 4.10  Example 10

1   clc

2   clear

3   //DATA GIVEN4   V = 0 . 9 ;   // c a p a c i t y o f  

s p h e r i c a l v e s s e l i n mˆ35   p 1 = 8 ;   // p r e s s u r e o f s te am

i n b ar6   x 1 = 0 . 9 ;   // d r yn e ss f r a c t i o n

o f s tea m7   p 2 = 4 ;   // p r e s s u r e o f s te am

a f t e r blow o f f i n b ar8   p 3 = 3 ;   // f i n a l p r e s s u re o f  

stea m i n b ar9

10   / / At 8 b ar , f ro m s te am t a b l e s11   h f 1 = 7 2 0 . 9 ;   / / k J / k g12   h f g 1 = 2 0 4 6 . 5 ;   / / k J / k g13   v g 1 = 0 . 2 4 0 ;   //mˆ3/kg14

32

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 34/137

15   m 1 = V / ( x 1 * v g 1 ) ;   // m ass o f s te am i n

t h e v e s s e l i n kg16

17   h 1 = h f 1 + x 1 * h f g 1 ;   / / e n t h a l p y o f s te amb e f o r e b lo wi ng o f f ( p er kg )

18   // e n th a lp y o f stea m b e f o r e b lo wi ng o f f ( p er kg ) =e nt ha l p y o f steam a f t e r b lo wi ng o f f ( p er kg )

19   h 2 = h 1 ;

20   //h2=hf2+x2∗ h f g 221   / / At 4 b ar , f ro m s te am t a b l e s22   h f 2 = 6 0 4 . 7 ;   / / k J / k g23   h f g 2 = 2 1 3 3 ;   / / k J / k g

24   v g 2 = 0 . 4 6 2 ;   //mˆ3/kg25   x 2 = ( h 2 - h f 2 ) / h f g 2 ;   // d r yn e ss f r a c t i o n

a t 226

27   m 2 = V / ( x 2 * v g 2 ) ;   // m ass o f s te am i nt h e v e s s e l i n kg

28   m = m 1 - m 2 ;   / / ma ss o f s te amblown o f f i n kg

29

30   / /As i t i s c o ns t an t volume c o ol i ng , x2∗v g 2 ( a t 4 b a r )

=x3∗v g 3 ( a t 3 b a r )31   / / At 3 b ar , f ro m s te am t a b l e s32   h f 3 = 5 6 1 . 4 ;   / / k J / k g33   h f g 3 = 2 1 6 3 . 2 ;   / / k J / k g34   v g 3 = 0 . 6 0 6 ;   //mˆ3/kg35

36   x 3 = x 2 * v g 2 / v g 3 ;

37   h 3 = h f 3 + x 3 * h f g 3 ;

38

39   / / h e at l o s t d u r in g c o o l i n g , Q l o st=m( u3−u2 )40   u 2 = h 2 - p 2 * 1 0 ^ 5 * x 2 * v g 2 * 1 0 ^ - 3 ;

41   u 3 = h 3 - p 3 * 1 0 ^ 5 * x 3 * v g 3 * 1 0 ^ - 3 ;42   Q l o s t = m * ( u 3 - u 2 ) ;

43

44   printf ( ’ ( i ) The Mass o f o f s team blown o f f i s : %1 . 3f kg .   \n ’ , m ) ;

33

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 35/137

45   printf ( ’ ( i i ) The D ry n es s f r a c t i o n o f steam i n t he

v e s s e l a f t e r c o o l i n g i s : %1 . 4 f .   \n ’ , x 3 ) ;46   printf ( ’ ( i i i ) The Hea t l o s t d u r i ng c o o l i n g i s : %3 . 2 f  kJ .   \n ’  , ( - Q l o s t ) ) ;

47

48   //NOTE:49   //T he ans w e r s of m1, x 3 ar e INCORRECT i n t he book ,50   / / t h u s , t h e a n s w e r s o f m, x 3 a nd Q l o s t a r e INCORRECT

i n t he book51   // w hi le , t he v a l ue s o bt ai ne d h er ( i n s c i l a b ) a re

CORRECT.

Scilab code Exa 4.11  Example 11

1   clc

2   clear

3   //DATA GIVEN4   p = 8 ;   / / p r e s s u r e o f s te am

i n b ar5   x = 0 . 8 ;   // d r yn e s s f r a c t i o n

67   / / At 8 b ar , f ro m s te am t a b l e s8   v g = 0 . 2 4 0 ;   //mˆ3/kg9   h f g = 2 0 4 6 . 5 ;   / / k J / k g

10

11   W e = p * 1 0 ^ 5 * x * v g / 1 0 0 0 ;   / / e x t e r n a l wo rk d on ed ur in g e v ap o ra t i o n i n kJ

12   L H i = x * h f g - W e ;   // I n t e r n a l l a t e n th ea t i n kJ

13

14   printf ( ’ ( i ) The E x t e rn a l work d on e d u r in ge v a p o r a t i o n i s : %3 . 1 f kJ .   \n ’ , W e ) ;

15   printf ( ’ ( i i ) The I n t e r n a l l a t e n t h ea t i s : %4 . 1 f kJ .\n ’ , L H i ) ;

34

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 36/137

Scilab code Exa 4.12  Example 12

1   clc

2   clear

3   //DATA GIVEN4   p = 1 0 ;   / / p r e s s u r e o f steam ,

p 1=p 2 i n b a r5   x 1 = 0 . 8 5 ;   // d r yn e s s f r a c t i o n6   V 1 = 0 . 1 5 ;   / / vo lu me o f s te am i n

mˆ37   T s u p 2 = 3 0 0 + 2 7 3 ;   / / temp . o f s te am i n K8   C p s = 2 . 2 ;   // s p e c i f i c he at of  

s te a m i n k J /kgK9

10   / /At 1 0 b ar , f ro m s te am t a b l e s11   v g 1 = 0 . 1 9 4 ;   //mˆ3/kg12   h f g 1 = 2 0 1 3 . 6 ;   / / k J / k g13   T s 1 = 1 7 9 . 9 + 2 7 3 ;   / / i n K14   m = V 1 / ( x 1 * v g 1 ) ;   / / ma ss o f s te am

i n kg15   h n e t = ( 1 - x 1 ) * h f g 1 + C p s * ( T s u p 2 - T s 1 ) ;   / / h e at s u p p l i e d

p er kg o f stea m16   H t o t a l = m * h n e t ;   // t o t a l h ea t

s u p p l i e d17

18   / / E x t e r n a l wo rk d on e d u r i n g t h e p r o c e s s We=p ∗( v s u p 2−x∗vg1 )

19   // s i n c e p1=p2=p ,20   //vg1/Ts1=vsup2/Tsup221   v s u p 2 = v g 1 * T s u p 2 / T s 1 ;

22   W e = p * 1 0 ^ 5 * ( v s u p 2 - x 1 * v g 1 ) * 1 0 ^ - 3 ;

23   h p = W e / h n e t ;   //% o f t o t a lh ea t s u p p li e d ( p er kg ) which a pp ea rs a s e x t e r na lwork

35

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 37/137

24

25   printf ( ’ ( i ) The T ot al h ea t s u p p l i e d i s : %3 . 1 f kJ .   \n ’ , H t o t a l ) ;

26   printf ( ’ ( i i ) The P er ce nt ag e o f t o t a l h ea t s u p p l i e d( p er kg ) wh ich a p pe ar s a s e x t e r n a l work i s : %2 . 1 f  

p e r c e n t .   \n ’  , ( h p * 1 0 0 ) ) ;

Scilab code Exa 4.13  Example 13

1   clc2   clear

3   //DATA GIVEN4   p = 1 8 ;   / / p r e s s u r e o f s te am5   x = 0 . 8 5 ;   // d r yn e s s f r a c t i o n6

7   / /At 1 8 b ar , f ro m s te am t a b l e s8   h f = 8 8 4 . 6 ;   / / k J / k g9   h f g = 1 9 1 0 . 3 ;   / / k J / k g

10   v g = 0 . 1 1 0 ;   //mˆ3/kg11   u f = 8 8 3 ;   / / k J / k g

12   u g = 2 5 9 8 ;   / / k J / k g13

14   v = x * v g ;   // s p e c i f i c volume of  w et s t e am

15   h = h f + x * h f g ;   // s p e c i f i c en th al pyo f wet s te am

16   u = ( 1 - x ) * u f + x * u g ;   / / s p e c i f i c i n t e r n a le n er g y o f wet s te am

17

18   printf ( ’ ( i ) The S p e c i f i c vo lu me v i s : %1 . 4 f mˆ 3/ k g .

\n ’ , v ) ;19   printf ( ’ ( i i ) The S p e c i f i c e nt ha l p y h i s : %4 . 2 f kJ /kg .   \n ’ , h ) ;

20   printf ( ’ ( i i i ) The S p e c i f i c i n t e r n a l e ne rg y u i s : %4. 2 f k J / kg .   \n ’ , u ) ;

36

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 38/137

Scilab code Exa 4.14  Example 14

1   clc

2   clear

3   //DATA GIVEN4   p = 7 ;   / / p r e s s u r e o f s te am5   h = 2 5 5 0 ;   / / e n t h a l p y o f s te am6

7   / / At 7 b ar , f ro m s te am t a b l e s8   h f = 6 9 7 . 1 ;   / / k J / k g9   h f g = 2 0 6 4 . 9 ;   / / k J / k g

10   v g = 0 . 2 7 3 ;   //mˆ3/kg11   u f = 6 9 6 ;   / / k J / k g12   u g = 2 5 7 3 ;   / / k J / k g13

14   h g = h f + h f g ;

15   / /At 7 b ar , hg =2762 kJ / kg , h en ce s i n c e a c t u a le n th a lp y i s g i ve n a s 2 55 0 kJ /kg , t he stea m mustbe i n wet va po ur s t a t e

16   / / s p e c i f i c e n t h a l p y o f w et s te am , h=h f +x∗ h f g17   x = ( h - h f ) / h f g ;   // d r yn e s s f r a c t i o n18   v = x * v g ;   // s p e c i f i c volume of  

w et s t e am19   u = ( 1 - x ) * u f + x * u g ;   / / s p e c i f i c i n t e r n a l

e n er g y o f wet s te am20

21   printf ( ’ ( i ) The D ry ne ss f r a c t i o n x i s : %1 . 3 f .   \n ’ ,x

) ;

22   printf ( ’ ( i i ) The S p e c i f i c v ol ume v i s : %1 . 4 f mˆ 3/ k g

.   \n ’ , v ) ;23   printf ( ’ ( i i i ) The S p e c i f i c i n t e r n a l e ne rg y u i s : %4

. 2 f k J / kg .   \n ’ , u ) ;

37

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 39/137

Scilab code Exa 4.15  Example 15

1   clc

2   clear

3   //DATA GIVEN4   p = 1 2 0 ;   / / p r e s s u r e o f s te am5   v = 0 . 0 1 7 2 1 ;   // s p e c i f i c volume of  

steam6

7   / /At 1 20 ba r , fr om s te am t a b l e s8   v g = 0 . 0 1 4 3 ;   //mˆ3/kg9   / / s i n c e vg<v , t he s team i s s u pe r he a te d

10   / / s o fro m s u p er h ea t t a b l e s a t 1 20 b ar and v = 0. 01 72 1mˆ3/kg

11   T = 3 5 0 ;   // d eg . c e l s i u s12   h = 2 8 4 7 . 7 ;   // s p e c i f i c en th al py

o f s tea m13   u = h - p * 1 0 ^ 5 * v / 1 0 ^ 3 ;   / / s p e c i f i c i n t e r n a l

e n er g y o f s te am

1415   printf ( ’ ( i ) The T em pe ra tu re i s : %3 . 0 f d eg c e l s i u s .

\n ’ , T ) ;

16   printf ( ’ ( i i ) The S p e c i f i c e nt ha l p y h i s : %4 . 1 f kJ /kg .   \n ’ , h ) ;

17   printf ( ’ ( i i i ) The S p e c i f i c i n t e r n a l e ne rg y u i s : %4. 2 f k J / kg .   \n ’ , u ) ;

Scilab code Exa 4.16  Example 16

1   clc

2   clear

3   //DATA GIVEN

38

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 40/137

4   p = 1 4 0 ;   / / p r e s s u r e o f s te am

5   h = 3 0 0 1 . 9 ;   // s p e c i f i c en th al pyo f s tea m6

7   / /At 1 40 ba r , fr om s te am t a b l e s8   h g = 2 6 4 2 . 4 ;

9   / / s i n c e hg<h , t he s team i s s u pe r he a te d10   / / s o fro m s u p er h ea t t a b l e s a t 1 40 b ar and h = 30 01 .9

k J /k g11   T = 4 0 0 ;   // d eg . c e l s i u s12   v = 0 . 0 1 7 2 2 ;   // s p e c i f i c volume of  

steam

13   u = h - p * 1 0 ^ 5 * v / 1 0 ^ 3 ;   / / s p e c i f i c i n t e r n a le n er g y o f s te am

14

15   printf ( ’ ( i ) The T em pe ra tu re i s : %3 . 0 f d eg c e l s i u s .\n ’ , T ) ;

16   printf ( ’ ( i i ) The S p e c i f i c v ol ume v i s : %1 . 5 f mˆ 3/ k g.   \n ’ , v ) ;

17   printf ( ’ ( i i i ) The S p e c i f i c i n t e r n a l e ne rg y u i s : %4. 2 f k J / kg .   \n ’ , u ) ;

Scilab code Exa 4.17  Example 17

1   clc

2   clear

3

4   p 1 = 1 0 ;   // p r e s s u r e i nb ar

5   / /At 1 0 b ar and 3 00 deg c e l s i u s , fro m s team t a b l e s

o f s u p e r he a t e d s te am6   h s u p = 3 0 5 1 . 2   / / k J / k g7   T s u p = 3 0 0 + 2 7 3 ;   / / temp . o f s te a m

i n K8   / /At 1 0 b ar and 3 00 deg c e l s i u s , fro m s team t a b l e s

39

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 41/137

o f dr y s a t u r a t ed stea m

9   T s = 1 7 9 . 9 + 2 7 3   / / temp . o f s te a mi n K10   v g = 0 . 1 9 4 ;   //mˆ3/kg11

12   / / By v g / Ts = v s u p / Ts up13   v s u p = v g * T s u p / T s ;

14   u 1 = h s u p - p 1 * 1 0 ^ 5 * v s u p / 1 0 ^ 3 ;

15

16   p 2 = 1 . 4 ;   / /new p r e s s u r ei n b ar

17   x 2 = 0 . 8 ;   / / d r y n e s s

f r a c t i o n18   // At 1 . 4 bar , fr om stea m t a b l e s19   h f 2 = 4 5 8 . 4 ;   / / k J / k g20   h f g 2 = 2 2 3 1 . 9 ;   / / k J / k g21   v g 2 = 1 . 2 3 6 ;   //mˆ3/kg22   h 2 = h f 2 + x 2 * h f g 2 ;   / / e n t h a l p y o f  

wet s te am ( a f t e r e x p an s i o n )23   u 2 = h 2 - p 2 * 1 0 ^ 5 * x 2 * v g 2 / 1 0 ^ 3 ;   / / i n t e r n a l

e ne rg y o f t h i s steam24   D u = u 2 - u 1 ;   / / c ha ng e i n

i n t e r n a l e ne rg y p e r kg25

26   printf ( ’ ( i ) The I n t e r n a l e ne rg y o f s u pe rh e a t eds te am a t 1 0 b ar i s : %4 . 1 f kJ / kg .   \n ’ , u 1 ) ;

27   printf ( ’ ( i i ) The Change i n i n t e r n a l e ne rg y p er kgi s : %2 . 1 f kJ .   \n ’ , D u ) ;

28   printf ( ’ ( N eg at iv e s i g n i n d i c a t e s DECREASE ini n t e r n a l e ne rg y . ) ’   ) ;

Scilab code Exa 4.18  Example 18

1   clc

2   clear

40

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 42/137

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 43/137

Scilab code Exa 4.19  Example 19

1   clc

2   clear

3   //DATA GIVEN4   p = 2 0 ;   // p r e s s u r e i n t he

b o i l e r s and m ain i s 20 b a r5   T b s = 3 5 0 ;   / / t e m p e r a tu r e o f s te am

i n b o i l e r w i t h s u pe r h e a t er i n deg . c e l s i u s6   T m = 2 5 0 ;   / / t e m p e r a tu r e o f s te am

i n t he main i n deg . c e l s i u s7   C p s = 2 . 2 5 ;   // s p e c i f i c he a t of  

s te am i n kJ / kg8

9   / /At 2 0 b ar , f ro m s te am t a b l e s10   T s = 2 1 2 . 4 ;   // d eg . c e l s i u s11   h f = 9 0 8 . 6 ;   / / k J / k g12   h g = 2 7 9 7 . 2 ;   / / k J / k g13   h f g = 1 8 8 8 . 6 ;   / / k J / k g14

15   / / B o i l e r B1−20 bar , 350 deg . c e l s i u s16   h 1 = h g + C p s * ( T b s - T s ) ;

17

18   //Main−20 bar , 250 d eg c e l s i u s19   h m = 2 * [ h g + C p s * ( T m - T s ) ] ;   // t o t a l h ea t o f  

2 kg o f s team i n t he stea m m ain20

21   / / B o i l e r B2−20 bar ,22   //h2=hf+x2∗ h f g23   //h2=hm−h124   x 2 = ( ( h m - h 1 ) - h f ) / h f g ;

25

26   printf ( ’ The Q ua l i t y o f steam i n t he B o i l e r w it ho ut

s u p e r h e a t e r i s : %1 . 3 f .   \n ’ , x 2 ) ;

42

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 44/137

Scilab code Exa 4.20  Example 20

1   clc

2   clear

3   //DATA GIVEN4   m = 1 ;   // m ass o f wet

s te am i n kg5   p = 6 ;   // p r e s s u r e o f  

stea m i n b ar6   x = 0 . 8 ;   / / d r y n e s s

f r a c t i o n7

8   / / At 6 b ar , f ro m s te am t a b l e s9   T s = 1 5 8 . 8 + 2 7 3 ;   / / i n K

10   h f g = 2 0 8 5 ;   / / k J / k g11   s w e t = 4 . 1 8 * log ( T s / 2 7 3 ) + x * h f g / T s ;   / / e n t r o p y o f  

w et s t ea m i n k J /kgK12

13   printf ( ’ The E nt ro py o f we t s te am i s : %1 . 4 f kJ / kgK . ’ ,

s w e t ) ;

14

15   //NOTE;16

  // t h e e xa ct an s i s 5 . 7 7 94 , w hi l e i n TB i t i s g iv ena s 5 . 7 8 6 5 kJ / kgK

Scilab code Exa 4.21  Example 21

1   clc

2   clear

3   //DATA GIVEN

4   p 1 = 1 0 ;   / / i n i t i a l p r e s s u r e o f  s team i n b ar5   T s u p = 2 5 0 ;   // i n i t i a l t e m pe r at u r e

o f steam i n deg c e l s i u s6   p 2 = 0 . 2 ;   // f i n a l p r e s s u r e o f  

43

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 45/137

stea m i n b ar

7   x 2 = 0 . 9 ;   // f i n a l d r yn e ssf r a c t i o n o f steam8

9   / /At 1 0 b ar , f ro m s te am t a b l e s10   h s u p = 3 2 6 3 . 9 ;   / / k J / k g11   s s u p = 7 . 4 6 5 ;   //kJ/kgK12   h 1 = h s u p ;

13   s 1 = s s u p ;

14

15   // At 0 . 2 bar , fr om stea m t a b l e s16   h f 2 = 2 5 1 . 5 ;   //k J /k h

17   h f g 2 = 2 3 5 8 . 4 ;   / / k J / k g18   s f 2 = 0 . 8 3 2 1 ;   //kJ/kgK19   s g 2 = 7 . 9 0 9 4 ;   //kJ/kgK20   h 2 = h f 2 + x 2 * h f g 2 ;

21   s f g 2 = ( s g 2 - s f 2 ) ;

22   s 2 = s f 2 + x 2 * s f g 2 ;

23

24   D h = h 1 - h 2 ;   // d ro p i n e n th a lp y25   D s = s 1 - s 2 ;   / / c ha ng e i n e n tr o p y26

27   printf ( ’ ( i ) The Drop i n e n t h al p y i s : %3 . 1 f kJ / kg .   \n ’ , D h ) ;

28   printf ( ’ ( i i ) The c h a n g e ( DECREASE ) i n e n t r o p y i s :%1. 4 f k J /kgK . ’ , D s ) ;

Scilab code Exa 4.22  Example 22

1   clc

2   clear3   //DATA GIVEN4   m = 1 ;   // mass o f s tea m i n kg5   p = 1 2 ;   / / p r e s s u r e o f s te am

i n b ar

44

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 46/137

6   T s u p = 2 5 0 + 2 7 3 ;   / / temp . o f s te am i n K

7   C p s = 2 . 1 ;   // s p e c i f i c he at of  s te am i n kJ / kg8

9   / /At 1 2 b ar , f ro m s te am t a b l e s10   T s = 1 8 8 + 2 7 3 ;   / / i n K11   h f g = 1 9 8 4 . 3 ;   / / k J / k g12   s s u p = 4 . 1 8 * log ( T s / 2 7 3 ) + h f g / T s + C p s * log ( T s u p / T s ) ;

/ / e n t r o py o f w et s te am i n kJ / kgK13

14   printf ( ’ The E ntro py o f 1 kg o f s u pe r he a te d stea m a t12 ba r and 250 deg c e l s i u s i s : %1 . 3 f kJ /kg .   \n ’ ,

s s u p ) ;

Scilab code Exa 4.23  Example 23

1   clc

2   clear

3   //DATA GIVEN4   p = 5 ;   / / p r e s s u r e o f s te am

i n b ar5   M w t = 5 0 ;   // mass o f w at er i n

t he t a nk i n kg6   t 1 = 2 0 ;   // i n i t i a l temp . in

deg . c e l s i u s7   M s = 3 ;   / / amo unt o f s t ea m

c on d en s ed i n kg8   t 2 = 4 0 ;   / / f i n a l temp . i n d eg .

c e l s i u s9   W e = 1 . 5 ;   // w at e r e q u i v a l e n t o f  

t a nk i n kg10

11   / / At 5 b ar , f ro m s te am t a b l e s12   h f = 6 4 0 . 1 ;   / / i n k J / kg13   h f g = 2 1 0 7 . 4 ;   / / i n k J / kg

45

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 47/137

14

15   M w = M w t + W e ;   // t o t a l mass o f w at eri n kg16   // h ea t l o s t by st ea m = h ea t g a in ed by w at er17   //Ms [ ( hf+xhfg ) −1∗4. 18∗( t2 −0) ]=Mw[ 1 ∗ 4 . 1 8 ∗ ( t 2−t1 ) ]18   x = [ M w * [ 1 * 4 . 1 8 * ( t 2 - t 1 ) ] / M s + 1 * 4 . 1 8 * ( t 2 - 0 ) - h f ] / h f g ;

// d r yn e s s f r a c t i o n19

20   printf ( ’ The D ry ne ss f r a c t i o n o f steam , x i s : %1 . 4 f . ’, x ) ;

Scilab code Exa 4.24  Example 24

1   clc

2   clear

3   //DATA GIVEN4   p = 1 . 1 ;   / / p r e s s u r e o f s te am

i n b ar5   x = 0 . 9 5 ;   // d r yn e s s f r a c t i o n6   M w t = 9 0 ;   // mass o f w at er i n

t he t a nk i n kg7   t 1 = 2 5 ;   // i n i t i a l temp . in

deg . c e l s i u s8   M t = 1 2 . 5 ;   // mass o f t an k i n kg9   c = 0 . 4 2 ;   // s p e c i f i c he at of  

m e ta l i n kJ / kgK10   t 2 = 4 0 ;   / / f i n a l temp . i n d eg .

c e l s i u s11

12   m 1 = M w t ;

13   m 2 = M t * c ;   // w at e r e q u i v a l e n t o f  v e s s e l14   M = m 1 + m 2 ;   // t o t a l mass o f w at er

i n kg15   // At 1 . 1 bar , fr om stea m t a b l e s

46

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 48/137

16   h f = 4 2 8 . 8 ;   / / i n k J / kg

17   h f g = 2 2 5 0 . 8 ;   / / i n k J / kg18   // h ea t l o s t by st ea m = h ea t g a in ed by w at er19   //Ms [ ( hf+xhfg ) −1∗4. 18∗( t2 −0)]=M[1 ∗ 4 . 1 8 ∗ ( t 2−t1 ) ]20   M s = M * [ 1 * 4 . 1 8 * ( t 2 - t 1 ) ] / [ ( h f + x * h f g ) - 1 * 4 .1 8 * ( t 2 - 0 ) ] ;

// m ass o f s te am c o nd e ns e d i n kg21

22   printf ( ’ The Mass o f s te am c o nd e ns e d , Ms i s : %1 . 3 f  kg . ’ , M s ) ;

Scilab code Exa 4.25  Example 25

1   clc

2   clear

3   //DATA GIVEN4   / / c o n d i t i o n o f st eam b e f o r e t h r o t t l i n g5   p 1 = 8 ;   // p r e s s u r e i n b ar6   // c o n d i t i o n o f st eam a f t e r t h r o t t l i n g7   p 2 = 1 ;   // p r e s s u r e i n b ar8   T 2 = 1 1 5 + 2 7 3 ;   // temp . i n deg . c e l s i u s

9   T s u p 2 = T 2 ;10   / / At 1 b ar ,11   T s 2 = 9 9 . 6 + 2 7 3 ;

12   C p s = 2 . 1 ;   //kJ/kgK13

14   / /As t h r o t t l i n g i s a c on s ta n t e nt ha l p y p r o c e ss ,15   // h1=h2 . . . . . hf 1+x1∗ hgf1=hf2+hfg2+Cps(Tsup2−T s2)16

17   / /At 8 b ar , f ro m s te am t a b l e s ,18   h f 1 = 7 2 0 . 9 ;

19   h f g 1 = 2 0 4 6 . 5 ;20   / /At 1 b ar , f ro m s te am t a b l e s ,21   h f 2 = 4 1 7 . 5 ;

22   h f g 2 = 2 2 5 7 . 9 ;

23

47

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 49/137

24   x 1 = [ h f 2 + h f g 2 + C p s * ( T s u p 2 - T s 2 ) - h f 1 ] / h f g 1 ;   //

d r y ne s s f r a c t i o n25

26   printf ( ’ The D ry ne ss f r a c t i o n o f stea m i n t he main ,x1 i s : %1 . 2 f . ’ , x 1 ) ;

Scilab code Exa 4.26  Example 26

1   clc

2   clear3   //DATA GIVEN4   M w = 2 ;   // m ass o f w at er

s e pa r at e d o ut i n kg5   M s = 2 0 . 5 ;   / / amount o f s te am (

c o nd e ns a te ) d i s c h a rg e d fro m t h r o t t l i n gc a l o r i m e t e r i n kg

6   T s u p 3 = 1 1 0 + 2 7 3 ;   / / temp . o f s t ea ma f e t r t h r o t t l i n g i n K

7   p 1 = 1 2 ;   // i n i t i a l pr e s su r eo f st eam i n ba r

8   p 3 = ( 7 6 0 + 5 ) / 1 0 0 0 * 1 . 3 3 6 6 ;   // f i n a l p r e s s u re o f  s te am i n b ar ( 1 mm o f Hg =1 .3 36 6 b ar )

9   C p s = 2 . 1 ;   //kJ/kgK10

11   p 2 = p 1 ;

12   / / At p 1=p2 =12 b ar , f ro m s te a m t a b l e s13   h f 2 = 7 9 8 . 4 ;   / / i n kJ / k g14   h f g 2 = 1 9 8 4 . 3 ;   / / i n kJ / k g15

16   / / At p3=1 b ar , f ro m s te am t a b l e s

17   T s 3 = 9 9 . 6 + 2 7 3 ;   / / i n K18   T s u p 3 = 1 1 0 + 2 7 3 ;   / / i n K19   h f 3 = 4 1 7 . 5 ;   / / i n kJ / k g20   h f g 3 = 2 2 5 7 . 9 ;   / / i n kJ / k g21

48

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 50/137

22   // h2=h3 . . . . . hf 2+x2∗ hgf2=hf3+hfg3+Cps(Tsup3−T s3)

23   x 2 = [ h f 3 + h f g 3 + C p s * ( T s u p 3 - T s 3 ) - h f 2 ] / h f g 2 ;   //d ry ne ss f r a c t i o n x224

25   x 1 = ( x 2 * M s ) / ( M w + M s ) ;   //d r y ne s s f r a c t i o n o f steam s u pp l i e d , x1

26

27   printf ( ’ The Q u a l it y o f s te am s u p p l i e d , x1 i s : %1 . 2 f .’ , x 1 ) ;

Scilab code Exa 4.27  Example 27

1   clc

2   clear

3   //DATA GIVEN4   p 1 = 1 5 ;   // p r e s s u r e o f s te am

s am pl e i n b ar5   p 3 = 1 ;   // p r e s s u r e o f s te am

a t e x i t i n b a r6   T s u p 3 = 1 5 0 + 2 7 3 ;   / / t e m p e r a t u r e o s

steam a t t h e e x i t i n K7   M w = 0 . 5 ;   / / d i s c h a r g e f ro m

s e p a r at i n g c a l o r i m e t e r i n kg /min8   M s = 1 0 ;   / / d i s c h a r g e f ro m

t h r o t t l i n g c a l o r i m e t e r i n kg /min9

10   p 2 = p 1 ;

11   / / At p 1=p2 =15 b ar , f ro m s te a m t a b l e s12   h f 2 = 8 4 4 . 7 ;   / / i n kJ / k g13   h f g 2 = 1 9 4 5 . 2 ;   / / i n kJ / k g

1415   / /At p3=1 b ar and 1 50 d eg . c e l s i u s , f ro m s te amt a b l e s

16   h s u p 3 = 2 7 7 6 . 4 ;   / / i n kJ / k g17

49

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 51/137

18   // h2=h3 . . . . . hf 2+x2∗ hgf2=hsup3

19   x 2 = [ h s u p 3 - h f 2 ] / h f g 2 ;   // d r yn e ss f r a c t i o nx220

21   x 1 = ( x 2 * M s ) / ( M w + M s ) ;   // q u a l i t y o f s teams u p p l i ed , x1

22

23   printf ( ’ The Q u a l it y o f s te am s u p p l i e d , x1 i s : %1 . 3 f .’ , x 1 ) ;

50

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 52/137

Chapter 5

Heat Engines

Scilab code Exa 5.1  Example 1

1   clc

2   clear

3   //DATA GIVEN4   M s = 1 0 0 0 0 / 3 6 0 0 ;   // r a t e o f s team f l ow i n kg / s5   / / i n l e t t o t u r bi n e6   p 1 = 6 0 ;   // p r e s s u e i n b ar

7   T 1 = 3 8 0 ;   / / temp . i n d eg . c e l s i u s8

9   // e x i t from t ur bi ne , i n l e t t o c on de ns e r10   p 2 = 0 . 1 ;   // p r e s s u e i n b ar11   x 2 = 0 . 9 ;   / / q u a l i t y12   v 2 = 2 0 0 ;   // v e l o c i t y i n m/ s13

14   / / e x i t f ro m c o nd e ns e r , i n l e t t o pump15   p 3 = 0 . 0 9 ;   // p r e s s u e i n b ar16   // i t i s s a tu r a t ed

1718   / / e x i t from pump , i n l e t t o b o i l e r19   p 4 = 7 0 ;   // p r e s s u e i n b ar20

21   // e x i t from b o i l e r ,

51

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 53/137

22   p 5 = 6 5 ;   // p r e s s u e i n b ar

23   T 5 = 4 0 0 ;   / / temp . i n d eg . c e l s i u s24

25   / / f o r c o n d en s e r ,26   t 1 = 2 0 ;   // i n l e t temp . i n deg . c e l s i u s27   t 2 = 3 0 ;   // e x i t temp . i n deg . c e l s i u s28

29   // At 60 b ar and 3 80 d eg . c e l s i u s , fro m s team t a b l e s30   h 1 = 3 0 4 3 . 0 + ( 3 1 7 7 . 2 - 3 0 4 3 . 0 ) / ( 4 0 0 - 3 5 0 ) * 3 0 ;   //By

i n t e r p o l a t i o n31

32   // At 0 . 1 bar , fr om stea m t a b l e s

33   h f 2 = 1 9 1 . 8 ;   / / i n k J / kg34   h f g 2 = 2 3 9 2 . 8 ;   / / i n k J / kg35   h 2 = h f 2 + x 2 * h f g 2 ;

36   P t = M s * ( h 1 - h 2 )   // p owe r o ut p ut o f  t he t u r b i n e i n kW

37

38   / /At 7 0 b ar , f ro m s te am t a b l e s39   h f 4 = 1 2 6 7 . 4 ;   / / i n k J / kg40   // At 60 b ar and 3 80 d eg . c e l s i u s , fro m s team t a b l e s41   h a = ( 3 1 7 7 . 2 + 3 1 5 8 . 1 ) / 2 ;   //By i n t e r p o l a t i o n

be tw e en 60 and 70 deg c e l s i u s42   Q 1 = M s * 3 6 0 0 * ( h a - h f 4 ) ;   // h ea t t r a n s f e rp e r hour i n t h e b o i l e r

43   // At 0 . 0 9 bar , fro m s tea m t a b l e s44   h f 3 = 1 8 3 . 3 ;   / / i n k J / kg45   Q 2 = M s * 3 6 0 0 * ( h 2 - h f 3 ) ;   // h ea t t r a n s f e r

p er hour i n t he c on de ns e r46

47   // h ea t l o s t by st ea m=h ea t g a in e d by t he c o o l i n gw a t e r

48   //Q2=Mw∗ 4 . 1 8 ∗ ( t 2−t 1 )

49   M w = Q 2 / 4 . 1 8 / 1 0 ;   // mass o f c o o l i n gw at er c i r c u l e t e d p er hour i n c on de ns er

50

51   // ( pi ) /4∗dˆ2=Ms∗x2∗vg252   / /d=d i am e te r o f t he p i pe c o n n ec t i ng t u r b i n e w it h

52

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 54/137

c o n d e n s e r

53   C = 2 0 0 ;   // v e l o c i t y o f  s te am i n m/ s54   v g 2 = 1 4 . 6 7 ;   // s p e c i f i c volume

a t 0 . 1 ba r55   d = ( M s * x 2 * v g 2 / ( % p i / 4 ) / C ) ^ 0 . 5 ;

56

57   printf ( ’ ( i ) The Power o u tp ut o f t u r b i n e i s : %4 . 0 f  kW.   \n ’ , P t ) ;

58   printf ( ’ ( i i ) The Heat t r a n s f e r p er hour i n t heB o i l e r i s : %3 . 2 e kJ / h .   \n ’ , Q 1 ) ;

59   printf ( ’ The Heat t r a n s f e r p e r hour i n th e

C o n de n s er i s : %3 . 2 e k J /h .   \n ’ , Q 2 ) ;60   printf ( ’ ( i i i ) The Mass o f c o o l i n g w at er c i r c u l a t e d

p er h ou r i n t he c o nd e ns e r i s : %3 . 2 e kg / hr .   \n ’ , Mw

) ;

61   printf ( ’ ( i v ) The D ia me te r o f t he p i pe c o n n ec t i ngt u r b i n e w it h c o n d en s e r i s : %1 . 3 f m o r %3 . 0 f mm.   \n ’ , d , ( d * 1 0 0 0 ) ) ;

62

63   //NOTE:64   / / a n s o f Mw( 1 . 1 1 6 ∗1 0 ˆ 7 ) i s g iv en i n c o r r e c t i n t he

book .65   // t he c o r r e c t an s o f Mw i s = 5 . 1 7∗1 0 ˆ 5 kg / h .

Scilab code Exa 5.2  Example 2

1   clc

2   clear

3   //DATA GIVEN

4   p 1 = 1 5 ;   // s tea m s u pp ly p r e s s u r e i nb ar5   x 1 = 1 ;   // q u a l i t y o f s tea m6   p 2 = 0 . 4 ;   / / c o n d en s e r p r e s s u r e7

53

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 55/137

8   // At 0 . 1 5 bar , fro m s tea m t a b l e s

9   T 1 = 1 9 8 . 3 + 2 7 3 ;   / / i n K10   h g 1 = 2 7 8 9 . 9 ;   / / i n k J / kg11   s g 1 = 6 . 4 4 0 6 ;   // i n k J /kgK12   // At 0 . 4 bar , fr om stea m t a b l e s13   T 2 = 7 5 . 9 + 2 7 3 ;   / / i n K14   h f 2 = 3 1 7 . 7 ;   / / i n k J / kg15   h f g 2 = 2 3 1 9 . 2 ;   / / i n k J / kg16   s f 2 = 1 . 0 2 6 1 ;   // i n k J /kgK17   s f g 2 = 6 . 6 4 4 8 ;   // i n k J /kgK18

19   E T A c a r n o t = ( T 1 - T 2 ) / T 1 ;   // C arnot e f f i c i e n c y

20   / / ETArankine=A d i a b a ti c o r i s e n t r o p i c h e at d ro p / h e ats u p p l i e d

21   //ETArankine=(hg1−h2) /( hg1−hf 2 )22   / / a s t he stea m e xp an ds i s e n t r o p i c a l l y , s 1=s 223   //sg1= sf 2+ x 2∗ s f g 224   x 2 = ( s g 1 - s f 2 ) / s f g 2 ;

25   h 2 = h f 2 + x 2 * h f g 2 ;

26   E T A r a n k i n e = ( h g 1 - h 2 ) / ( h g 1 - h f 2 ) ;   / / R a n k i n ee f f i c i e n c y

27

28   printf ( ’ ( i ) The Ca rnot e f f i c i e n c y i s : %1 . 4 f o r %2 . 2f p e r ce n t .   \n ’ , E T A c a rn o t , ( E T A c a r n o t * 1 0 0 ) ) ;

29   printf ( ’ ( i i ) The R ank ine e f f i c i e n c y i s : %1 . 4 f o r %2. 2 f p e r c e n t .   \n ’ , E T A r a n ki n e , ( E T A r a n k i n e * 1 0 0 ) ) ;

Scilab code Exa 5.3  Example 3

1   clc

2   clear3   //DATA GIVEN4   p 1 = 2 0 ;   // b o i l e r p r e s s u re i n b a r5   T 1 = 3 6 0 + 2 7 3 ;   / / temp . i n K6   p 2 = 0 . 0 8 ;   // b o i l e r p r e s s u re i n b a r

54

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 56/137

7

8   // At 20 b ar and 3 60 deg . c e l s i u s , fro m s team t a b l e s9   h 1 = 3 1 5 9 . 3 ;   / / i n k J / kg10   s g 1 = 6 . 9 9 1 7 ;   // i n k J /kgK11

12   // At 0 . 0 8 bar , fro m s tea m t a b l e s13   h f 2 = 1 7 3 . 8 8 ;   / / i n k J / kg14   h f 3 = h f 2 ;

15   s f 2 = 0 . 5 9 2 6 ;   // i n k J /kgK16   s 3 = s f 2 ;

17   h f g 2 = 2 4 0 3 . 1 ;   / / i n k J / kg18   s g 2 = 8 . 2 2 8 7 ;   // i n k J /kgK

19   v f 2 = 0 . 0 0 1 0 0 8 ;   //mˆ3/kg20   s f g 2 = 7 . 6 3 6 1 ;   // i n k J /kgK21

22   / / a s t he stea m e xp an ds i s e n t r o p i c a l l y , s 1=s 223   //sg1= sf 2+ x 2∗ s f g 224   x 2 = ( s g 1 - s f 2 ) / s f g 2 ;

25   h 2 = h f 2 + x 2 * h f g 2 ;

26

27   //Wnet=Wturbine−Wpump28   //Wpump=hf4−hf 3=vf 3 ( p1−p2 )29   W p = v f 2 * ( p 1 - p 2 ) * 1 0 0 ;

30   h f 4 = W p + h f 3 ;

31   W t = h 1 - h 2 ;

32   W n e t = W t - W p ;

33   Q 1 = h 1 - h f 4 ;   / / i n k J / kg34   E T A c y c l e = W n e t / Q 1 ;   // c y c l e e f f i c i e n c y35

36   printf ( ’ ( i ) The Net work p er kg o f stea m i s : %3 . 2 f  kJ/ kg .   \n ’ , W n e t ) ;

37   printf ( ’ ( i i ) The C yc le e f f i c i e n c y i s : %1 . 3 f o r %2 . 1f p e r ce n t .   \n ’ , E T A c yc l e , ( E T A c y c l e * 1 0 0 ) ) ;

Scilab code Exa 5.4  Example 4

55

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 57/137

1   clc

2   clear3   // g i v en s team t a b l e e x t r a c t4   p 1 = 8 0 ;   / / i n b a r5   t 1 = 2 9 5 . 1 ;   // i n deg . c e l s i u s6   v f 1 = 0 . 0 0 1 3 8 5 ;   //mˆ3/kg7   v g 1 = 0 . 0 2 3 5 ;   //mˆ3/kg8   h f 1 = 1 3 1 7 ;   / / i n k J / kg9   h f g 1 = 1 4 4 0 . 5 ;   / / i n k J / kg

10   h g 1 = 2 7 5 7 . 5 ;   / / i n k J / kg11   s f 1 = 3 . 2 0 7 3 ;   // in kJ/kgK12   s f g 1 = 2 . 5 3 5 1 ;   // in kJ/kgK

13   s g 1 = 5 . 7 4 2 4 ;   // in kJ/kgK14

15   p 2 = 0 . 1 ;   / / i n b a r16   t 2 = 4 5 . 8 4 ;   // i n deg . c e l s i u s17   v f 2 = 0 . 0 0 1 0 1 0 3 ;   //mˆ3/kg18   v g 2 = 1 4 . 6 8   //mˆ3/kg19   h f 2 = 1 9 1 . 9 ;   / / i n k J / kg20   h f 3 = h f 2 ;

21   h f g 2 = 2 3 9 2 . 3 ;   / / i n k J / kg22   h g 2 = 2 5 8 4 . 2 ;   / / i n k J / kg23   s f 2 = 0 . 6 4 8 8 ;

  // in kJ/kgK24   s f g 2 = 7 . 5 0 0 6 ;   // in kJ/kgK25   s g 2 = 8 . 1 4 9 4 ;   // in kJ/kgK26

27   E T A t = 0 . 9 ;   // steam t u r bi n e e f f i c i e n c y28   E T A p = 0 . 8 ;   // c o nde nsa t e pump

e f f i c i e n c y29

30   P 1 = 8 0 ;   / / i n b a r31   T 1 = 6 0 0 ;   // i n deg c e l s i u s32   / /At 80 b ar and 600 deg c e l s i u s

33   v 1 = 0 . 4 8 6 ;   //mˆ3/kg34   h 1 = 3 6 4 2 ;   / / k J / k g35   s 1 = 7 . 0 2 0 6 ;   //k J /k g/K36

37   / / a s t he stea m e xp an ds i s e n t r o p i c a l l y , s 1=s 2

56

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 58/137

38   //sg1= sf 2+ x 2∗ s f g 2

39   x 2 = ( s 1 - s f 2 ) / s f g 2 ;40   h 2 = h f 2 + x 2 * h f g 2 ;

41   W t a = E T A t * ( h 1 - h 2 ) ;   // a c t u a l t u r b i n e work i n kJ/ kg

42   W p = v f 2 * ( p 1 - p 2 ) * 1 0 ^ 5 / 1 0 ^ 3 ; / / pump w or k i n k J / k g43   W p a = W p / E T A p ;   / / a c t u a l pump w or k i n k J / kg44   W n e t = W t a - W p a ;   // s p e c i f i c w or k i n k J /k g45   //ETAthermal=Wnet/Q146   //Q1=h1−h f 447   h f 4 = h f 3 + W p a ;

48   Q 1 = h 1 - h f 4 ;

49   E T A t h = W n e t / Q 1 ;50

51   printf ( ’ ( i ) The S p e c i f i c work ( Wnet ) i s : %4 . 2 f kJ /kg .   \n ’ , W n e t ) ;

52   printf ( ’ ( i i ) The Thermal e f f i c i e n c y i s : %1 . 3 f o r %2. 1 f p e r c e n t .   \n ’ ,ETAth ,(ETAth*100));

Scilab code Exa 5.5  Example 5

1   clc

2   clear

3   //DATA GIVEN4   p 1 = 2 8 ;   // p r e s s ur e a t 1 i n b ar5   p 2 = 0 . 0 6 ;   // p r e s s ur e a t 2 i n b ar6

7   / /At 2 8 b ar , f ro m s te am t a b l e s8   h 1 = 2 8 0 2 ;   / / i n k J / kg9   s 1 = 6 . 2 1 0 4 ;   // i n k J /kgK

1011   // At 0 . 0 6 bar , fro m s tea m t a b l e s12   h f 2 = 1 5 1 . 5 ;   / / i n k J / kg13   h f 3 = h f 2 ;

14   h f g 2 = 2 4 1 5 . 9 ;   / / i n k J / kg

57

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 59/137

15   s f 2 = 0 . 5 2 1 ;   // i n k J /kgK

16   s f 3 = s f 2 ;17   s f g 2 = 7 . 8 0 9 ;   // i n k J /kgK18   v f 2 = 0 . 0 0 1 ;   //mˆ3/kg19

20

21   / / a s t he stea m e xp an ds i s e n t r o p i c a l l y , s 1=s 222   //sg1= sf 2+ x 2∗ s f g 223   x 2 = ( s 1 - s f 2 ) / s f g 2 ;

24   h 2 = h f 2 + x 2 * h f g 2 ;

25

26   //Wnet=Wturbine−Wpump

27   //Wpump=hf4−hf 3=vf 3 ( p1−p2 )28   W p = v f 2 * ( p 1 - p 2 ) * 1 0 ^ 5 / 1 0 ^ 3 ;

29   h f 4 = W p + h f 2 ;

30   W t = h 1 - h 2 ;

31   W n e t = W t - W p ;

32   Q 1 = h 1 - h f 4 ;   / / i n k J / kg33   E T A c y c l e = W n e t / Q 1 ;   // c y c l e e f f i c i e n c y34   w r = W n e t / W t ;   // work r a t i o35   s s c = 3 6 0 0 / W n e t ;   // s p e c i f i c st e am c onsumpt i on

in kg/kWh36

37   printf ( ’ ( i ) The C yc le e f f i c i e n c y i s : %1 . 4 f o r %2 . 2 f  p e r c e n t .   \n ’ , E T A c yc l e , ( E T A c y c l e * 1 0 0 ) ) ;

38   printf ( ’ ( i i ) The Work r a t i o i s : %1 . 3 f kJ / kg .   \n ’ , wr

) ;

39   printf ( ’ ( i i i ) The S p e c i f i c s te am c on su mp ti on i n kg /kWh i s : %1. 3 f kg/kWh.   \n ’ , s s c ) ;

Scilab code Exa 5.6  Example 6

1   clc

2   clear

3   //DATA GIVEN

58

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 60/137

4   p 1 = 3 5 ;   // p r e s s u r e a t i n l e t t o

t u r b i n e i n b a r5   x 1 = 1 ;

6   p 2 = 0 . 2 ;   // p r e s s ur e a t e xh au st i n ba r7   m = 9 . 5 ;   // f l o w r a t e i n kg / s8

9   / /At 3 5 b ar , f ro m s te am t a b l e s10   h g 1 = 2 8 0 2 ;   / / i n k J / kg11   h 1 = h g 1 ;

12   s g 1 = 6 . 1 2 2 8 ;   // i n k J /kgK13

14   // At 0 . 2 bar , fr om stea m t a b l e s

15   h f 2 = 2 5 1 . 5 ;   / / i n k J / kg16   h f 3 = h f 2 ;

17   h f g 2 = 2 3 5 8 . 4 ;   / / i n k J / kg18   v f 2 = 0 . 0 0 1 0 1 7 ;   //mˆ3/kg19   s f 2 = 0 . 8 3 2 1 ;   // i n k J /kgK20   s f g 2 = 7 . 0 7 7 3 ;   // i n k J /kgK21

22   //Wnet=Wturbine−Wpump23   //Wpump=hf4−hf 3=vf 3 ( p1−p2 )24   W p = v f 2 * ( p 1 - p 2 ) * 1 0 ^ 5 / 1 0 ^ 3 ;

25   W p n e t = m * W p ;

26   h f 4 = W p + h f 3 ;

27

28   / / a s t he stea m e xp an ds i s e n t r o p i c a l l y , s 1=s 229   //sg1= sf 2+ x 2∗ s f g 230   x 2 = ( s g 1 - s f 2 ) / s f g 2 ;   / / d r y n e s s

f r a c t i o n31   h 2 = h f 2 + x 2 * h f g 2 ;

32   W t = h 1 - h 2 ;

33   W t n e t = m * W t ;

34   E T A r a n k i n e = ( h 1 - h 2 ) / ( h 1 - h f 2 ) ;   / / R a n k i n e

e f f i c i e n c y35   c h f = m * ( h 2 - h f 3 ) ;   / / c o n d e n s e r

h ea t f l ow36

37   printf ( ’ ( i ) The Pump Work i s : %2. 2 f kW.   \n ’ , W p n e t ) ;

59

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 61/137

38   printf ( ’ ( i i ) The T u r bi n e Work i s : %2 . 2 f kW .   \n ’ ,

W t n e t ) ;39   printf ( ’ ( i i i ) The R an ki ne e f f i c i e n c y i s : %1 . 4 f o r %2. 2 f p e r c e n t .   \n ’ , E T A r a n ki n e , ( E T A r a n k i n e * 1 0 0 ) ) ;

40   printf ( ’ ( i v ) The C o nd en s er h e a t f l o w i s : %1 . 3 f kW .\n ’ , c h f ) ;

41   printf ( ’ ( v ) The d r y n es s a t t he end o f e xp an si on ,x2 i s : %1 . 3 f o r %2 . 1 f p e r c e n t .   \n ’ , x 2 , ( x 2 * 1 0 0 ) ) ;

42

43   //NOTE:44   / /The v al ue o f x2 i n t h e b ook i s g iv en a s 0 . 7 47 045   / / w hi l e t he e x a c t a ns i s 0 . 7 4 75 5

46   // and s o t he v a l ue s o f o t he r a ns we rs a r e v ar y i ng bysome u n i t s

Scilab code Exa 5.7  Example 7

1   clc

2   clear

3   //DATA GIVEN

4   h 1 2 = 8 4 0 ;   // A d i a b a t ic e n t ha l p y dr op , (h1−h2 ) i n kJ / kg

5   h 1 = 2 9 4 0 ;   // e n t ha l p y o f s te am s u p p l i e di n kJ / kg

6   p 2 = 0 . 1 ;   // b ack p r e s s ur e i n b ar7

8   // At 0 . 1 bar , fr om stea m t a b l e s9   h f = 1 9 1 . 8 ;   / / i n k J / kg

10   //ETArankine=(hg1−h2) /( hg1−hf 2 )11   E T A r a n k i n e = ( h 1 2 ) / ( h 1 - h f ) ;

12   W u s e = h 1 2 ;   // u s e f u l work done p er kg o f  s te am i n kJ / kg13   s s c = 1 / W u s e * 3 6 0 0 ;   // s p e c i f i c st e am c onsumpt i on14

15   printf ( ’ ( i ) The Ra nki ne e f f i c i e n c y i s : %1 . 4 f o r %2 . 2

60

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 62/137

f p e r ce n t .   \n ’ , E T A r a n ki n e , ( E T A r a n k i n e * 1 0 0 ) ) ;

16   printf ( ’ ( i i ) The S p e c i f i c s te am c on su mp ti on i s : %1 . 3f kg/kWh.   \n ’ , s s c ) ;

Scilab code Exa 5.8  Example 8

1   clc

2   clear

3   //DATA GIVEN

4   I P = 3 5 ;   // p owe r d e v el o p ed by t h ee n g i n e i n kW5   m = 2 8 4 ;   // f l o w r a t e i n kg /h6   p 1 = 1 5 ;   // steam i n l e t p r e s s u re i n

b ar7   p 2 = 0 . 1 4 ;   // c o nd e ns e r p r e s s u r e i n b ar8

9   / /At 3 5 b ar and 25 deg c e l s i u s from steam t a b l e s10   h 1 = 2 9 2 3 . 3 ;   / / i n k J / kg11   s 1 = 6 . 7 0 9 ;   // in kJ/kgK12

13   // At 0 . 1 4 bar , fro m s tea m t a b l e s14   h f 2 = 2 2 0 ;   / / i n k J / kg15   h f 3 = h f 2 ;

16   h f g 2 = 2 3 7 6 . 6 ;   / / i n k J / kg17   s f 2 = 0 . 7 3 7 ;   // i n k J /kgK18   s f g 2 = 7 . 2 9 6 ;   // i n k J /kgK19

20   / / a s t he stea m e xp an ds i s e n t r o p i c a l l y , s 1=s 221   //sg1= sf 2+ x 2∗ s f g 222   x 2 = ( s 1 - s f 2 ) / s f g 2 ;   / / d r y n e s s

f r a c t i o n23   h 2 = h f 2 + x 2 * h f g 2 ;

24

25   E T A r a n k i n e = ( h 1 - h 2 ) / ( h 1 - h f 2 ) ;   / / R a n k i n ee f f i c i e n c y

61

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 63/137

26

27   E T A t h e r m a l = I P / ( m / 3 6 0 0 * ( h 1 - h f 2 ) ) ;   //Thermale f f i c i e n c y28   E T A r e l = E T A t h e r m a l / E T A r a n k i n e ;   / / R e l a t i v e

e f f i c i e n c y29

30   printf ( ’ ( i ) The F i n al c o n d i t i o n o f s tea m i s : %1 . 2 f .\n ’ , x 2 ) ;

31   printf ( ’ ( i i ) The R ank ine e f f i c i e n c y i s : %1 . 4 f o r %2. 2 f p e r c e n t .   \n ’ , E T A r a n ki n e , ( E T A r a n k i n e * 1 0 0 ) ) ;

32   printf ( ’ ( i i i ) The R e l a t i v e e f f i c i e n c y i s : %1 . 3 f o r%2 . 1 f p e r c e n t .   \n ’ ,ETArel ,(ETArel*100));

Scilab code Exa 5.9  Example 9

1   clc

2   clear

3   //DATA GIVEN4   T 1 = 4 0 0 + 2 7 3 ;   / / temp . i n K5   T 2 = T 1 ;

6   T 3 = 4 0 + 2 7 3 ;   / / temp . i n K7   T 4 = T 3 ;

8   W = 1 3 0 ;   / / wo rk p r od u ce d i n kJ9

10   E T A t h = ( T 1 - T 3 ) / T 1 ;   / / E n gi n e t h e rm a le f f i c i e n c y

11

12   //ETAth=Work d one / Heat adde d13   H a = W / E T A t h ;   / / Hea t ad ded i n kJ14   H r = H a - W ;   // Heat r e j e c t e d i n kJ

15   / / H ea t r e j e c t e d =T3 ( S 3−S4 )16   S 3 4 = H r / T 3 ;   / / E nt ro py c ha n ge d u r i n gt h e h e a t r e j e c t i o n p r oc e ss

17

18   printf ( ’ ( i ) The E ng in e t he rm al e f f i c i e n c y i s : %1 . 3 f  

62

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 64/137

o r %2 . 1 f p e r c e n t .   \n ’ ,ETAth ,(ETAth*100));

19   printf ( ’ ( i i ) The H ea t a dd ed i s : %3 . 0 f kJ .   \n ’ , H a ) ;20   printf ( ’ ( i i i ) The E nt ro py c ha n ge d u r i n g t h e h e a tr e j e c t i o n p r o c es s i s : %1 . 3 f kJ /K.   \n ’ , S 3 4 ) ;

Scilab code Exa 5.10  Example 10

1   clc

2   clear

3   //DATA GIVEN4   p 1 = 1 8 ;   //maximum

p r e s s u r e i n ba r5   T 1 = 4 1 0 + 2 7 3 ;   //maximum

t e mp e r at u r e i n K6   T 2 = T 1 ;

7   R a c = 6 ;   // r a t i o o f  i s e n t r o p i c o r a d i a b a t i c c o mp r es s io n , V4/V1=6

8   R i e = 1 . 5 ;   // r a t i o o f  i s o t h e r m a l e x p a n s i o n , V2 /V1 =1 . 5

9   V 1 = 0 . 1 8 ;   // v olume o f a i r

a t b e g i nn i ng o f i s o t he r m al e xp an si on i n mˆ310   w c = 2 1 0 ;   // no . o f c y c l e s

p er s11

12   / / gamma f o r a i r = 1 .413   g = 1 . 4 ;

14

15   / / f o r i s e n t r o p i c p r o c e s s 4−116   // Als o (T1/T4) =(V4/V1) ˆ( g−1)17   // (V4/V1)=Rac

18   T 4 = T 1 / R a c ^ ( g - 1 ) ;19   T 3 = T 4 ;

20   // p1 ( V1ˆgamma)=p4 (V4ˆgamma)21   //p4=p1 ∗(V1/V4)ˆg22   // where , (V4/V1)=Rac

63

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 65/137

23   p 4 = p 1 / ( R a c ^ g ) ;

2425   // f o r i s o t he r ma l p r o c es s 1−226   //p1V1=p2V227   //V1/V2=1/Rie28   p 2 = p 1 * ( 1 / R i e ) ;

29

30   / / f o r i s e n t r o p i c p r o c e s s 2−331   // p2 ( V2ˆgamma)=p3 (V3ˆgamma)32   //V2/V3=V1/V4=1/Rac33   p 3 = p 2 * ( 1 / R a c ) ^ g ;

34

35   / / c h a n g e i n e n t r o p y , DS=S2−S1=mRlog(V2/V1)=p1V1/T1 ∗l o g (V2/V1)

36   D S = p 1 * 1 0 ^ 5 * V 1 / 1 0 ^ 3 / T 1 * log ( R i e ) ;

37

38   / / H ea t s u p p l i e d , Qs=p 1∗V1∗ lo g (V2/V1)39   //Qs=T1(S2−S1 )40   Q s = T 1 * D S ;

41   //Qr=p4∗V4∗ l o g ( V3/V4 ) // h e a tr e j e c t e d i n kJ

42   //Qr=T4(S3−S4 ) , b cs i n c r e a s e i n e nt ro py d ur in g h ea t

a d di t i o n i s e qu al t o d e cr e a s e i n e nt ro py d ur in gh ea t r e j e c t i o n43   Q r = T 4 * D S ;

44

45   E T A = ( Q s - Q r ) / Q s ;   //meant h e r m a l e f f i c i e n c y o f t h e c y c l e

46

47   / / mean e f f e c t i v e p r e s s u r e o f t he c y cl e , Pm = workd on e p e r c y c l e / s t r o k e v ol um e

48   R v 3 1 = R a c * R i e ;   // r a t i o o f  v ol ume s at 3 and 1 , V3/V1=V3/V2∗V2/V1

49   // st r o k e v olume , Vs=V3−V150   Vs=V1 *(Rv31 -1);

51   J = 1 ;

52   P m = ( Q s - Q r ) * 1 0 ^ 3 / 1 0 ^ 5 * J / V s ;

53

64

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 66/137

54   P = ( Q s - Q r ) * w c / 6 0 ;   / / p ow er o f  

t he e n g in e i n kW55

56   printf ( ’ ( i ) The P r e s s u r e and T em pe ra tu re a t p o i n t 1ar e : \ n ’ ) ;

57   printf ( ’ p1 : %2 . 0 f b a r . \ n ’ , p 1 ) ;

58   printf ( ’ T1 : %3 . 0 f K.\ n ’ , T 1 ) ;

59   printf ( ’ The P re ss ur e and Te mper at ur e a t p o in t2 a r e :\ n ’ ) ;

60   printf ( ’ p2 : %2 . 0 f b a r . \ n ’ , p 2 ) ;

61   printf ( ’ T2 : %3 . 0 f K.\ n ’ , T 2 ) ;

62   printf ( ’ The P re ss ur e and Te mper at ur e a t p o in t

3 a r e :\ n ’ ) ;63   printf ( ’ p3 : %1 . 2 f b a r . \ n ’ , p 3 ) ;

64   printf ( ’ T3 : %3 . 1 f K.\ n ’ , T 3 ) ;

65   printf ( ’ The P re ss ur e and Te mper at ur e a t p o in t4 a r e :\ n ’ ) ;

66   printf ( ’ p4 : %1 . 2 f b a r . \ n ’ , p 4 ) ;

67   printf ( ’ T4 : %3 . 1 f K.\ n ’ , T 4 ) ;

68   printf ( ’ ( i i ) The Ch ang e i n e n t r o p y d u r i n gi s o t h e r m a l e x p an s i o n i s : %1 . 3 f kJ /K .   \n ’ , D S ) ;

69   printf ( ’ ( i i i ) The Mean t h er m al e f f i c i e n c y o f t h e

c y c l e i s : %1 . 3 f o r %2 . 1 f p e r ce n t .   \n ’, E T A , ( E T A

* 1 0 0 ) ) ;

70   printf ( ’ ( i v ) The Mean e f f e c t i v e p r e s s u r e i s : %1 . 3 f  bar .   \n ’ , P m ) ;

71   printf ( ’ ( v ) The P ower o f t he e ng i ne w o rk in g ont h i s c y c l e i s g i ve n by : %3 . 1 f kW. ’ , P ) ;

72

73   //NOTE:74   / / t h e r e i s s l i g h t v a r i a t i o n i n a ns we r s o f book due

t o r o un di ng o f f o f t h e v a l u es

Scilab code Exa 5.11  Example 11

65

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 67/137

1   clc

2   clear3   //DATA GIVEN4   //CASE−15   //( T 1−T2)/T1=1/66   //SO , T1 = 1 . 2 ( T2 ) . . . . . . . . . Eqn ( 1 )7

8   //CASE−29   // T2 REDUCED BY 70 DEG. CELSIUS

10   //{T1−[T2−(70+27 3) ]}/ T1 = 1 / 3 . . . . . . . . . . . . . . Eqn ( 2 )11   //2T1=3T2−102912

13   / /By Eqn ( 1 ) and ( 2 )14   T 2 = ( 7 0 + 2 7 3 ) * 3 / ( 3 - 2 * 1 . 2 ) ;

15   T 1 = 1 . 2 * T 2 ;

16

17   printf ( ’ ( i ) The T em pe ra tu re o f t h e S o ur ce , T1 i s : %4. 0 f K o r %4 . 0 f deg . c e l s i u s .   \n ’ , T 1 , ( T 1 - 2 7 3 ) ) ;

18   printf ( ’ ( i i ) The T em pe ra tu re o f t h e S in k , T2 i s : %4. 0 f K o r %4 . 0 f deg . c e l s i u s .   \n ’ , T 2 , ( T 2 - 2 7 3 ) ) ;

Scilab code Exa 5.12  Example 12

1   clc

2   clear

3   //DATA GIVEN4   T 1 = 1 9 9 0 ;   / / T em pe ra tu re o f t h e

h ea t S ou rc e i n K5   T 2 = 8 5 0 ;   / / T em pe ra tu re o f t h e

h ea t S in k i n K

6   Q s = 3 2 . 5 ;   // h ea t s u p p l i e d i n kJ /mi n7   P = 0 . 4 ;   / / po wer d e v el o p e d by t h e

e n g i n e i n kW8

66

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 68/137

9   E T A c a r n o t = ( T 1 - T 2 ) / T 1 ;

10   / / A l s o ETAth=w or k d o ne / H ea t s u p p l i e d11   E T A t h = P / Q s ;

12

13   printf ( ’ The E f f i c i e n c y o f c ar no t c y c l e i s : %1 . 3 f o r%2 . 1 f p e r c e n t .   \n ’ , E T A c a rn o t , ( E T A c a r n o t * 1 0 0 ) ) ;

14   printf ( ’ The Thermal e f f i c i e n c y o f e ng i ne c la im ed byi n v e n t o r i s : %1 . 3 f o r %2 . 1 f p e r ce n t .   \n\n ’ ,ETAth

, ( E T A t h * 1 0 0 ) ) ;

15

16   if ( E T A t h > E T A c a r n o t )

17   printf ( ’ Thus , The c la i m o f t he i n v en t o r i s

p o s s i b l e . ’ ) ;18   else

19   printf ( ’ Thus , The c l ai m o f t he i n v e n t o r i s NOTf e a s i b l e ,   \n a s no e ng i ne can be moree f f i c i e n t t h an t h a t w o r k in g o n c a r n o t c y c l e . ’) ;

Scilab code Exa 5.13  Example 13

1   clc

2   clear

3   //DATA GIVEN4   E T A o t t o = 6 0 ;   // E f f i c i e n c y o f o t t o

c y c l e i n %5   s h r = 1 . 5 ;   / / r a t i o o f s p e c i f i c

h e a t s6

7   //ETAotto=1−1/(r ) ̂ ( sh r −1)

8   r = ( 1 / ( 1 - E T A o t t o / 1 0 0 ) ) ^ ( 1 / ( s h r - 1 ) ) ;   / / c o m p r e s s i o nr a t i o9

10   printf ( ’ The c o m p re s s i on r a t i o i s : %1 . 2 f . ’ , r ) ;

67

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 69/137

Scilab code Exa 5.14  Example 14

1   clc

2   clear

3   //DATA GIVEN4   D = 0 . 2 5 ;   // b or e o f t he

e ng i n e i n m5   L = 0 . 3 7 5 ;   // s t r o k e o f t he

e ng i n e i n m6   V c = 0 . 0 0 2 6 3 ;   / / c l e a r a n c e

v ol um e i n mˆ 37   p 1 = 1 ;   // i n i t i a l

p r e s s u r e i n ba r8   T 1 = 5 0 + 2 7 3 ;   // i n i t i a l

t e mp e r at u r e i n K9   p 3 = 2 5 ;   //maximum

p r e s s u r e i n ba r10

11   V s = ( % p i / 4 ) * D ^ 2 * L ;   / / s w e pt v ol um e

12   r = ( V s + V c ) / V c ;   / / c o m p r e s s i o nr a t i o

13

14   / / f o r a i r , gamma = 1. 415   g = 1 . 4 ;

16   // A ir s ta nd ar d e f f i c i e n c y o f o t to c y c l e ETAotto=1−1/( r ) ̂ ( g−1)

17   E T A o t t o = 1 - 1 / ( r ) ^ ( g - 1 ) ;

18

19   // f o r a d i a b a t i c p r oc e ss 1−220   // p1 ( V1ˆgamma)=p2 (V2ˆgamma)21   //p2=p1 ∗(V1/V2)ˆg22   // where , (V1/V2)=r23   p 2 = p 1 * ( r ^ g ) ;   //

p r e s s u r e a t 2 i n ba r

68

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 70/137

24   r p = p 3 / p 2 ;   //

p r e s s u r e r a t i o25   P m = p 1 * r * [ ( r ^ ( g - 1 ) - 1 ) * ( r p - 1 ) ] / [ ( g - 1 ) * ( r - 1 ) ] ;   //meane f f e c t i v e p r e s s u r e i n b ar

26

27   printf ( ’ ( i ) The A i r s ta nd ar d e f f i c i e n c y o f o t t oc y c l e i s : %1 . 3 f o r %2 . 1 f p e r ce n t .   \n ’ ,ETAot to ,(

E T A o t t o * 1 0 0 ) ) ;

28   printf ( ’ ( i i ) The Mean e f f e c t i v e p r e s s u r e i s : %1 . 3 f  bar .   \n ’ , P m ) ;

Scilab code Exa 5.15  Example 15

1   clc

2   clear

3   //DATA GIVEN4   T 1 = 3 8 + 2 7 3 ;   // i n i t i a l

t e mp e r at u r e i n K5   T 3 = 1 9 5 0 + 2 7 3 ;   //maximum

t e m p e r a t u r e K

6   r p = 1 5 ;   // p r e s s u r e r a t i o7   / / f o r a i r , gamma = 1. 48   g = 1 . 4 ;

9

10   / / f o r a d i a b a t i c c o mp r es s io n 1−211   // p1 ( V1ˆgamma)=p2 (V2ˆgamma)12   //(V1/V2)=r13   r = ( r p ) ^ ( 1 / g ) ;

14

15   / / T he rm al e f f i c i e n c y ETAth=1−1/( r ) ˆ( g−1)

16   E T A t h = 1 - 1 / ( r ) ^ ( g - 1 ) ;17

18   / / f o r a d i a b a t i c c o mp r es s io n 1−219   // (T2/T1) =(V1/V2) ˆ( g−1)20   //(V1/V2)=r

69

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 71/137

21   T 2 = T 1 * r ^ ( g - 1 ) ;

2223   // f o r a d i a b a t i c e xp an si on 3−424   // (T3/T4) =(V4/V3) ˆ( g−1)25   //(V4/V3)=r26   T 4 = T 3 / r ^ ( g - 1 ) ;

27

28   / / h e at s u p p l i e d p e r kg o f a i r , Qs=m∗Cv∗ ( T3−T2 )29   R = 0 . 2 8 7 ;

30   C v = R / ( g - 1 ) ;

31   Q s = C v * ( T 3 - T 2 ) ;

32

33   // h ea t r e j e c t e d p er kg o f a i r , Qr=m∗Cv∗ ( T4−T1 )34   Q r = C v * ( T 4 - T 1 ) ;

35

36   W = Q s - Q r ;   / / wor k d on e p e r kgo f a i r

37

38   printf ( ’ ( i ) The c o mp r es s io n r a t i o i s : %1 . 1 f .\ n ’ , r ) ;

39   printf ( ’ ( i i ) The Thermal e f f i c i e n c y i s : %1 . 3 f o r %2. 1 f p e r c e n t .   \n ’ ,ETAth ,(ETAth*100));

40   printf ( ’ ( i i i ) The Work d o ne i s : %3 . 1 f k J o r %6 . 0 f Nm

. ’, W , ( W * 1 0 0 0 ) ) ;

41

42   //NOTE:43   / / t h e r e i s s l i g h t v a r i a t i o n i n a ns we r s i n t he book

b ec au se o f r o un di ng o f f o f t h e v a l u es

Scilab code Exa 5.16  Example 16

1   clc2   clear

3   //DATA GIVEN4   V 1 = 0 . 4 5 ;   / / v o lu me i n mˆ 35   p 1 = 1 ;   // i n i t i a l pr e s su r e

70

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 72/137

i n b ar

6   T 1 = 3 0 + 2 7 3 ;   // i n i t i a lt e mp e r at u r e i n K7   p 2 = 1 1 ;   // p r e s s u r e a t t he

end o f c om pr es si on s t r o k e i n ba r8   Q s = 2 1 0 ;   / / h e a t a d da ed a t

c o n s t a n t vo lu me i n kJ9   w c = 2 1 0 ;   // no . o f w or ki ng

c y c l e s / min10

11   / / f o r a i r , gamma = 1. 412   g = 1 . 4 ;

1314   / / f o r a d i a b a t i c c o mp r es s io n 1−215   // p1 ( V1ˆgamma)=p2 (V2ˆgamma)16   //(V1/V2)=r17   r = ( p 2 / p 1 ) ^ ( 1 / g ) ;

18   // Als o (T2/T1) =(V1/V2) ˆ( g−1)19   //(V1/V2)=r20   T 2 = T 1 * r ^ ( g - 1 ) ;

21

22   / / A p pl yi ng g as l aw s t o p o i n ts 1 and 223

  //p1V1/T1=p2V2/T224   V 2 = T 2 / T 1 * p 1 / p 2 * V 1 ;

25

26   // h ea t s u p pl i e d d ur in g p r o c e s s 2−3 , Qs=mCv( T3−T2 )27   R = 2 8 7 ;

28   m = p 1 * 1 0 ^ 5 * V 1 / R / T 1 ;

29   C v = R / 1 0 0 0 / ( g - 1 ) ;

30   T 3 = Q s / m / C v + T 2 ;

31

32   // f o r c o n st a n t volume p r o c e s s 2−333   //p3/T3=p2/T2

34   p 3 = p 2 / T 2 * T 3 ;35   V 3 = V 2 ;

36

37   // f o r a d i a b a t i c e xp an si on 3−438   // p3 ( V3ˆgamma)=p4 (V4ˆgamma)

71

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 73/137

39   //(V4/V3)=r

40   p 4 = p 3 * ( 1 / r ) ^ ( g ) ;41   // Als o T3/T4) =(V4/V3) ˆ( g−1)42   //(V4/V3)=r43   T 4 = T 3 / r ^ ( g - 1 ) ;

44   V 4 = V 1 ;

45

46   // pe r c e n t a ge c l e a r a nc e , pc=Vc /Vs=V2/( V1−V2 )47   p c = V 2 / ( V 1 - V 2 ) * 1 0 0 ;

48

49   / / h e a t r e j e c t e d p e r c y c l e , Qr=Cv∗( T4−T1 )50   Q r = m * C v * ( T 4 - T 1 ) ;

5152   // A i r s t an d ar d e f f i c i e n c y o f o t t o c y c l e ETAotto=(Qs−

Qr)/Qs53   E T A o t t o = ( Q s - Q r ) / Q s ;

54   / / A l t e r n a t i v e l y55   //ETAotto=1−1/( r ) ˆ( g−1)56   E T A o t t o = 1 - 1 / ( r ) ^ ( g - 1 ) ;

57

58   / / m ean e f f e c t i v e p r e s s u r e , Pm=W/ Vs59   W = Q s - Q r ;   / / wor k d on e p e r kg

o f a i r60   V s = V 1 - V 2 ;

61   P m = W * 1 0 ^ 3 / 1 0 ^ 5 / V s ;

62

63   / / p ow er d e v el o p ed , P=wo rk d on e p e r c y c l e ∗no . o f  c y c l e s p e r s

64   P = W * ( w c / 6 0 ) ;

65

66   printf ( ’ ( i ) The P r e s s u r e , T e mp e ra t ur e a nd V ol um esa t s a l i e n t p o i n t s i n t h e c y c l e a re :\ n ’ ) ;

67   printf ( ’ At p o i n t 1 a r e : \ n ’ ) ;

68   printf ( ’ p1 : %1 . 1 f b a r . \ n ’ , p 1 ) ;69   printf ( ’ V1 : %1 . 2 f mˆ 3 .\ n ’ , V 1 ) ;

70   printf ( ’ T1 : %3 . 0 f K.\ n ’ , T 1 ) ;

71   printf ( ’ At p o i n t 2 a r e : \ n ’ ) ;

72   printf ( ’ p2 : %2 . 2 f b a r . \ n ’ , p 2 ) ;

72

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 74/137

73   printf ( ’ V2 : %1 . 3 f mˆ 3 .\ n ’ , V 2 ) ;

74   printf ( ’ T2 : %3 . 0 f K.\ n ’ , T 2 ) ;75   printf ( ’ At p o i n t 3 a r e : \ n ’ ) ;

76   printf ( ’ p3 : %2 . 2 f b a r . \ n ’ , p 3 ) ;

77   printf ( ’ V3 : %1 . 3 f mˆ 3 .\ n ’ , V 3 ) ;

78   printf ( ’ T3 : %4 . 0 f K.\ n ’ , T 3 ) ;

79   printf ( ’ At p o i n t 4 a r e : \ n ’ ) ;

80   printf ( ’ p4 : %1 . 2 f b a r . \ n ’ , p 4 ) ;

81   printf ( ’ V4 : %1 . 2 f mˆ 3 .\ n ’ , V 4 ) ;

82   printf ( ’ T4 : %3 . 1 f K.\ n ’ , T 4 ) ;

83   printf ( ’ ( i i ) The P e r ce n t ag e c l e a r a n c e i s : %2 . 2 f  p e r c e n t .   \n ’ , p c ) ;

84   printf ( ’ ( i i i ) The A ir s ta nd ar d e f f i c i e n c y o f t hec y c l e i s : %1 . 3 f o r %2 . 1 f p e r ce n t .   \n ’ ,ETAot to ,(

E T A o t t o * 1 0 0 ) ) ;

85   printf ( ’ ( i v ) The Mean e f f e c t i v e p r e s s u r e i s : %1 . 3 f  bar .   \n ’ , P m ) ;

86   printf ( ’ ( v ) The Power d e v el o p e d i s : %3 . 1 f kW. ’ , P ) ;

87

88   //NOTE:89   / / t h e r e i s s l i g h t v a r i a t i o n i n a ns we r s i n t he book

b ec au se o f r o un di ng o f f o f t h e v a l u es

Scilab code Exa 5.17  Example 17

1   clc

2   clear

3   //DATA GIVEN4   r = 1 5 ;   / / c o m p re s s i on r a t i o5   //V3−V2=a/100∗Vs . . . . . . . . . . . . Vs=s t r o k e volume=V1−V2

6   //V3=1.84V27   c = 6 ;   // h ea t a d d i t i o n t a k esp l a c e a t ’ a ’ p e r c e nt o f s t r o k e

8   / / f o r a i r , gamma = 1. 49   g = 1 . 4 ;

73

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 75/137

10

11   // A ir s ta nd ar d e f f i c i e n c y o f d i e s e l c y c l e E T A d i e s e l=1 −[1/(r ) ̂ ( g−1) ] [ ( rh o ˆg −1)/ ( rho −1) ]12   // r h o=c u t o f f r a t i o =V3 /V213   r h o = c / 1 0 0 * ( r - 1 ) + 1 ;

14   E T A d i e s e l = 1 - [ 1 / g / ( r ) ^ ( g - 1 ) ] * [ ( r h o ^ g - 1 ) / ( r h o - 1 ) ] ;

15

16   printf ( ’ The A i r s t an da rd e f f i c i e n c y o f d i e s e l c y c l ei s : %1 . 3 f o r %2 . 1 f p e r c e n t .   \n ’ ,ETAdiesel ,(

E T A d i e s e l * 1 0 0 ) ) ;

Scilab code Exa 5.18  Example 18

1   clc

2   clear

3   //DATA GIVEN4   L = 0 . 2 5 ;   // s t r o k e o f t he

e ng i n e i n m5   D = 0 . 1 5 ;   / / d i a m e t e r o f  

c y l i n d e r i n m

6   V 2 = 0 . 0 0 0 4 ;   / / c l e a r a n c ev ol um e i n mˆ 3

7   V s = ( % p i / 4 ) * D ^ 2 * L ;   / / s w ep t v ol um e i nmˆ3

8   V t = V s + V 2 ;   // t o t a l c y l i n d e rv ol um e i n mˆ 3

9   c = 5 ;   // f u e l i n j e c t i o nt ak es p l a c e a t ’ c ’ p er ce nt o f s t r o k e

10   V 3 = V 2 + c / 1 0 0 * V s ;   / / vo lu me a t p o i n to f c ut−o f f i n mˆ3

11   r h o = V 3 / V 2 ;   / / c u t−o f f r a t i o12   r = ( V s + V 2 ) / V 2 ;   / / c o m p r e s s i o nr a t i o

13

14   / / f o r a i r , gamma = 1. 4

74

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 76/137

15   g = 1 . 4 ;

1617   // A ir s ta nd ar d e f f i c i e n c y o f d i e s e l c y c l e E T A d i e s e l

=1 −[1/(r ) ̂ ( g−1) ] [ ( rh o ˆg −1)/ ( rho −1) ]18   E T A d i e s e l = 1 - [ 1 / g / ( r ) ^ ( g - 1 ) ] * [ ( r h o ^ g - 1 ) / ( r h o - 1 ) ] ;

19

20   printf ( ’ The E f f i c i e n c y o f d i e s e l e ng in e i s : %1 . 3 f  o r %2 . 1 f p e r c e n t .   \n ’ , E T A d i es e l , ( E T A d i e s e l * 1 0 0 ) ) ;

Scilab code Exa 5.19  Example 19

1   clc

2   clear

3   //DATA GIVEN4   r = 1 4 ;   / / c o m p re s s i on r a t i o5   / / f u e l c ut−o f f i s d el ay ed from 5−8%6   / / f o r a i r , gamma = 1. 47   g = 1 . 4 ;

8

9   // when f u e l i s cut−o f f a t 5%

10   c 1 = 5 ;11   r h o 1 = c 1 / 1 0 0 * ( r - 1 ) + 1 ;

12   // E f f i c i e n c y o f d i e s e l e ng i ne E TA d ie se l =1−[1/(r ) ̂ ( g−1) ] [ ( rh o ˆg−1)/ ( rho −1) ]

13   E T A d i e s e l 1 = 1 - [ 1 / g / ( r ) ^ ( g - 1 ) ] * [ ( r h o 1 ^ g - 1 ) / ( r h o1 - 1 ) ] ;

14

15   // when f u e l i s cut−o f f a t 8%16   c 2 = 8 ;

17   r h o 2 = c 2 / 1 0 0 * ( r - 1 ) + 1 ;

18   // E f f i c i e n c y o f d i e s e l e ng i ne E TA d ie se l =1−[1/(r ) ̂ ( g

−1) ] [ ( rh o ˆg−1)/ ( rho −1) ]19   E T A d i e s e l 2 = 1 - [ 1 / g / ( r ) ^ ( g - 1 ) ] * [ ( r h o 2 ^ g - 1 ) / ( r h o2 - 1 ) ] ;

20

21   E T A l o s s = ( E T A d i e s e l1 - E T A d i e s e l 2 ) * 1 0 0 ;

22

75

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 77/137

23   printf ( ’ The P er ce nt ag e l o s s i n e f f i c i e n c y due t o

d el ay i n f u e l cut−o f f i s : %1 . 1 f p e r ce n t .   \n ’ ,E T A l o s s ) ;

Scilab code Exa 5.20  Example 20

1   clc

2   clear

3   //DATA GIVEN

4   P m = 7 . 5 ;   // mean e f f e c t i v ep r e s s u r e i n ba r5   r = 1 2 . 5 ;   / / c o m p re s s i on r a t i o6   p 1 = 1 ;   / / i n i t i a l p r e s s u r e i n

b ar7

8   / / f o r a i r , gamma = 1. 49   g = 1 . 4 ;

10

11   / / mean e f f e c t i v e p r e s s u r e , Pm=p1∗ r ˆ g ∗ [ g ∗( r h o −1)−rˆ( 1−g ) ∗ ( r ho ˆg−1) ] / [ ( g−1) ∗ ( r −1) ]

12   / / we g e t , 0 . 3 4 6 ( r h o ) ̂ 1 . 4 −1. 4( rho ) +2.0 413   / /By t r i a l a nd e r r o r m ethod , we g e t14   r h o = 2 . 2 4 ;

15

16   c o = ( r h o - 1 ) / ( r - 1 ) * 1 0 0 ;   //% cut−o f f 17

18   printf ( ’ The P e r ce n t ag e c ut−o f f o f t h e c y c l e i s : %2. 2 f p e r c e n t .   \n ’ , c o ) ;

Scilab code Exa 5.21  Example 21

1   clc

2   clear

76

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 78/137

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 79/137

31

32   / / c u t−o f f r a t i o , c =( rho −1 ) / ( r −1)33   r h o = c / 1 0 0 * ( r - 1 ) + 1 ;

34   V 3 = r h o * V 2 ;

35   // a l t e r n a t i v e l y36   V 3 = c / 1 0 0 * V s + V c ;

37

38   / / f o r c o ns t an t p r e s su r e p r o c es s 2−339   //V3/T3=V2/T240   T 3 = T 2 / V 2 * V 3 ;

41

42   / / f o r i s e n t r o p i c p r o c e s s 3−4

43   // p3 ( V3ˆgamma)=p4 (V4ˆgamma)44   // ( V4/V)=V4/V2∗V2/V3=V1/V2∗V2/V3=r/rho45   p 4 = p 3 * ( ( r h o / r ) ^ g ) ;

46   // Als o (T4/T3) =(V3/V4) ˆ( g−1)47   // ( V4/V)=V4/V2∗V2/V3=V1/V2∗V2/V3=r/rho48   T 4 = T 3 * ( ( r h o / r ) ^ ( g - 1 ) ) ;

49   V 4 = V 1 ;

50

51   // A ir s ta nd ar d e f f i c i e n c y o f d i e s e l c y c l e E T A d i e s e l=1 −[1/(r ) ̂ ( g−1) ] [ ( rh o ˆg −1)/ ( rho −1) ]

52   E T A d i e s e l = 1 - [ 1 / g / ( r ) ^ ( g - 1 ) ] * [ ( r h o ^ g - 1 ) / ( r h o - 1 ) ] ;

53

54   / / mean e f f e c t i v e p r e s s u r e , Pm=p1∗ r ˆ g ∗ [ g ∗( r h o −1)−rˆ( 1−g ) ∗ ( r ho ˆg−1) ] / [ ( g−1) ∗ ( r −1) ] ;

55   P m = p 1 * r ^ g * [ g * ( r h o - 1 ) - r ^ ( 1 - g ) * ( r h o ^ g - 1 ) ] / [ ( g - 1 ) * ( r - 1 )

];

56

57   P = P m * 1 0 ^ 5 * V s / 1 0 ^ 3 * ( w c / 6 0 ) ;   / / Po we r o f  t he e n g in e i n kW

58

59   printf ( ’ ( i ) The P r e s s u r e , T e mp e ra t ur e a nd V ol um es

a t s a l i e n t p o i n t s i n t h e c y c l e a re :\ n ’ ) ;60   printf ( ’ At p o i n t 1 a r e : \ n ’ ) ;

61   printf ( ’ p1 : %1 . 1 f b a r . \ n ’ , p 1 ) ;

62   printf ( ’ V1 : %1 . 4 f mˆ 3 .\ n ’ , V 1 ) ;

63   printf ( ’ T1 : %3 . 0 f K.\ n ’ , T 1 ) ;

78

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 80/137

64   printf ( ’ At p o i n t 2 a r e : \ n ’ ) ;

65   printf ( ’ p2 : %2 . 2 f b a r . \ n ’ , p 2 ) ;66   printf ( ’ V2 : %1 . 7 f mˆ 3 .\ n ’ , V 2 ) ;

67   printf ( ’ T2 : %3 . 1 f K.\ n ’ , T 2 ) ;

68   printf ( ’ At p o i n t 3 a r e : \ n ’ ) ;

69   printf ( ’ p3 : %2 . 2 f b a r . \ n ’ , p 3 ) ;

70   printf ( ’ V3 : %1 . 6 f mˆ 3 .\ n ’ , V 3 ) ;

71   printf ( ’ T3 : %4 . 1 f K.\ n ’ , T 3 ) ;

72   printf ( ’ At p o i n t 4 a r e : \ n ’ ) ;

73   printf ( ’ p4 : %1 . 3 f b a r . \ n ’ , p 4 ) ;

74   printf ( ’ V4 : %1 . 4 f mˆ 3 .\ n ’ , V 4 ) ;

75   printf ( ’ T4 : %3 . 2 f K.\ n ’ , T 4 ) ;

76   printf ( ’ ( i i ) The T h e o r i t i c a l a i r s ta nd ar de f f i c i e n c y o f d i e s e l c y c l e i s : %1 . 3 f o r %2 . 1 f  p e r c e n t .   \n ’ , E T A d i es e l , ( E T A d i e s e l * 1 0 0 ) ) ;

77   printf ( ’ ( i i i ) The Mean e f f e c t i v e p r e s s u r e i s : %1 . 3 f  bar .   \n ’ , P m ) ;

78   printf ( ’ ( i v ) The Po wer d e v e l o p e d i s : %2 . 2 f kW . ’ , P ) ;

79

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 81/137

Chapter 6

Steam Boilers

Scilab code Exa 6.1  Example 1

1   clc

2   clear

3   //DATA GIVEN4   L C V = 4 4 7 0 0 ;   //LCV o f f u e l i n kJ5   a f r n = 2 0 ;   // a i r p a rt s =20 i n a i r f u e l

m i x t u r e

6   a f r d = 1 ;   // f u e l p a r t s =1 i n a i r f u e lm i x t u r e

7   C p g = 1 . 0 8 ;   / / a vg s p e c i f i c h e a t i n kJ /kgK

8   T 1 = 3 8 + 2 7 3 ;   // b o i l e r room temp . i n K9

10   / / h e at o f c om bu st io n=h e at o f g a s e s11   // 1∗44700=Mg∗Cpg ∗ ( T2−T1 )12   T 2 = a f r d * L C V / ( a f r n + a f r d ) / C p g + T 1 ;

13

14   printf ( ’ The Maximum temp . T2 a t t a i n e d i n t h ef ur na c e o f t h e b o i l e r i s : \ n %5 . 0 f K el v in ’ , T 2 ) ;

15   printf ( ’ o r %5 . 0 f d e gr e e c e l s i u s . \ n ’  , ( T2 - 2 7 3 ) ) ;

80

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 82/137

Scilab code Exa 6.2  Example 2

1   clc

2   clear

3   //DATA GIVEN4   M s = 5 . 4 ;   // mass o f s team u se d i n kg /

kWh5   p = 5 0 ;   // p r e s s u r e o f stea m i n b ar6   T s u p = 3 5 0 ;   / / temp . o f s te am i n d eg

c e l s i u s7   e t a = 8 2 ;   // b o i l e r e f f i c i e n c y i n %8   T f w = 1 5 0 ;   / / f e e d w at er temp . i n d eg c e l

; s i u s9   C = 2 8 1 0 0 ;   / / c a l o r i f i c v a l u e o f c o a l i n

kJ10   r a t e = 5 0 0 ;   // c o s t o f c o a l / t on ne i n Rs11

12   // b o i l e r e f f i c i e n c y i s g i v e n by , e ta=Ms∗( hsup−hf 1 ) /(Mf ∗C)

13   / / f rom stea m t a bl e , a t 45 b ar and 35 0 deg c e l s i u s ,h su p = 3 0 6 8. 4 k J / kg

14   h = 3 0 6 8 . 4 ;   / / e n t h a l p y a t45 b a r and 350 deg c e l s i u s

15   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;   // h f 1 a t 1 50deg c e l s i u s i n k J /kg

16

17   // s ub s . t he se i n eq . o f b o i l e r e f f i c i e n c y18   M f = M s * ( h - h f 1 ) / ( ( e t a / 1 0 0 ) * C ) ;   // mass o f c o a l

r e q u i r e d i n kg /kWh19   c o s t = ( M f / 1 0 0 0 ) * r a t e * 1 0 0 ;   // c o s t o f c o a l

i n pa i s a /kWh20

21   printf ( ’ ( i ) The mass o f c o a l r e q ui r e d i s : %5 . 3 f kg/kWh.   \n ’ , M f ) ;

81

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 83/137

22   printf ( ’ ( i i ) The T ot al c o s t o f f u e l ( c o a l ) i s : %2 . 1

f pa i s a /kWh.   \n ’ , c o s t ) ;23

24   //NOTE: in te xt book25   / / i n q u e s t i on p r e s s ur e i s g i ve n a s =50 ba r26   / / but from steam t a b l e e nt ha l p y i s f o un d a t 45 b ar

Scilab code Exa 6.3  Example 3

1   clc2   clear

3   //DATA GIVEN4   M c = 1 2 5 0 ;   // q u an t it y o f c o a l i n kg

co ns um ed i n 2 4 h o u r s5   M w = 1 3 0 0 0 ;   // m ass o f w at er

e va p or a te d i n kg6   M E P s = 7 ;   // mean e f f e c t i v e p r e s s ur e

o f steam i n b ar7   T f w = 4 0 ;   / / f e e d w a te r temp . i n d eg

c e l s i u s

8   h = 2 5 7 0 . 7 ;   // e n th a lp y o f s tea m a t 7b ar i n kJ / kg

9   C = 3 0 0 0 0 ;   / / c a l o r i f i c v a l u e o f c o a li n kJ / kg

10

11   M a = M w / M c ;   // mass o f w at er a c t u a l l ye va po ra t e d p er kg o f f u e l

12   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;

13   h f g = 2 2 5 7 ;   / / i n kJ / k g14   M e = M a * ( h - h f 1 ) / h f g ;   / / i n k g

15   e t a = M a * ( h - h f 1 ) / C ;   // b o i l e r e f f i c i e n c y16

17   printf ( ’ ( i ) The e q ui v a l e n t e v a p o r a t i o n p er kg o f  c o a l , Me i s : %5 . 3 f kg .   \n ’ , M e ) ;

18   printf ( ’ ( i i ) The e f f i c i e n c y o f b o i l e r , e t a i s : %1

82

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 84/137

. 3 f o r %2 . 1 f p e r ce n t . ’ , e t a , e t a * 1 0 0 ) ;

Scilab code Exa 6.4  Example 4

1   clc

2   clear

3   //DATA GIVEN4   p = 1 2 ;   / /mean s te am p r e s s u r e i n

b ar

5   M s = 4 0 0 0 0 ;   / / mass o f s tea m g e n e r a t edi n kg6   x = 0 . 8 5 ;   // mean d r yn e s s f r a c t i o n7   T f w = 3 0 ;   / /mean f e e d wa te r temp . i n

deg c e l s i u s8   M c = 4 0 0 0 ;   // mass o f c o a l u se d i n kg9   C = 3 3 4 0 0 ;   / / c a l o r i f i c v a l u e o f c o a l

i n kJ / kg10

11   // f rom stea m t a bl e , c o r r es p o n d i ng t o 12 bar ,12   h f = 7 9 8 . 4 ;   / / i n k J / kg

13   h f g = 1 9 8 4 . 3 ;   / / i n k J / kh14   h = h f + x * h f g ;   / / i n k j / k g15   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;   // h ea t o f f e e d w a te r i n kJ /

kg16

17   F e = ( h - h f 1 ) / 2 2 5 7 ;   // f a c t o r o f e q u i v al e n te v a p o r a t i o n , Fe

18   M a = M s / M c ;   // p er kg o f f u e l19   M e = M a * ( h - h f 1 ) / 2 2 5 7 ;   // ( kg o f s tea m ) / ( kg o f f u e l

)

20   e t a = M a * ( h - h f 1 ) / C ;   // e f f i c i e n c y o f b o i l e r21

22   printf ( ’ ( i ) The F ac to r o f e q u i v a l e n t t em er at ur e , Fei s : %5 . 3 f   \n ’ , F e ) ;

23   printf ( ’ ( i i ) The E q ui v a le n t e v a p or a t i on from and

83

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 85/137

a t 100 deg c e l s i u s , Me i s : %5 . 2 f ( kg o f steam ) / (

kg o f c o a l ) . \ n ’ , M e ) ;24   printf ( ’ ( i i i ) The E f f i c i e n c y o f b o i l e r i s : %5 . 4 f ’ ,

e t a ) ;

25   printf ( ’ o r %5 . 2 f p e r c e n t .   \n ’ , e t a * 1 0 0 ) ;

Scilab code Exa 6.5  Example 5

1   clc

2   clear3   //DATA GIVEN4   M = 1 8 0 0 0 ;   // mass o f stea m g e n er a t ed i n

k g / h r5   p = 1 2 . 5 ;   // s tea m p r e s s u r e i n b ar6   x = 0 . 9 7 ;   // q u a l i t y o f stea m7   T f w = 1 0 5 ;   // f e e d w at er temp . i n deg

c e l s i u s8   M f = 2 0 4 0 ;   // r a t e o f c o a l f i r i n g i n kg /

hr9   C = 2 7 4 0 0 ;   / / h i g h r e r c a l o r i f i c v a l u e (

HCV) o f c o a l i n kJ / kg10

11   // f rom stea m t a bl e , c o r r es p o n d i ng t o 1 2 . 5 bar ,12   h f = 8 0 6 . 7 ;   / / i n k J / kg13   h f g = 1 9 7 7 . 4 ;   / / i n k J / kg14   h = h f + x * h f g ;   / / i n k J / kg15   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;   // h ea t of f e e d w a te r i n kJ /

kg16

17   // h ea t r a t e o f t he b o i l e r = h ea t s u pp l i e d p er hour

18   h e a t r a t e = M * ( h - h f 1 )   // h ea t r a te o f b o i l e r19   M a = M / M f ;   // i n kg p er kg o f f u e l20   M e = M a * ( h - h f 1 ) / 2 2 5 7 ;   // ( kg o f s team ) / ( kg o f f u e l )21   e t a = M a * ( h - h f 1 ) / C ;   // t he rm al e f f i c i e n c y22

84

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 86/137

23   printf ( ’ ( i ) The Heat r a t e o f b o i l e r i s : %1 . 4 e kJ /h .

\n ’ , h e a t r a t e ) ;24   printf ( ’ ( i i ) The E q u i v a le n t e v a p or a t i on , Me i s : %5. 3 f ( k g o f s team ) / ( kg o f f u e l ) .   \n ’ , M e ) ;

25   printf ( ’ ( i i i ) The Therma l e f f i c i e n c y i s : %5 . 4 f ’ ,eta

) ;

26   printf ( ’ o r %5 . 2 f p e r c e n t .   \n ’ , e t a * 1 0 0 ) ;

Scilab code Exa 6.6  Example 6

1   clc

2   clear

3   //DATA GIVEN4   M w = 5 9 4 0 ;   / / mass o f w at er e v a po r a te d kg / h r5   M c = 6 7 5 ;   // mass o f c o a l b ur nt i n kg / hr6   C = 3 1 6 0 0 ;   // lo we r c a l o r i f i c va lu e (LCV) of  

c o a l i n kJ /kg7   p 1 = 1 4 ;   // p r e s s ur e o f steam a t b o i l e r

s to p v al ve i n ba r8   T e 1 = 3 2 ;   // temp . o f f e e d w at er e n t e r i n g

e co no mi se r i n deg c e l s i u s9   T e 2 = 1 1 5 ;   // temp . o f f e e d w at er l e a v i n g

e co no mi se r i n deg c e l s i u s10   x = 0 . 9 6 ;   // d r yn e s s f r a c t i o n o f stea m

e n t e r i n g s u p e r h e a t e r11   T s u p = 2 6 0 ;   / /temp . o f s te am l e a v i n g

s u pe r h e a t er i n deg c e l s i u s12   C p = 2 . 3   / / s p e c i f i c h e a t o f s u p e r h e a t e d

steam13

14   h f 1 = 4 . 1 8 * ( T e 2 - T e 1 ) ;   // hea tu t i l i s e d by 1 kg o f f e e d w a t e r i n e co no mi se r15   // f rom stea m t a bl e , c o r r es p o n d i ng t o 14 bar ,16   T s = 1 9 5 ;

17   h f = 8 3 0 . 1 ;

85

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 87/137

18   h f g = 1 9 5 7 . 7 ;

19   h b o i l e r = ( h f + x * h f g ) - h f 1 ;   // hea tu t i l i s e d by 1 kg o f f e ed w a t e r i n b o i l e r20   h s u p e r h e a t e r = ( 1 - x ) * h f g + C p * ( T s u p - T s ) ;   // hea t

u t i l i s e d by 1 kg o f f ee d w a t e r i n s u p e r he at e r21   M a = M w / M c ;   / / i n kg p e r

kg o f f u e l22   P e = h f 1 / C * M a * 1 0 0 ;   / /% o f h e at

u t i l i s e d i n e co no mi se r23   P b = h b o i l e r / C * M a * 1 0 0 ;   / /% o f h e at

u t i l i s e d i n b o i l e r24   P s = h s u p e r h e a t e r / C * M a * 1 0 0 ;   / /% o f h e at

u t i l i s e d i n s up e r he a t e r25   h t o t a l = h f 1 + h b o i l e r + h s u p e r h e a t e r ;   // t o t a l h ea t

a bs or be d i n kg o f w at er26   e t a = M a * h t o t a l / C ;   / / o v e r a l l

e f f i c i e n c y o f b o i l e r p la nt27

28   printf ( ’ ( i ) The P er ce nt ag e o f h ea t u t i l i s e d i nE c on o mi s er i s : %5 . 2 f p e r c e n t . \ n ’ , P e ) ;

29   printf ( ’ The P e r c e n t a g e of he a t u t i l i s e d i nB o i l e r i s : %5 . 2 f p e r ce n t .\ n ’ , P b ) ;

30   printf ( ’ The P e r c e n t a g e of he a t u t i l i s e d i nS u p e r he a t e r i s : %5 . 2 f p e r c e n t .\ n ’ , P s ) ;

31   printf ( ’ ( i i ) The O v e r a l l E f f i c i e n c y o f b o i l e r p l a nti s : %5 . 4 f ’ , e t a ) ;

32   printf ( ’ o r %5 . 2 f p e r c e n t .   \n ’ , e t a * 1 0 0 ) ;

Scilab code Exa 6.7  Example 7

1   clc2   clear

3   //DATA GIVEN4   C = 2 9 9 1 5 ;   / / c a l o r i f i c v a l u e o f c o a l i n kJ /

kg

86

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 88/137

5   M w = 9 . 1 ;   // mass o f f e ed w a te r p er kg o f  

dr y c o a l i n kg6   M e = 9 . 6 ;   / / e q u i v a l e n t e v a p o r a t i o n f ra omand a t 100 deg c e l s i u s p e r kg o f dry c o a l i n k g

7   T e = 1 2 ;   // temp . o f f e e d w at er t oe co no mi se r i n deg c e l s i u s

8   T b = 1 0 5 ;   // temp . o f f e ed w at er t o b o i l e ri n d eg c e l s i u s

9   T a = 1 3 ;   / /temp . o f a i r10   T f g = 3 7 0 ;   // temp . o f f l u e g a s es e n t e r i n g

e c o n o m i s e r11   M f g = 1 8 . 2 ;   // mass o f f l u e g a s e s e n t e r i n g

e co no mi se r p er kg o f c o a l12   C p = 1 . 0 4 6 ;   / / mean s p e c i f i c h e a t o f f l u e

g a s e s13

14   h b = M e * 2 2 5 7 ;   // h ea t s u p p l i e d f o r s tea mg e n e r a t i o n i n kJ

15   E T A b = h b / C ;   // b o i l e r e f f i c i e n c y16   h f l u e = M f g * C p * ( T f g - T a ) ;   // h ea t i n t h e f l u e g as e

p er kg o f dr y c o a l e n t e r i n g e co no mi se r17   h e = M w * 4 . 1 8 4 * ( T b - T e ) ;   // h ea t u t i l i s e d i n

e c o n o m i s e r18   E T A e = h e / h f l u e ;   // e co n om i se r e f f i c i e n c y19   h t o t a l = h b + h e ;   // t o t a l h ea t a bs o rb ed i n

kg o f w a te r20   E T A = h t o t a l / C ;   // b o i l e r p la nt e f f i c i e n c y21

22   printf ( ’ ( i ) The B o i l e r e f f i c i e n c y i s : %5 . 3 f ’ , E T A b )

;

23   printf ( ’ o r %2 . 1 f p e r c e n t .   \n ’ , E T A b * 1 0 0 ) ;

24   printf ( ’ ( i i ) The E co no mi se r e f f i c i e n c y i s : %5 . 3 f ’ ,

E T A e ) ;

25   printf ( ’ o r %2 . 2 f p e r c e n t .   \n ’ , E T A e * 1 0 0 ) ;26   printf ( ’ ( i i i ) The O v er a l l E f f i c i e n c y o f b o i l e r p l an t

i s : %5 . 3 f ’ , E T A ) ;

27   printf ( ’ o r %2 . 1 f p e r c e n t .   \n ’ , E T A * 1 0 0 ) ;

87

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 89/137

Scilab code Exa 6.8  Example 8

1   clc

2   clear

3   //DATA GIVEN4   M s = 2 0 0 0 ;   // r a t e o f s tea m p r o du c ti o n i n kg

/ hr5   x = 1 ;   // q u a l i t y o f s team6   p = 1 0 ;   // steam p r e s s ur e i n b ar7   T f w = 1 1 0 ;   // f e e d w at er temp . i n d eg

c e l s i u s8   M f = 2 2 5 ;   // r a t e o f c o a l f i r i n g i n kg / h r9   C = 3 0 1 0 0 ;   / / c a l o r i f i c v a l u e o f c o a l i n kJ /

kg10   P u c = 1 0 ;   / /% o f u nb ur nt c o a l11

12   // f rom stea m t a bl e , c o r r es p o n d i ng t o 10 bar ,13   h = 2 7 7 6 . 2 ;   / / i n k J / kg14   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;   // h ea t c o n ta i n ed i n 1 kg

o f f e e d w a t e r b e f o r e e n t e r i n g b o i l e r i n k J /kg15   h t o t a l = h - h f 1   // t o t a l h ea t g i ve n t o

p r o du ce 1 kg o f steam i n b o i l e r i n kJ /kg16   M c = M f * ( 1 0 0 - P u c ) / 1 0 0 ;   // mass o f c o a l a c t u a l l y

b ur n t i n kg17   M a = M s / M c ;   / / ( k g o f s te am ) / ( k g o f  

f u e l )18   E T A b = M a * ( h - h f 1 ) / C ;   // t he rm al e f f i c i e n c y o f  

b o i l e r19   E T A c = ( M s / M f ) * ( h - h f 1 ) / C ;   // t he rm al e f f i c i e n c y o f  

b o i l e r and g r a t e co mb ined20

21   printf ( ’ ( i ) The Thermal e f f i c i e n c y o f t h e b o i l e r i s: %5 . 3 f ’ , E T A b ) ;

22   printf ( ’ o r %5 . 2 f p e r c e n t .   \n ’ , E T A b * 1 0 0 ) ;

88

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 90/137

23   printf ( ’ ( i i ) The Thermal e f f i c i e n c y o f t he b o i l e r

and g r a t e co mb in ed i s : %5 . 3 f ’ , E T A c ) ;24   printf ( ’ o r %5 . 2 f p e r c e n t .   \n ’ , E T A c * 1 0 0 ) ;

Scilab code Exa 6.9  Example 9

1   clc

2   clear

3   //DATA GIVEN

4   M a = 7 . 5 ;   // mass o f s tea m g e n er a t ed p er kgo f c o a l5   p = 1 1 ;   // steam p r e s s ur e i n b ar6   T f w = 7 0 ;   / /temp . o f f e e d w at er temp . i n

deg c e l s i u s7   e t a = 7 5 ;   // e f f i c i e n c y o f b o i l e r i n %8   F e = 1 . 1 5 ;   // f a c t o r o f e v ap o ra t i o n9   C p s = 2 . 3 ;   / / s p e c i f i c h e a t o f s te a m i n k J /

kgK10

11   // f rom stea m t a bl e , c o r r es p o n d i ng t o 11 bar ,

12   h f = 7 8 1 . 4 ;   / / i n k J / kg13   h f g = 1 9 9 8 . 5 ;   / / i n k J / kg14   T s = 1 8 4 . 1 + 2 7 3 ;   / / i n K15   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;

16

17   / / F a c t o r o f e v a p o r a t i o n , Fe =[{ h f+hf g+Cps∗(Tsup−Ts )}−h f 1 ] / 2 2 5 7

18   T s u p = [ F e * 2 2 5 7 + h f 1 - h f - h f g ] / C p s + T s ;   / / Tsup i n K19   x = ( T s u p - T s ) ;   / / d e g r e e o f  

s up er he at i n deg . c e l s i u s

2021   // B o i l e r e f f i c i e n c y e t a=Ma∗ ( h−hf 1 ) /C ;22   h = [ h f + h f g + C p s * ( T s u p - T s ) ] ;

23   C = M a * ( h - h f 1 ) / ( e t a / 1 0 0 ) ;   // c a l o r i f i cv al ue o f c o al i n k J/ kg

89

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 91/137

24   M e = M a * ( h - h f 1 ) / 2 2 5 7 ;   //

E q ui v al e nt e v a po r a t io n im kg25

26   printf ( ’ ( i ) The T em pe ra tu re o f s te am g e n e r a t i o n ,Tsup i s : %5 . 1 f K\n ’ , T s u p ) ;

27   printf ( ’ The De g r e e o f s u p er h ea t i s : %5 . 1 f d egc e l s i u s .\ n ’ , x ) ;

28   printf ( ’ ( i i ) The c a l o r i f i c v a l u e o f c o a l , C i s : %5. 0 f k J / kg .   \n ’ , C ) ;

29   printf ( ’ ( i i i ) The E q u i v a l e n t e v a p o r a t i o n , Me i s : %5. 3 f k g .   \n ’ , M e ) ;

Scilab code Exa 6.10  Example 10

1   clc

2   clear

3   //DATA GIVEN4   p = 1 3 ;   // s team p r e s s ur e i n b ar5   d s = 7 7 ;   // d e gr e e o f s u p er h ea t i n

deg . c e l s i u s

6   T f w = 8 5 ;   // temp . o f f e e d w at er i ndeg . c e l s i u s

7   M w = 3 0 0 0 ;   / / mass o f w at ere va p or a te d i n kg / hr

8   M c = 4 1 0 ;   // c o a l f i r e d9   M a s h = 4 0 ;   // mass o f a sh i n kg / hr

10   P c a = 9 . 6 ;   //% o f c o mb u s ti b le i nas h

11   P m = 4 . 5 ;   //% o f m oi st ur e i n c o a l12   C = 3 0 5 0 0 ;   // c a l o r i f i c v aa l u e o f  

dr y c o al p e r k g13   C p s = 2 . 1 ;   // s p e c i f i c he at of  s u p e r h e a t e d s te am i n kJ / kgK

14

15

90

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 92/137

16   // f rom stea m t a bl e , c o r r es p o n d i ng t o 13 bar ,

17   h f = 8 1 4 . 7 ;   / / i n k J / kg18   h f g = 1 9 7 0 . 7 ;   / / i n k J / kg19   T s = 1 9 1 . 6 ;   // i n deg . s e l s i u s20   h = h f + h f g + C p s * ( d s ) ;

21   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;

22   h t o t a l = h - h f 1 ;   // t o t a l h ea t s u p pl i e d t op ro du ce 1 kg o f stea m

23

24   M c 1 = M c * ( 1 - P m / 1 0 0 ) ;   // mass o f dry c o al i n kg25   M a = M w / M c 1 ;

26   E T A b = M a * ( h - h f 1 ) / C ;   // e f f i c i e n c y o f b o i l e r

p l an t i n c l u d i n g s u p er h e at e r27

28   M c o m = M a s h * P c a / 1 0 0 ;   // Mass o f c o mb u s ti b l e i na sh p er hr

29   / / t h e c om bu st ib l e p r e s en t i n as h i s p r a c t i c a l l yc ar bo n and i t s v a lu e may b e t ak en a s 3 38 /6 0 kJ / kg

30   // h ea t a c t u a l l y s u p pl i e d pr hr=h ea t o f dr y c oa l−h e a to f c om b us t i bl e i n a sh

31   H s u p p = M c 1 * C - M c o m * 3 3 8 6 0 ;   // h ea t a c t u a l l y s u p p l i e dpr hr

32   H u s e = M w * ( h - h f 1 ) ;  // h ea t u s e f u l l y u t i l i s e di n b o i l e r pr h r

33

34   E T A c = H u s e / H s u p p ;   // e f f i c i e n c y o f b o i l e ra nd f u r n a c e c om bi ne d

35

36   printf ( ’ ( i ) The E f f i c i e n c y o f b o i l e r p la nti n c l u d i n g s u p e r h ea t e r i s : %5 . 3 f o r %2 . 1 f p e r ce n t .\n ’ , E T A b , ( E T A b * 1 0 0 ) ) ;

37   printf ( ’ ( i i ) The E f f i c i e n c y o f t he b o i l e r andf u r n a c e c om bi ned i s : %5 . 3 f o r %2 . 1 f p e r c e n t .   \n ’ ,

E T A c , ( E T A c * 1 0 0 ) ) ;

91

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 93/137

Scilab code Exa 6.11  Example 11

1   clc

2   clear

3   //DATA GIVEN4   M s = 5 0 0 0 ;   // mass o f stea m g e n er a t ed i n

k g / h r5   M f = 7 0 0 ;   // r a t e o f c o a l f i r i n g i n kg /

hr6   C = 3 1 4 0 2 ;   // h i g h e r c a l o r i f i c va lu e (HCV

) o f c o a l i n k J / kg7   x = 0 . 9 2 ;   // q u a l i t y o f stea m

8   p = 1 2 ;   // s tea m p r e s s u r e i n b ar9   T f w = 4 5 ;   // f e e d w at er temp . i n deg

c e l s i u s10

11   // f rom stea m t a bl e , c o r r es p o n d i ng t o 12 bar ,12   h f = 7 9 8 . 4 ;   / / i n k J / kg13   h f g = 1 9 8 4 . 3 ;   / / i n k J / kg14   h = h f + x * h f g ;   / / i n k J / kg15   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;   // h ea t of f e e d w a te r i n kJ /

kg16   M a = M s / M f ;

  // i n kg p er kg o f f u e l17   M e = M a * ( h - h f 1 ) / 2 2 5 7 ;   // ( kg o f s team ) / ( kg o f f u e l )18   e t a = M a * ( h - h f 1 ) / C ;   // t he rm al e f f i c i e n c y19

20   printf ( ’ ( i ) The E q u i v al e n t e v a po r a t io n , Me i s : %5 . 3f ( k g o f s team ) / ( kg o f c o a l ) .   \n ’ , M e ) ;

21   printf ( ’ ( i i ) The B o i l e r e f f i c i e n c y i s : %5 . 3 f o r %2. 1 f p e r c e n t .   \n ’ , e t a , e t a * 1 0 0 ) ;

Scilab code Exa 6.12  Example 12

1   clc

2   clear

92

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 94/137

3   //DATA GIVEN

4   h s u p = 3 3 7 3 . 7 ;   / / e n t h a l p y o f s te am ( a t10 0 bar , 5 0 0 deg . c e l s i u s ) i n kJ / kg5   h f 1 = 6 7 7 ;   // e n th a lp y o f f e e d w at er

( a t i n l e t temp . 160 deg . c e l s i u s ) i n kJ /kg6   h f = 1 4 0 7 . 6 5 ;   // e n n th a l py o f s a t u r a t e d

l i q u i d a t 100 ba r i n kJ /kg7   h g = 2 7 2 4 . 7 ;   // e n n th a l py o f s a t u r a t e d

va po ut a t 10 0 b ar i n kJ / kg8   M s = 1 0 0 0 0 0 ;   // r a t e o f s te am

g e n e r a t i o n i n kg / hr9   e t a = 8 8 ;   // e f f i c i e n c y o f steam

g e n e r a t i o n10   C = 2 1 0 0 0 ;   / / c a l o r i f i c v a l u e o f f u e l

i n kJ / kg11

12   / / e t a =( h e a t a b s o r be d by s te am p e r h r ) / ( h e a t a dd ed byf u e l p er h ou r )

13   m = M s * ( h s u p - h f 1 ) / ( C * ( e t a / 1 0 0 ) ) ;   / / f u e l b u rn i ngr a t e i n kg / hr

14   h t o t a l = h s u p - h f 1 ;   // t o t a l h ea ts u p p l i e d t o stea m f o rm a ti o n

15   P e c = ( h f - h f 1 ) / h t o t a l ;  / /% o f h e ata b so r be d i n e c o n om i s e r

16   P e v = ( h g - h f ) / h t o t a l ;   / /% o f h e ata bs o rb ed i n e v a po r a to r

17   P s = ( h s u p - h g ) / h t o t a l ;   / /% o f h e ata bs o rb ed i n s u p e r h ea t e r

18

19   printf ( ’ ( i ) The F ue l b u rn i ng r a t e , m i s : %5 . 1 f kJ /h.   \n ’ , m ) ;

20   printf ( ’ ( i i ) The P er c en t ag e o f h ea t a bs o rb ed i ne c o n om i s e r i s : %5 . 4 f o r %5 . 2 f p e r c e n t .\ n ’ , P e c , (

P e c * 1 0 0 ) ) ;21   printf ( ’ The P e r c e n t a g e o f he a t ab s o r b e d i n

e v a p o r a t o r i s : %5 . 4 f o r %5 . 2 f p e r c e n t .\ n ’ , P e v , (

P e v * 1 0 0 ) ) ;

22   printf ( ’ The P e r c e n t a g e o f he a t ab s o r b e d i n

93

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 95/137

s u p e r h e a t e r i s : %5 . 4 f o r %5 . 2 f p e r c e n t . \ n ’ , P s , ( P s

* 1 0 0 ) ) ;

Scilab code Exa 6.13  Example 13

1   clc

2   clear

3   //DATA GIVEN4   //BOILER

5   M w = 2 0 6 0 ;   // mass o f f e e d w at er6   M c = 2 2 7 ;   // mass o f c o a l s u p p li e d i n kg / hr7   C = 3 0 0 0 0 ;   / / c a l o r i f i c v a l u e o f c o a l i n kJ /

kg8   h s = 2 7 5 0 ;   / / e n t ha l p y o f s te am p ro du ce d i n

k J /k g9   h f w = 3 9 8 ;   // e n th a lp y o f f e e d w at er

10   //ECONOMISER11   T w i n = 1 5 ;   // temp . o f f e e d w at er e n t e r i n g

e co no mi se r i n deg c e l s i u s12   T w o u t = 9 5 ;   // temp . o f f e e d w at er l e a v i n g

e co no mi se r i n deg c e l s i u s13   T g o u t = 1 8 ;   / / a t m o s p h e r i c t em p .14   T g i n = 3 7 0 ;   // temp . o f e n t e r i n g f l u e g a s es15   M f g = 4 0 7 5 ;   // mass o f f l u e g a s e s16   // assumi ng Cpw and Cpg ,17   C p w = 4 . 1 8 7 ;

18   C p g = 1 . 0 1 ;

19

20   E T A b = M w * ( h s - h f w ) / ( M c * C ) ;

// e f f i c i e n c y o f  

b o i l e r21   E T A e = M w * C p w * ( T w o u t - T w i n ) / ( M f g * C p g * ( T g i n - T g o u t ) ) ;

// e f f i c i e n c y o f e co no mi se r22

23   printf ( ’ ( i ) The B o i l e r e f f i c i e n c y i s : %5 . 4 f o r %2 . 2

94

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 96/137

f p e r ce n t .   \n ’ , E T A b , ( E T A b * 1 0 0 ) ) ;

24   printf ( ’ ( i i ) The E co no mi se r e f f i c i e n c y i s : %5 . 3 f o r%2 . 1 f p e r c e n t .   \n ’ , E T A e , ( E T A e * 1 0 0 ) ) ;

Scilab code Exa 6.14  Example 14

1   clc

2   clear

3   //DATA GIVEN

4   T f w = 5 0 ;   / /mean f e e d w at er temp . i n d egc e l s i u s5   p = 5 ;   / /mean s te am p r e s s u r e i n b ar6   x = 0 . 9 5 ;   // d r yn e s s f r a c t i o n o f stea m7   M c = 6 0 0 ;   / / c o a l c o ns u mp t io n kg / h r8   C = 3 0 4 0 0 ;   / / c a l o r i f i c v a l u e o f c o a l i n kJ /

kg9   M s = 4 8 0 0 ;   // f e ed w at er s u p p l i e d t o b o i l e r

i n kg / h r10

11   // f rom stea m t a bl e , c o r r es p o n d i ng t o 12 bar ,

12   h f = 6 4 0 . 1 ;   / / i n k J / kg13   h f g = 2 1 0 7 . 4 ;   / / i n k J / kh14   h = h f + x * h f g ;   / / i n k j / k g15   h f 1 = 4 . 1 8 * ( T f w - 0 ) ;

16

17   M a = M s / M c ;   // i n kg p e r kg o f f u e l18   M e = M a * ( h - h f 1 ) / 2 2 5 7 ;   // ( kg o f stea m ) / ( kg o f f u e l )19

20   printf ( ’ The E q ui v a le n t e v a p or a t i on fro m and a t 1 00deg c e l s i u s , Me i s : %5 . 3 f ( k g o f s team ) / ( kg o f  

c o al ) .\ n ’ , M e ) ;

95

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 97/137

Chapter 7

Internal Combustion Engines

Scilab code Exa 7.1  Example 1

1   clc

2   clear

3   //DATA GIVEN4   P m i = 6 ;   // mean e f f e c t i v e

p r e s s u r e i n ba r5   N = 1 0 0 0 ;   / / e n g i n e s p ee d i n R . P .

M.6   D = 0 . 1 1 ;   // d i am et er o f p i s t o n

i n m7   L = 0 . 1 4 ;   // s t r o k e l e ng t h i n m8   n = 1 ;   // no . o f c y l i n d e r s9   k = 1 ;   / / f o r 2− s t r o k e

c y l i n d e r10

11   // INDICTED POWER , I . P. = ( n∗PMI∗ l ∗A∗N∗k ∗10) /6 kW12   A = ( % p i / 4 ) * ( D ^ 2 ) ;

13   I P = ( n * P m i * L * A * N * k * 1 0 ) / 6 ;14

15   printf ( ’ The I n d i c t e d Power d e v e l o p e d i s : %2 . 1 f kW. ’ ,

I P ) ;

96

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 98/137

Scilab code Exa 7.2  Example 2

1   clc

2   clear

3   //DATA GIVEN4   //L=1.5D5   n = 4 ;   // no . o f c y l i n d e r s6   P = 1 4 . 7 ;   / / po wer d e v el o p e d i n

kW7   N = 1 0 0 0 ;   / / e n g i n e s p ee d i n R . P .

M.8   P m i = 5 . 5 ;   // mean e f f e c t i v e

p r e s s u r e i n ba r9   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r10

11   // INDICTED POWER, I . P. = ( n∗PMI∗ l ∗A∗N∗k ∗10) /6 kW12   //A=(p i /4 ) ∗Dˆ2 ,13   //L=1.5D,

14   D = ( ( 6 * P ) / ( 1 0 * k * N * n * P m i * 1 . 5 * ( % p i / 4 ) ) ) ^ ( 1 / 3 ) ;   //b or e d ia me te r i n m

15   L = 1 . 5 * D ;   //l e n gt h o f s t r o k e i n m

16

17   printf ( ’ The B or e d i a m e t e r i s : %5 . 2 f mm. \ n ’  , ( D * 1 0 0 0 ) )

;

18   printf ( ’ The S t o ke l e n g t h i s : %5 . 2 f mm. \ n ’  , ( L * 1 0 0 0 ) )

;

Scilab code Exa 7.3  Example 3

1   clc

97

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 99/137

2   clear

3   //DATA GIVEN4   D b = 0 . 6 ;   / / d i a me t er o f b ra k ew he el i n m

5   d = 0 . 0 2 6 ;   // d i am et er o f r op e i nm

6   W = 2 0 0 ;   // d ead l o ad on t heb ra ke i n N

7   S = 3 0 ;   / / s p r i n g b a l a n c er e a d i ng i n N

8   N = 4 5 0 ;   / / e n g i n e s p ee d i n R . P .M.

910   // Br ak e P ow er , B. P . = (W−S ) ( p i ) (Db+d )N/ ( 6 0∗1 0 0 0 ) kW11   B P = ( W - S ) * ( % p i ) * ( D b + d ) * N / ( 6 0 * 1 0 0 0 ) ;

12

13   printf ( ’ The B ra k e Power , B . P . i s : %2 . 1 f kW.\ n ’ , B P ) ;

Scilab code Exa 7.4  Example 4

1   clc2   clear

3   //DATA GIVEN4   T = 1 7 5 ;   / / t o r q ue d ue t o b ra k e l o a d

in Nm5   N = 5 0 0 ;   / / e n g i n e s p e ed i n R . P .M.6

7   / / B r a k e P owe r , BP = ( 2∗ p i )NT/( 60 ∗1 0 0 0 ) kW8   B P = ( 2* % p i )* N * T / (6 0 *1 0 00 ) ;

9

10   printf ( ’ The B ra k e Power , B . P . i s : %4 . 2 f kW.\ n ’ , B P ) ;

Scilab code Exa 7.5  Example 5

98

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 100/137

1   clc

2   clear3   //DATA GIVEN4   D = 0 . 3 ;   / / b o re o f e n g i n e

c y l i n d e r i n m5   L = 0 . 4 5 ;   // s t r o k e l e ng t h i n m6   N = 3 0 0 ;   / / e n g i n e s p ee d i n R . P .

M.7   P m i = 6 ;   // mean e f f e c t i v e

p r e s s u r e i n ba r8   N B L = 1 . 5 ;   / / Net b ra k e l o a d (W−S )

i n kN

9   D b = 1 . 8 ;   / / d i a me t er o f b ra k edrum

10   d = 0 . 0 2 ;   / / b r ak e r o pe d i a m et e r11   n = 1 ;   // no . o f c y l i n d e r s12   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r13

14   // INDICTED POWER , I . P. = ( n∗PMI∗ l ∗A∗N∗k ∗10) /6 kW15   A = ( % p i / 4 ) * ( D ^ 2 ) ;

16   I P = ( n * P m i * L * A * N * k * 1 0 ) / 6 ;

17   B P = N B L * ( % p i ) * ( D b + d ) * N / ( 6 0 ) ;

18   e t a = B P / I P ;   / / m e c h a n i c a le f f i c i e n c y

19

20   printf ( ’ ( i ) The I n d i c t e d Power , I . P . i s : %5 . 2 f kW .\n ’ , I P ) ;

21   printf ( ’ ( i i ) The B ra k e Power , B . P . i s : %5 . 2 f kW .   \n’ , B P ) ;

22   printf ( ’ ( i i i ) M ec ha ni ca l e f f i c i e n c y i s : %5 . 4 f o r %5. 2 f p e r c e n t . \ n ’ , e t a , ( e t a * 1 0 0 ) ) ;

Scilab code Exa 7.6  Example 6

99

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 101/137

1   clc

2   clear3   //DATA GIVEN4   D = 0 . 2 ;   / / d i a me t er o f e n g i n e

c y l i n d e r i n m5   L = 0 . 3 5 0 ;   // l e ng t h o f s t r o k e i n

m6   P m i c o = 6 . 5 ;   // mean e f f e c t i v e

p r e s s u r e on c ov er s i d e i n b a r7   P m i c r = 7 ;   // mean e f f e c t i v e

p r e s s u r e on c r a n k s i d e i n b a r8   N = 4 2 0 ;   / / e n g i n e s p ee d i n R . P .

M.9   D r o d = 0 . 0 2 ;   // d i am et er o f p i s t o n

r o d i n m10   W = 1 3 7 0 ;   // d ead l o ad on t he

b ra ke i n N11   S = 1 4 5 ;   / / s p r i n g b a l a n c e

r e a d i ng i n N12   D b = 1 . 2 ;   / / d i a me t er o f b ra k e

w he el i n m13   d = 0 . 0 2 ;   // d i am et er o f r op e i n

m14   n = 1 ;   // no . o f c y l i n d e r s15   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r16

17   // INDICTED POWER , I . P. = ( n∗Pmi∗ l ∗A∗N∗k ∗10) /6 kW18   A c o = ( % p i / 4 ) * ( D ^ 2 ) ;   / / a r e a o f  

c y l i n d e r om c o ve r end i n mˆ219   A c r = ( % p i / 4 ) * ( D ^ 2 - D r o d ^ 2 ) ;   / / a r e a o f  

c y l i n d e r om c ra nk end i n mˆ220   I P c o = ( n * P m i c o * L * A c o * N * k * 1 0 ) / 6 ;   / / IP on c o v e r end

s i d e i n kW21   I P c r = ( n * P m i c r * L * A c r * N * k * 1 0 ) / 6 ;   / / IP on c ra n k end

s i d e i n kW22   I P t o t a l = I P c o + I P c r ;   // IP t o t a l i n kW23

100

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 102/137

24   // Br ak e P ow er , B. P . = (W−S ) ( pi ) (Db+d )N/ ( 6 0∗1 0 0 0 ) kW

25   B P = ( W - S ) * ( % p i ) * ( D b + d ) * N / ( 6 0 * 1 0 0 0 ) ;26

27   e t a = B P / I P t o t a l ;   / / m e c h a n i c a le f f i c i e n c y

28

29   printf ( ’ M ec ha ni ca l e f f i c i e n c y i s : %5 . 4 f o r %5 . 2 f  p e r c e n t .\ n ’ , e t a , ( e t a * 1 0 0 ) ) ;

Scilab code Exa 7.7  Example 7

1   clc

2   clear

3   //DATA GIVEN4   I P = 3 0 ;   / / i n d i c t e d p ow er i n kW5   B P = 2 6 ;   / / B r a k e P ow er i n kW6   N = 1 0 0 0 ;   // e n g i n e s p ee d i n R . P .M

.7   F = 0 . 3 5 ;   // f u e l p e r b r ak e po we r

h o u r i n k g /BP/ h

8   C = 4 3 9 0 0 ;   // c a l o r i f i c v a l u e of  f u e l u se d i n kJ /kg

9

10   F c = F * B P ;   / / f u e l c o ns u mp t io n p e rhour

11   M f = F c / 3 6 0 0 ;

12   E T A t i = I P / ( M f * C ) ;   / / I n d i c t e d t h er m ale f i c i e n c y

13   E T A t b = B P / ( M f * C ) ;   / / B r ak e t h e r m a le f f i c i e n c y

14   E T A m = B P / I P ;   // M ec ha ni ca l e f f i c i e n c y15

16   printf ( ’ ( i ) The I n d i c te d t he rm al e f i c i e n c y i s : %5 . 3f o r %2 . 1 f p e r c e n t .   \n ’ ,ETAti ,(ETAti*100));

17   printf ( ’ ( i i ) The B ra ke t he rm al e f f i c i e n c y i s : %5 . 3 f  

101

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 103/137

o r %2 . 1 f p e r c e n t .   \n ’ ,ETAtb ,(ETAtb*100));

18   printf ( ’ ( i i i ) M ec ha ni ca l e f f i c i e n c y i s : %5 . 3 f o r %2. 1 f p e r c e n t .   \n ’ , E T A m , ( E T A m * 1 0 0 ) ) ;

Scilab code Exa 7.8  Example 8

1   clc

2   clear

3   //DATA GIVEN

4   D b = 0 . 7 5 ;   / / d i a m et e r o f b r ak ep u l l ey i n m5   d = 0 . 0 5 ;   // d i am e te r o f r op e i n

m6   W = 4 0 0 ;   // d ead l o ad on t he

b ra ke i n N7   S = 5 0 ;   / / s p r i n g b a l a n c e

r e a d i ng i n N8   F c = 4 . 2 ;   / / f u e l c on su mp ti on i n

k g / h r9   N = 1 0 0 0 ;   / / r a t e d e n g i n e s p ee d

i n R . P . M .10   C = 4 3 9 0 0 ;   // c a l o r i f i c v a l u e of  

f u e l u se d i n kJ /kg11   n = 1 ;   // no . o f c y l i n d e r s12   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r13

14

15   // Br ak e P ow er , B. P . = (W−S ) ( pi ) (Db+d )N/ ( 6 0∗1 0 0 0 ) kW16   B P = ( W - S ) * ( % p i ) * ( D b + d ) * N / ( 6 0 * 1 0 0 0 ) ;

17   s f c = F c / B P ;   / / b r a k es p e c i f i c f u e l c o n s um p t io n i n k g /kWhr18   M f = F c / 3 6 0 0 ;

19   E T A t b = B P / ( M f * C ) ;   / / B r a k et he r ma l e f f i c i e n c y

102

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 104/137

20

21   printf ( ’ ( i ) The B ra ke s p e c i f i c f u e l c on su mp ti o n , s .f . c ( b r a k e ) i s : %5 . 3 f k g /kWh .   \n ’ , s f c ) ;

22   printf ( ’ ( i i ) The B ra ke t he rm al e f f i c i e n c y i s : %5 . 3 f  o r %2 . 1 f p e r c e n t .   \n ’ ,ETAtb ,(ETAtb*100));

Scilab code Exa 7.9  Example 9

1   clc

2   clear3   //DATA GIVEN4   n = 6 ;   // no . o f c y l i n d e r s5   D = 0 . 0 9 ;   / / b o re o f e ac h

c y l i n d e r i n m6   L = 0 . 1 ;   // l e ng t h o f s t r o k e i n

m7   r = 7 ;   / / c o m p re s s i on r a t i o8   E T A r e l = 0 . 5 5 ;   // r e l a t i v e e f f i c i e n c y9   F s c = 0 . 3 ;   / / i n d i c a t e d s p e c i f i c

f u e l c o ns u mp t io n i n kg /kWh

10   P m i = 8 . 6 ;   / / i n d i c a t e d meane f f e c t i v e p r e s s u r e i n b ar

11   N = 2 5 0 0 ;   / / e n g i n e s p ee d i n R . P .M.

12   k = 0 . 5 ;   / / f o r 4− s t r o k ec y l i n d e r

13

14   / / A i r s t a nd a r d e f f i c i e n c y , ETAair =1−1/(r ˆ(gamma−1) )15   g = 1 . 4 ;   //gamma of a i r = 1. 416   E T A a i r = 1 - 1 / ( r ^ ( g - 1 ) ) ;

17   / / I n d i c a t e d t h e r m a l e f f i c i e n c y , E TA rel=ETAthi / ETA ai r;18   E T A t h i = E T A r e l * E T A a i r ;

19   / / I n d i c t e d t h e rm a l e f i c i e n c y , ETAthi=IP / ( Mf  ∗C)20   M f = F s c / 3 6 0 0 ;

103

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 105/137

21   / / t a k i n g I P =1 ,

22   C = 1 / ( E T A t h i * M f ) ;   // c a l o r i f i c va lu e ink J /k g23   // INDICTED POWER , I . P. = ( n∗Pmi∗ l ∗A∗N∗k ∗10) /6 kW24   A = ( % p i / 4 ) * ( D ^ 2 ) ;

25   I P = ( n * P m i * L * A * N * k * 1 0 ) / 6 ;

26   F c = F s c * I P ;   // t o t a l f u e lc o ns u mp t io n i n kg / h r

27

28   printf ( ’ ( i ) The C a l o r i f i c v al ue o f c oa l , C i s : %5 . 0f k J / kg .   \n ’ , C ) ;

29   printf ( ’ ( i i ) The F u el c o ns u mp t io n i s : %5 . 2 f k g /h .   \

n ’ , F c ) ;30

31   //NOTE:32   / / a ns o f c a l o r i f i c v a l u e h e r e i s e xa ct , w h i l e i n TB

i t s r ou nded o f f v al ue

Scilab code Exa 7.10  Example 10

1   clc2   clear

3   //DATA GIVEN4   n = 4 ;   // no . o f c y l i n d e r s5   B P = 3 0 ;   / / B r a k e P ow er i n kW6   N = 2 5 0 0 ;   / / e n g i n e s p ee d i n R . P .

M.7   P m i = 8 ;   // mean e f f e c t i v e

p r e s s u r e i n ba r8   E T A m = 0 . 8 ;   / / m e c h a n i c a l

e f f i c i e n c y9   E T A t h b = 0 . 2 8 ;   / / b r a k e t h e rm a le f f i c i e n c y

10   C = 4 3 9 0 0 ;   // c a l o r i f i c v al ue o f  f u e l u se d i n kJ /kg

104

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 106/137

11   k = 1 ;   / / f o r 2− s t r o k e

c y l i n d e r12

13   // me c han i c a l e f f i c i e n c y , ETAm=BP/IP14   I P = B P / E T A m ;

15   // INDICTED POWER , I . P. = ( n∗PMI∗ l ∗A∗N∗k ∗10) /6 kW16   //L=1.5D,17   D = ( ( 6 * I P ) / ( 1 0 * k * N * n * P m i * 1 . 5 * ( % p i / 4 ) ) ) ^ ( 1 / 3 ) ;   //

b or e d ia me te r i n m18   L = 1 . 5 * D ;   //

l e n gt h o f s t r o k e i n m19   / / B r a ke t h e r m a l e f f i c i e n c y , ETAtb=BP / ( Mf  ∗C)

20   M f = B P / ( E T A t h b * C ) ;   //f u e l c on su mp ti on i n kg / h r

21

22   printf ( ’ ( i ) The B or e d i a me t er i s : %5 . 3 f m o r %2 . 0 f  mm. \ n ’ , D , ( D * 1 0 0 0 ) ) ;

23   printf ( ’ The St o k e l en gt h i s : %2 . 0 f mm. \ n ’  ,( L

* 1 0 0 0 ) ) ;

24   printf ( ’ ( i i ) The F ue l c on su mp ti on i s : %5 . 5 f kg / s o r%3 . 2 f k g / h r .   \n ’ , M f , ( M f * 3 6 0 0 ) ) ;

Scilab code Exa 7.11  Example 11

1   clc

2   clear

3   //DATA GIVEN4   n = 6 ;   // no . o f c y l i n d e r s5   P d i s p = 7 0 0 ;   // p i s t o n d i s p p er

c y l i n d e r i n cmˆ3

6   P = 7 8 ;   / / po wer d e v el o p e d i nkW7   N = 3 2 0 0 ;   / / e n g i n e s p ee d i n R . P .

M.8   M f = 2 7 ;   // mass o f f u e l u s e d i n

105

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 107/137

k g / h r

9   C = 4 4 0 0 0 ;   // c a l o r i f i c v al ue o f  f u e l u se d i n kJ /kg10   a f r = 1 2 ;   // a i r f u e l r a t i o11   P a = 0 . 9 ;   // i n t a k e a i r p r e s s ur e

i n b ar12   T a = 3 2 + 2 7 3 ;   // i n t a k e a i r

t e mp e r ta u r e i n K13   R = 0 . 2 8 7 ;   // g as c on s t an t f o r a i r

i n k J / kgK14   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r

1516   M a = a f r * M f ;   / / ma ss o f  

a i r17   / / by e q . pa∗Va=Ma∗R∗Ta18   V a = M a * R * T a / P a / 1 0 0 ;   / / v ol um e o f  

i n t a k e a i r i n mˆ3/ h r19   V s w e p t = ( P d i s p / 1 0 ^ 6 ) * n * ( N / 2 ) * 6 0 ;   //v ol ume

s we pt i n mˆ 3/ h r20   E T A v o l = V a / V s w e p t ;   / / v o l u m e t r i c

e f f i c i e n c y21

22   / / B ra ke t h e rm a l e f f i c i e n c y , ETAbt=b r a ke wo rk / h e a ts u pp l i e d by t h e f u e l

23   E T A b t = P / ( M f * C / 3 6 0 0 ) ;

24   / / B r a k e P owe r , BP = ( 2∗ p i )N∗T b/( 60∗1 0 0 0 ) k W25   T b = P * 6 0 / ( 2 * % p i * N ) ;   / / b r a k e

t o r q u e i n kNm26

27   printf ( ’ ( i ) The V ol um et ri c e f f i c i e n c y i s : %5 . 3 f o r%5 . 1 f p e r c e n t .   \n ’ ,ETAvol ,(ETAvol*100));

28   printf ( ’ ( i i ) The Brake t he rm al e f f i c i e n c y i s : %5 . 4

f o r %5 . 2 f p e r c e n t .   \n ’ ,ETAbt ,(ETAbt*100));29   printf ( ’ ( i i i ) The B r ak e T or qu e i s : %5 . 4 f kNm .   \n ’ ,

T b ) ;

106

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 108/137

Scilab code Exa 7.12  Example 12

1   clc

2   clear

3   //DATA GIVEN4   //L=1.5D5   n = 6 ;   // no . o f c y l i n d e r s6   V s = 1 . 7 5 ;   / / s t r o k e v ol um e i n

l i t r e s7   I P = 2 6 . 3 ;   / / po wer d e v el o p e d i n

kW8   N e = 5 0 4 ;   / / e n g i n e s p ee d i n R . P .

M.9   P m i = 6 ;   // mean e f f e c t i v e

p r e s s u r e i n ba r10   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r11

12   // INDICTED POWER , I . P. = ( n∗PMI∗ l ∗A∗N∗k ∗10) /6 kW

13   //L∗A=Vs14   N a = I P * 6 / ( n * P m i * ( V s / 1 0 ^ 3 ) * k * 1 0 ) ;   / / a c t u a l s p e ed

i n R . P . M15   F a = N a * n * k ;   // a c t u a l no . o f  

f i r e s i n o n e m i nu t e16   F e = N e * n / 2 ;   / / e x p e c t e d n o .

o f f i r e s i n o ne m in ut e17   F m = F e - F a ;   // m i s f i r e s p er

mi nut e18   F m a v g = F m / n ;   / / a vg . no . o f  

t im es e a c h c y l i n d e r m i s f i r e s i n one mi nut e19

20   printf ( ’ The Av er ag e no . o f t i me s e ac h c y l i n d e rm i s f i r e s i n one m in ut e i s : %1 . 0 f .\ n ’ , F m a v g ) ;

107

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 109/137

Scilab code Exa 7.13  Example 13

1   clc

2   clear

3   //DATA GIVEN4   D = 0 . 0 7 5 ;   / / b o re i n m5   L = 0 . 0 9 ;   // s t r o k e l e ng t h i n m6   n = 4 ;   // no . o f c y l i n d e r s7   e r a r = 3 9 / 8 ;   // e ng i ne t o r e a r a x l e

r a t i o =3 9: 88   D w = 0 . 6 5 ;   / / w he el d i a m et e r w it h

t y r e f u l l y i n f l a t e d i n m9   F c = 0 . 2 2 7 ;   / / p e t r o l c o ns u mp t io n

f o r a d i s t a n ce o f 3 . 2 km a t a s pe e d o f 48 km/ hr10   P m i = 5 . 6 2 5 ;   // mean e f f e c t i v e

p r e s s u r e i n ba r11   C = 4 3 4 7 0 ;   // c a l o r i f i c v al ue o f  

f u e l u se d i n kJ /kg12   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r13

14   s = 4 8 * 1 0 0 0 / 6 0 ;   // s pe ed o f c a r i n m/mi n

15   / / i f Nt r e v a r e made by t y r e p e r mi nu te , s p ee d=p i ∗Dw∗Nt

16   N t = s / ( % p i * D w ) ;   //R.P.M.17   // a s e n g i ne t o r e a r a xl e r a t i o i s 3 9: 818   N e = e r a r * N t ;   // s pe ed o f e n f i n e

s h a f t i n R . P .M.19   // INDICTED POWER , I . P. = ( n∗PMI∗ l ∗A∗N∗k ∗10) /6 kW20   A = ( % p i / 4 ) * ( D ^ 2 ) ;

21   I P = ( n * P m i * L * A * N e * k * 1 0 ) / 6 ;

22

23   s = s / 1 0 0 0 ;   / / s p ee d o f c a r i n km/

108

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 110/137

mi n

24   t = 3 . 2 / s ;   // t im e i n min f o rc o v e r in g 3 . 2 km25   / / p e t r o l c o ns ump ti on f o r a d i s t a nc e o f 3 . 2 km a a t a

s pe ed o f 48 km/ h r i s 0 . 2 2 7 kg26   M f = F c / ( t * 6 0 ) ;   / / f u e l co ns um ed p e r

s e c27   E T A t h i = I P / ( M f * C ) ;   // I n d i c a t e d f u e l

e f f i c i e n c y28

29   printf ( ’ ( i ) The I n d i c a t e d Power d e v el o p e d i s : %5 . 2 f  kW.   \n ’ , I P ) ;

30   printf ( ’ ( i i ) The I n d i ca t e d t he rm al e f f i c i e n c y i s :%1 . 3 f o r %2 . 1 f p e r c e n t .   \n ’ ,ETAthi ,(ETAthi*100));

Scilab code Exa 7.14  Example 14

1   clc

2   clear

3   //DATA GIVEN

4   D = 0 . 2 5 ;   // c y l i n d e r d i am e te r i nm

5   L = 0 . 4 ;   // s t r o k e l e ng t h i n m6   P m g = 7 ;   // G ro ss mean e f f e c t i v e

p r e s s u re i n b ar7   P m p = 0 . 5 ;   // Pumping mean

e f f e c t i v e p r e s s u r e i n b ar8   N = 2 5 0 ;   / / e n g i n e s p ee d i n R . P .

M.9   N B L = 1 0 8 0 ;   / / n e t l o a d on t h e

b r a ke (W−S ) i n N10   D b = 1 . 5 ;   // e f f e c t i v e d ia me te ro f t he b r a ke i n m

11   F c = 1 0 ;   // f u e l u s e d p er hr i nkg

109

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 111/137

12   C = 4 4 3 0 0 ;   // c a l o r i f i c v al ue o f  

f u e l u se d i n kJ /kg13   n = 1 ;   // no . o f c y l i n d e r s14   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r15

16   // INDICTED POWER , I . P. = ( n∗PMI∗ l ∗A∗N∗k ∗10) /6 kW17   P m = P m g - P m p ;

18   A = ( % p i / 4 ) * ( D ^ 2 ) ;

19   I P = ( n * P m * L * A * N * k * 1 0 ) / 6 ;

20   B P = N B L * ( % p i ) * ( D b ) * N / ( 6 0 * 1 0 0 0 ) ;

21   E T A m = B P / I P ;   / / m e c h a n i c a l

e f f i c i e n c y22   M f = F c / 3 6 0 0 ;

23   E T A t h i = I P / ( M f * C ) ;   / / I n d i c a t e d t h er m ale f f i c i e n c y

24

25   printf ( ’ ( i ) The I n d i c a t e d Power , I . P . i s : %5 . 2 f kW.\n ’ , I P ) ;

26   printf ( ’ ( i i ) The B ra k e Power , B . P . i s : %2 . 1 f kW .   \n’ , B P ) ;

27   printf ( ’ ( i i i ) M ec ha ni ca l e f f i c i e n c y i s : %5 . 3 f o r %2

. 1 f p e r c e n t . \ n ’, E T A m , ( E T A m * 1 0 0 ) ) ;

28   printf ( ’ ( i v ) I n d i ca t e d t he rm al e f f i c i e n c y i s : %5 . 3 f  o r %2 . 1 f p e r c e n t .\ n ’ ,ETAthi ,(ETAthi*100));

Scilab code Exa 7.15  Example 15

1   clc

2   clear

3   //DATA GIVEN4   E T A t h b = 3 0 ;   / / B r ak e t h e r m a le f f i c i e n c y i n %

5   a f r = 2 0 ;   // a i r f u e l r a t i o byw e i g h t

110

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 112/137

6   C = 4 1 8 0 0 ;   // c a l o r i f i c v al ue o f  

f u e l u se d i n kJ /kg7

8   / / B r a ke t h e r m a l e f f i c i e n c y , ETAthb=w or k p r o d uc e d /h ea t s u p p l i e d

9   w o r k = ( E T A t h b / 1 0 0 ) * C ;   / / wo rk p r od u ce d p e r k go f f u e l

10   / /STP c o n d i t i o n s r e f e r t o 1 . 01 3 2 b ar and 15 degc e l s i u s

11   m = a f r ;   // mass o f a i r p er kgo f f u e l

12   R = 2 8 7 ;

13   V = m * R * ( 1 5 + 2 7 3 ) / ( 1 . 0 1 3 2 * 1 0 ^ 5 ) ;   // v olume o f a i r u se d14   / / B ra ke mean e f f e c t i v e p r e s s u r e , Pmb=wo rk d on e /

c y l i n d e r vo lu me15   P m b = ( w o r k * 1 0 0 0 ) / ( V * 1 0 ^ 5 ) ;

16

17   printf ( ’ The B ra ke mean e f f e c t i v e p r e s s u r e , Pmb i s :%2 . 2 f b a r .\ n ’ , P m b ) ;

Scilab code Exa 7.16  Example 16

1   clc

2   clear

3   //DATA GIVEN4   V 1 = 0 . 2 1 6 ;   / / g a s c on su mp ti on i n m

ˆ3/min5   P 1 = 7 5 ;   // g a s t em p er a tu re i n

mm o f w a t e r6   T 1 = 1 7 + 2 7 3 ;   // g a s t em p er ta u re i n K

7   m = 2 . 8 4 ;   / / a i r c o ns u mp t io n i nkg/min8   T a = 1 7 + 2 7 3 ;   // a i r t em p er ta u re i n K9   b r = 7 4 5 ;   // b a ro me te r r e a d in g i n

mm of Hg

111

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 113/137

10   D = 0 . 2 5 ;   / / b o re o f e n g i n e

c y l i n d e r i n m11   L = 0 . 4 7 5 ;   // s t r o k e l e ng t h i n m12   N = 2 4 0 ;   / / e n g i n e s p ee d i n R . P .

M.13   R = 2 8 7 ;   // g as c on s t an t f o r a i r

i n J / kgK14   n = 1 ;   // no . o f c y l i n d e r s15   k = 1 ;   / / f o r 2− s t r o k e

c y l i n d e r16

17   P 1 = b r + P 1 / 1 3 . 6 ;   // p r e s s ur e o f t he g as

18   // at NTP19   P 2 = 7 6 0 ;   //mm o f Hg20   T 2 = 0 + 2 7 3 ;   / / i n K21   //P1∗V1/T1=P2∗V2/T222   V 2 = P 1 * V 1 * T 2 / ( P 2 * T 1 ) ;   / / vo lu me o f g a s u se d

at NTP i n mˆ323   V g = V 2 / ( N / 2 ) ;   // g a s u se d p er s t r o k e

i n m ˆ 324

25   //PV=mRT26   P 2 = 1 . 0 1 3 2 * 1 0 ^ 5 ;

27   V = m * R * T 2 / P 2 ;   / / v ol um e o c c u p i e d bya i r i n mˆ 3/ min

28   V a = V / ( N / 2 ) ;   // a i r u se d p er s t r o k ei n m

29

30   V m i x = V g + V a ;   / / m i xt u re o f g a s anda i r i n mˆ3

31

32   / / ETAvol=( a c t u a l v ol um e o f m i x tu r e drawn p e r s t r o k ea t NTP) / ( s w e p t v o lu m e o f s y s t e m )

33   E T A v o l = V m i x / ( ( % p i / 4 ) * D ^ 2 * L ) ;34

35   printf ( ’ The V ol um et ri c e f f i c i e n c y i s : %3 . 3 f o r %3 . 1f p e r ce n t .   \n ’ ,ETAvol ,(ETAvol*100));

112

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 114/137

Scilab code Exa 7.17  Example 17

1   clc

2   clear

3   //DATA GIVEN4   t = 1 ;   / / d u r a t i o n o f t r i a l i n

hr5   N = 1 4 0 0 0 ;   / / r e v o l u t i o n s6   m c = 5 0 0 ;   // no . o f m is se d c y c l e s7   N B L = 1 4 7 0 ;   / / Net b ra k e l o a d (W−S )

i n N8   P m i = 7 . 5 ;   // mean e f f e c t i v e

p r e s s u r e i n ba r9   V g = 2 0 0 0 0 / 3 6 0 0 ;   / / g a s c on su mp ti on i n

l i t r e s / s10   C = 2 1 ;   //LCV o f g as a t s i p p l y

c o n d i t i o n s i n kJ / l i t r e11   D = 0 . 2 5 ;   // c y l i n d e r d i am e te r i n

m

12   L = 0 . 4 ;   // s t r o k e l e ng t h i n m13   C b = 4 ;   // e f f e c t i v e b ra ke

c i r cu m f er e n ce i n m14   r = 6 . 5 ;   / / c o m p re s s i on r a t i o15   n = 1 ;   // no . o f c y l i n d e r s16   k = 0 . 5 ;   / / f o r 4− s t r o k e

c y l i n d e r17

18   / / gamma f o r a i r , g = 1 .419   g = 1 . 4 ;

20

21   // INDICTED POWER , I . P. = ( n∗PMI∗ l ∗A∗N∗k ∗10) /6 kW22   N k = ( N * k - m c ) / 6 0 ;   / / ( N∗k )−w or ki ng c y c l e s

/min23   A = ( % p i / 4 ) * ( D ^ 2 ) ;

113

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 115/137

24   I P = ( n * P m i * L * A * N k * 1 0 ) / 6 ;

25   N = N / 6 0 ;26   B P = N B L * ( C b ) * N / ( 6 0 * 1 0 0 0 ) ;

27   e t a = B P / I P ;   / / m e c h a n i c a le f f i c i e n c y

28   E T A t h i = I P / ( V g * C ) ;   / / I n d i c a t e d t h er m ale f f i c i e n c y

29

30   / / r e l a t i v e e f f i c i e n c y , E TA re l=ETAthi / ETAas31   //ETAas=1−1/(r ˆ( g−1) )32   E T A a s = 1 - 1 / ( r ^ ( g - 1 ) ) ;   // ai r −s t a n d a r d

e f f i c i e n c y

33   E T A r e l = E T A t h i / E T A a s ;   // r e l a t i v e e f f i c i e n c y34

35   printf ( ’ ( i ) The I n d i c a t e d Power , I . P . i s : %5 . 2 f kW.   \n ’ , I P ) ;

36   printf ( ’ ( i i ) The B ra ke Power , B . P . i s : %5 . 2 f kW.   \n ’ , B P ) ;

37   printf ( ’ ( i i i ) M ec ha ni ca l e f f i c i e n c y i s : %5 . 3 f o r %2. 1 f p e r c e n t . \ n ’ , e t a , ( e t a * 1 0 0 ) ) ;

38   printf ( ’ ( i v ) The I n di c at e d t he r ma l e f f i c i e n c y i s :%2 . 2 f o r %2 . 0 f p e r c e n t .   \n ’ ,ETAthi ,(ETAthi*100));

39   printf ( ’ ( v ) The R e l at i v e e f f i c i e n c y i s : %2 . 3 f o r%2 . 1 f p e r c e n t .   \n ’ ,ETArel ,(ETArel*100));

114

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 116/137

Chapter 10

Air Compressors

Scilab code Exa 10.1  Example 1

1   clc

2   clear

3   //DATA GIVEN4   V 1 = 1 ;   // v olume o f a i r

t a k e n i n mˆ 3 /mim5   p 1 = 1 . 0 1 3 ;   // i n t a k e p r e s s ur e i n

b a r6   T 1 = 1 5 + 2 7 3 ;   / / i n t a k e t e m p e ra t u r e

i n K7   p 2 = 7 ;   // d e l i v e r y p r e s s u r e

i n b ar8   t = 1 * 6 0 ;   // t i me i n s e co n ds9   / / l a w o f c o m p r e s s i o n , pV ˆ1 . 35 =C

10   n = 1 . 3 5 ;

11   R = 2 8 7 ;

12

13   m = p 1 * 1 0 ^ 5 * V 1 / R / T 1 ;   // mass o f a i rd e l i v e r e d i n kg / min14

15   // ( T2/T1) =( p2/p1) ˆ( ( n−1)/n) ;16   T 2 = T 1 * ( p 2 / p 1 ) ^ ( ( n - 1 ) / n ) ;   / / d e l i v e r y temp . T2

115

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 117/137

i n K

1718   W = ( n ) / ( n - 1 ) * m * R * ( T 2 - T 1 ) / 1 0 0 0 ;   // i n d i c a t e d work i n

kJ/min19

20   I P = W / t ;   // i n d i c a t e d p ower i nkW

21

22   printf ( ’ The I n d i c a t e d p ower , IP i s : %1 . 2 f kW .   \n ’ ,

I P ) ;

Scilab code Exa 10.2  Example 2

1   clc

2   clear

3   / / c o n t i n u e d f ro m E xa mp le 14   //DATA GIVEN5   V = 1 ;   // v olu me d e a l t w it h

p e r min a t i n l e t i n mˆ 3/ mim6   V c = 1 / 3 0 0 ;   / / v o lu me d ra wn i n

p e r c y c l e , i n mˆ 3/ c y c l e7   r = 1 . 5 ;   // s t r o k e t o b or e

r a t i o8   E T A c = 0 . 8 5 ;   / / m e c h a n i c a l

e f f i c i e n c y o f t h e c om pr es so r9   E T A m t = 0 . 9 0 ;   / / m e c h a n i c a l

e f f i c i e n c y o f t h e m otor t r an s m i s s i o n10

11   / / c y l i n d e r v ol um e , Vc=( p i / 4 ) Dˆ 2∗L12   D = [ ( V c * 4 / % p i ) / r ] ^ ( 1 / 3 ) ;   // b o re i n m

1314   / / f r om e xa mp le 115   P i = 4 . 2 3 / E T A c ;   // p ower i n pu t t o t he

c o m p r e s so r i n kW16   M P = P i / E T A m t ;   / / m o to r p ow er i n kW

116

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 118/137

17

18   printf ( ’ ( i ) The C y l i n d e r b or e , D i s : %3 . 1 f mm.   \n ’  ,(D * 1 0 0 0 ) ) ;

19   printf ( ’ ( i i ) The M ot or p ow er i s : %1 . 2 f kW .   \n ’ , M P ) ;

Scilab code Exa 10.3  Example 3

1   clc

2   clear

3   //DATA GIVEN4   T 1 = 2 0 + 2 7 3 ;   / / t e m p e ra t u r e i n K5   p 1 = 1 ;   // p r e s s u r e i n b ar6   p 2 = 1 0 ;   // p r e s s u r e i n b ar7   C v = 0 . 7 1 8 ;   // i n k J /kgK8

9   / / l a w o f c o m p r e s s i o n , pV ˆ1 . 2=C10   n = 1 . 2 ;

11   R = 0 . 2 8 7 ;   // i n k J /kgK12

13   // ( T2/T1) =( p2/p1) ˆ( ( n−1)/n) ;

14   T 2 = T 1 * ( p 2 / p 1 ) ^ ( ( n - 1 ) / n ) ;   / / temp . T2 i n K15   m = 1 ;

16   W = ( n ) / ( n - 1 ) * m * R * T 1 * [ ( p 2 / p 1 ) ^ ( ( n - 1 ) / n ) - 1 ] ;   //work done p er kg o f a i r ( kJ /kg o f a i r )

17

18   / / By t h e F i r s t Law o f T he rm od yn am ic s19   / / h e a t t r a n s f e r r e d d u r i n g c o m p r e s s i o n , Q=W+DU20   //Q=(p1V1−p2V2) /( n−1)+Cv(T2−T1 )21   //Q=(T2−T1 ) ∗ [ Cv−R / ( n−1) ]22   Q = ( T 2 - T 1 ) * [ C v - R / ( n - 1 ) ] ;

2324   printf ( ’ ( i ) The T em pe ra tu re a t t h e end o f  c o mp r es s io n i s : %3 . 0 f K o r %3 . 0 f deg . c e l s i u s .   \n’ , T 2 , ( T 2 - 2 7 3 ) ) ;

25   printf ( ’ ( i i ) The Work d on e d u r i n g c o m p r e s s i o n p e r

117

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 119/137

kg o f a i r i s : %3 . 2 f kJ /kg o f a i r .   \n ’ , W ) ;

26   printf ( ’ The Heat t r a n s f e r r e d d u r i n gc om pr es si on p er kg o f a i r i s : %2 . 2 f kJ /kg o f a i r .\n ’ , Q ) ;

27   printf ( ’ ( N e g a t i v e s i g n i n d i c a t e s h e a tREJECTION . )   \n ’ ) ;

Scilab code Exa 10.4  Example 4

1   clc2   clear

3   //DATA GIVEN4   p 1 = 1 ;   // s u c t i o n p r e s s u r e

i n b ar5   T 1 = 2 0 + 2 7 3 ;   / / s u c t i o n

t e mp e r at u r e i n K6   p 2 = 6 ;   // d i s c h a r g e p r e s s u r e

i n b ar7   T 2 = 1 8 0 + 2 7 3 ;   / / d i s c h a r g e

t e mp e r at u r e i n K

8   N = 1 2 0 0 ;   / / s p e ed o f  c o m p r e ss o r i n R . P . M.

9   P s h a f t = 6 . 2 5 ;   / / s h a f t p ow er i n kW10   M a = 1 . 7 ;   // mass o f a i r

d e l i v e r e d i n kg / min11   D = 0 . 1 4 ;   / / d i a m e t e r i n m12   L = 0 . 1 ;   // s t r o k e i n m13   R = 2 8 7 ;   // i n k J /kgK14

15   V d = ( % p i / 4 ) * D ^ 2 * L * N ;   / / d i s p l a c e m e n t

volume f o r s i n g l e a c t i n g c om p re ss o r i n mˆ3 /min16   F A D = M a * R * T 1 / p 1 / 1 0 ^ 5 ;   //mˆ3/min17   E T A v o l = F A D / V d * 1 0 0 ;   // a c t u a l v o l u m e t r i c

e f f i c i e n c y18

118

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 120/137

19   // ( T2/T1) =( p2/p1) ˆ( ( n−1)/n) ;

20   n = 1 / [ 1 - ( log ( T 2 / T 1 ) / log ( p 2 / p 1 ) ) ] ;   / / i n d e x o f  c o m p r e s s i o n , n21

22   I P = ( n ) / ( n - 1 ) * M a / 6 0 * R / 1 0 0 0 * T 1 * [ ( p 2 / p 1 ) ^ ( ( n - 1 ) / n ) - 1 ] ;

/ / i n d i c a t e d p ow er i n kW23

24   P i s o = M a / 6 0 * R / 1 0 0 0 * T 1 * log ( p 2 / p 1 ) ;

/ / i s o t h e r m a l p ow er25   E T A i s o = P i s o / I P * 1 0 0 ;

/ / i s o t h e r m a le f f i c i e n c y

2627   E T A m e c h = I P / P s h a f t * 1 0 0 ;

/ / m e c h a n i c a le f f i c i e n c y

28

29   E T A o v r _ i s o = P i s o / P s h a f t * 1 0 0 ;

// o v e r a l l i s o t h e r ma le d d i c i e n c y

30

31   printf ( ’ ( i ) The a c t ua l V ol um et ri c e f f i c i e n c y i s : %2

. 2 f p e r c e n t .   \n ’, E T A v o l ) ;

32   printf ( ’ ( i i ) The I n d i c a t e d Power , I P i s : %1 . 3 f KW.\n ’ , I P ) ;

33   printf ( ’ ( i i i ) The I s o t h er m a l e f f i c i e n c y i s : %2 . 2 f  p e r c e n t .\ n ’ , E T A i s o ) ;

34   printf ( ’ ( i v ) The M ec ha ni ca l e f f i c i e n c y i s : %2 . 1 f  p e r c e n t .\ n ’ , E T A m e c h ) ;

35   printf ( ’ ( v ) The O ve ra l l i s o t h e r ma l e f f i c i e n c y i s :%2 . 1 f p e r c e n t . \ n ’ , E T A o v r _ i s o ) ;

Scilab code Exa 10.5  Example 5

1   // 5 (b ) i s a s f o l l o w s :

119

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 121/137

2   clc

3   clear4   //DATA GIVEN5   m = 6 . 7 5 ;   // mass o f a i r i n kg / min6   p 1 = 1 ;   // p r e s s u r e i n b ar7   T 1 = 2 1 + 2 7 3 ;   / / temp . i n K8   p 2 = 1 . 3 5 ;   // p r e s s u r e i n b ar9   T 2 = 4 3 + 2 7 3 ;   / / temp . i n K

10   D T c w = 3 . 3 ;   // temp . r i s e o f c o o l i n gw a t e r i n deg . c e l s i u s

11   C p = 1 . 0 0 3 ;   //Cp f o r a i r i n kJ /kgK12   / / gamma f o r a i r = 1 .4

13   g = 1 . 4 ;14

15   W = m * C p * ( T 2 - T 1 ) ;   / / wo rk i n k J / min16   // I f t he c o mp r es s io n would ha ve b een i s o t r o p i c ,17   //T 2=T1∗( rp ) ˆ[ ( g−1)/g ]18   r p = p 2 / p 1 ;

19   T _ 2 = T 1 * ( r p ) ^ [ ( g - 1 ) / g ] ;

20   Q r = m * C p * ( T _ 2 - T 2 ) ;   // h ea t r e j e c t e d t o c o o l i n gw a t e r

21

22   M w = Q r / [ 4 . 1 8 * ( D T c w ) ] ;  // mass of c o o l i n g w at er i nkg/min

23

24   printf ( ’ ( i ) The Work i s : %3 . 2 f k J / mi n .   \n ’ , W ) ;

25   printf ( ’ ( i i ) The Mass o f c o o l i n g w at er i s : %1 . 2 f kg/ min .   \n ’ , M w ) ;

26

27   //NOTE:28   / / i n t he q u e s t i o n c o mp r es s io n p r o c e s s i s m en ti on ed

and p2 i s g i v en a s 0 . 3 5 ba r ( p2<p1 )29   / / whi ch i s wrong and f u r t h e r p2 i s g iv en a s 1 . 3 5 ba r

which i s a l l o w ab l e30   / / so h er e v al ue o f p2 i s t a ke n a s 1 . 3 5 ba r .

120

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 122/137

Scilab code Exa 10.6  Example 6

1   clc

2   clear

3   //DATA GIVEN4   V 1 = 1 4 ;   // q u an t it y o f a i r t o

b e d e l i v e r e d , i n mˆ 3/ mim5   p 1 = 1 . 0 1 3 ;   // i n t a k e p r e s s ur e i n

b a r6   T 1 = 1 5 + 2 7 3 ;   / / i n t a k e t e m p e ra t u r e

i n K7   p 2 = 7 ;   // d e l i v e r y p r e s s u r e

i n b ar8   N = 3 0 0 ;   / / s p e ed o f  

c o m p r e ss o r i n R . P . M.9   n = 1 . 3 ;   / / c o m p r e s s i o n a nd

e x p an s i o n i n d ex10   R = 0 . 2 8 7 ;

11

12   / / c l e a r a n c e volume , Vc = 0 . 0 5 Vs , Vs=s we pt vo lu me13   // swept volume Vs=V1−V3=V1−Vc=V1−0.05Vs14   //V1=1.05Vs15   V p c = V 1 / N / 2 ;

// (V1−V4 ) vo lum e i n du c ed p e r c y c l e i n mˆ 3

16   //V4/V3=(p2/p1 ) ̂ ( 1/ n )17   c = ( p 2 / p 1 ) ^ ( 1 / n ) ;

18   //V4=c ∗V3=c ∗ 0 . 0 5 V s19   //V1−V4=1.05Vs−c ∗ 0 . 0 5 V s20   V s = V p c / ( 1 . 0 5 ) / ( 1 . 0 5 - c * 0 . 0 5 ) ;

/ / v o lu me s w ep t i n mˆ 321

22   / / u s i n g r e l a t i o n ( T2 /T1 ) =( p2 / p1 ) ˆ ( ( n−1)/n) ;23   T 2 = T 1 * ( p 2 / p 1 ) ^ ( ( n - 1 ) / n ) ;

121

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 123/137

/ / d e l i v e r y temp .

T 2 i n K24

25   I P = ( n ) / ( n - 1 ) * p 1 * 1 0 ^ 5 * V p c / 1 0 0 * [ ( p 2 / p 1 ) ^ ( ( n - 1 ) / n ) - 1 ] ;

/ / i n d i c a t e d p ow er i n kW26

27   printf ( ’ ( i ) The Swept volume o f t he c y l i n d e r , Vs i s: %1 . 4 f mˆ 3 .   \n ’ , V s ) ;

28   printf ( ’ ( i i ) The d e l i v e r y t em p er a tu r e , Ts i s : %3 . 0 f  deg . c e l s i u s .   \n ’  , ( T2 - 2 7 3 ) ) ;

29   printf ( ’ ( i i i ) The I n d i c a t e d p ow er , I P i s : %2 . 2 f kW .\n ’ , I P ) ;

3031   //NOTE:32   / / t h e r e i s s l i g h t v a r i a t i o n i n a ns we r s i n t ex tb oo k

due t o r ou nd in g o f f o f v a l u es i n book

122

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 124/137

Chapter 13

Transmission of Motion and

Power

Scilab code Exa 13.1  Example 1

1   clc

2   clear

3   //DATA GIVEN4   N 1 = 2 4 0 ;   // s pe ed o f t he e n g in e

s h a f t i n R . P .M.5   d 1 = 1 . 5 ;   // d i am et e r o f p u l l e y on

e ng i n e s h a f t i n m6   d 2 = 0 . 7 5 ;   // d i am et e r o f p u l l e y on

ma ch ine s h a f t i n m7   t = 0 . 0 0 5 ;   // t h i c k n e s s o f t h e b e l t

i n m8

9   // w it h no s l i p10   // (N2/N1) =(d1+t ) /( d2+t )

11   N 2 = ( d 1 + t ) / ( d 2 + t ) * N 1 ;   / / s p ee d o f t h e m ac hi nes h a f t i n R . P .M.12

13   // w i t h s l i p o f 2%14   S = 2 ;   // s l i p i n %

123

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 125/137

15   // (N2/N1) =(d1+t ) /( d2+t ) ∗((100−S ) / 1 0 0 )

16   N 2 s = ( d 1 + t ) / ( d 2 + t ) * N 1 * ( ( 1 0 0 - S ) / 1 0 0 ) ;17

18   printf ( ’ ( i ) The S pe ed o f m ac hi ne s h a f t , N2 w it h nos l i p i s : %4 . 1 f R . P .M.   \n ’ , N 2 ) ;

19   printf ( ’ ( i i ) The S pe ed o f m ac hi ne s h a f t , N2 w it hs l i p o f 2 p e rc e n t i s : %4 . 1 f R .P .M.   \n ’ , N 2 s ) ;

Scilab code Exa 13.2  Example 2

1   clc

2   clear

3   //DATA GIVEN4   r 1 = 9 0 0 / 2 0 0 0 ;   // r a di u s o f l a r g e r

p u l l ey i n m5   r 2 = 3 0 0 / 2 0 0 0 ;   // r a d i us o f s m a l l e r

p u l l ey i n m6   d = 6 ;   / / d i s t a n c e b et we en t h e

c e n t r e s o f p u l l e y i n m7

8   / / L e n gt h o f c r o s s b e l t , L c r o s s =( p i ) ( r 1+r 2 ) +( r 1 +r 2 )ˆ2 / d+2d ;

9   L c r o s s = ( % p i ) * ( r 1 + r 2 ) + ( r 1 + r 2 ) ^ 2 / d + 2 d ;

10   / / L e n g t h o f o p en b e l t , L op en =( p i ) ( r 1 +r 2 ) +( r 2−r1 ) ̂ 2/ d+2d ;

11   L o p e n = ( % p i ) * ( r 1 + r 2 ) + ( r 2 - r 1 ) ^ 2 / d + 2 d ;

12

13   L r e d = L c r o s s - L o p e n ;   / / l e n g t h t o be r e du c ed14   printf ( ’ The L en gth o f t he b e l t t o be r ed uc ed ,   \n (

t o c h an g e t h e d i r e c t i o n o f r o t a t i o n o f t h ef o l l o w e r p u l l e y s ) i s : %2 . 0 f mm.   \n ’ , ( L r ed * 1 0 0 0 ) ) ;

Scilab code Exa 13.3  Example 3

124

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 126/137

1   clc

2   clear3   //DATA GIVEN4   T 1 = 1 5 0 0 ;   // t e n s i o n on t he t i g h t

s i d e i n N5   T 2 = 1 2 0 0 ;   // t e n s i o n on t he s l a c k

s i d e i n N6   v = 8 0 ;   // s pe e d o f t h e b e l t i n m

/ s7

8   P = ( T 1 - T 2 ) * v ;   / / po wer t r a n s m i t t e d byt h e b e l t i n w a tt s

910   printf ( ’ The Power t r a n s mi t t ed by t he b e l t i s : %2 . 0 f  

kW.   \n ’  , ( P / 1 0 0 0 ) ) ;

Scilab code Exa 13.4  Example 4

1   clc

2   clear

3   //DATA GIVEN4   v = 5 0 0 ;   // s pe e d o f t h e b e l t i n m

/min5   m u = 0 . 3 ;   // c o e f f i c i e n t o f 

f r i c t i o n6   t h e t a = 1 6 0 ;   // a n gl e o f c o nt a ct i n

d e g r e e s7   T 1 = 7 0 0 ;   / /maximum t e n s i o n i n t h e

b e l t i n N8

9   // (T1/T2)=e ̂ (mu∗ t h e t a )10   t h e t a = t h e t a * ( % p i ) / 1 8 0 ;   // t h e ta c o nv e rt e d i n t or a d i a n s

11   T 2 = T 1 / ( % e ^ ( m u * t h e t a ) ) ;   // t e n s i o n on t he s l a c ks i d e i n N

125

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 127/137

12   v = v / 6 0 ;   // s pe ed o f t he b e l t

c o n v er t e d i n t o m/ s13   P = ( T 1 - T 2 ) * v ;   / / po wer t r a n s m i t t e d byt h e b e l t i n w a tt s

14

15   printf ( ’ The Power t r a n s mi t t ed by t he b e l t i s : %2 . 3 f  kW.   \n ’  , ( P / 1 0 0 0 ) ) ;

Scilab code Exa 13.5  Example 5

1   clc

2   clear

3   //DATA GIVEN4   r 1 = 7 5 0 / 2 0 0 0 ;   // r a di u s o f l a r g e r

p u l l ey i n m5   r 2 = 3 0 0 / 2 0 0 0 ;   // r a d i us o f s m a l l e r

p u l l ey i n m6   d = 1 . 5 ;   / / d i s t a n c e b et we en t h e

c e n t r e s o f p u l l e y i n m7   T m s = 1 4 ;   / /maximum s a f e t e n s i o n

i n N/mm8   b = 1 5 0 ;   // w i dt h o f t h e b e l t i n

mm9   v = 5 4 0 ;   // s pe e d o f t h e b e l t i n m

/min10   m u = 0 . 2 5 ;   // c o e f f i c i e n t o f 

f r i c t i o n11

12   T 1 = T m s * b ;   / /maximum t e n s i o n i n t h eb e l t i n N

13   v = v / 6 0 ;   // s pe ed o f t he b e l tc o n v er t e d i n t o m/ s14   // ( i ) f o r open b e l t15   A L P H A o = asin   ( ( r 1 - r 2 ) / d ) * 1 8 0 / ( % p i ) ;   / / a l p h a i n

d e g r e e s

126

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 128/137

16   T H E T A o = 1 8 0 - 2 * A L P H A o ;   // a n g l e o f  

l ap o r c on t a c t i n deg17   T 2 o = T 1 / ( % e ^ ( m u * ( T H E T A o * % p i / 1 8 0 ) ) ) ;   // t e n s i o n ont h e s l a c k s i d e i n N

18   P o = ( T 1 - T 2 o ) * v ;   //pow e rt r an s mi t te d by t he b e l t i n w at ts

19

20   // ( i i ) f o r c r o s s b e l t21   A L P H A c = asin   ( ( r 1 + r 2 ) / d ) * 1 8 0 / ( % p i ) ;   / / a l p h a i n

d e g r e e s22   T H E T A c = 1 8 0 + 2 * A L P H A c ;   // a n g l e o f  

l ap o r c on t a c t i n deg

23   T 2 c = T 1 / ( % e ^ ( m u * ( T H E T A c * % p i / 1 8 0 ) ) ) ;   // t e n s i o n ont h e s l a c k s i d e i n N

24   P c = ( T 1 - T 2 c ) * v ;   //pow e rt r an s mi t te d by t he b e l t i n w at ts

25

26   printf ( ’ ( i ) The Maximum P ow er t r a n s m i t t e d by t h eo pe n b e l t i s : %2 . 3 f kW.   \n ’  , ( P o / 1 0 0 0 ) ) ;

27   printf ( ’ ( i i ) The Maximum P ower t r a n s m i t t e d by t h ec r o s s b e l t i s : %2 . 3 f kW.   \n ’  , ( P c / 1 0 0 0 ) ) ;

Scilab code Exa 13.6  Example 6

1   clc

2   clear

3   //DATA GIVEN4   b = 0 . 2 5 ;   // w i dt h o f t h e b e l t i n m5   t = 0 . 0 0 6 ;   // t h i c k n e s s o f t h e b e l t

i n m

6   r = 9 0 0 / 2 0 0 0 ;   // r a d i us o f t he p u l l e yi n m7   r h o = 1 1 0 0 ;   // d e n s i t y o f t he

m a t e r i a l i n kg /mˆ 38   T p = 2 ;   // p e r m i s s i b l e t e n s i o n o f  

127

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 129/137

t h e b e l t i n MN/mˆ 2

9   r a t i o = 2 ;   / / r a t i o o f T1 /T2=210   N = 2 0 0 ;   // s pe ed o f t he p u l l e y i nR.P.M.

11

12   T m a x = T p * 1 0 ^ 6 * b * t ;   / /maximum s a f e t e n s i o no f t h e b e l t

13   / / c e n t r i f u g a l t e n s i o n , Tc=m∗v ˆ214   m = ( b * t ) * 1 * r h o ;   // mass o f t he b e l t p er

u n i t m et re l e n g th15   v = 2 * ( % p i ) * ( r + t / 2 ) * N / 6 0 ;

16   T c = m * v ^ 2 ;

1718   T 1 = T m a x - T c ;   // t e n s i o n i n t he t i g h t

s i d e i n N19   T 2 = T 1 / r a t i o ;   // t e n s i o n i n t he s l a c k

s i d e i n N20   P = ( T 1 - T 2 ) * v ;   / / po wer t r a n s m i t t e d by

t h e b e l t i n w a tt s21

22

23   printf ( ’ ( i ) The C e n t r i f u g a l t e n s i o n Tc i s : %3 . 1 f N .

\n ’, T c ) ;

24   printf ( ’ ( i i ) The Power t r a n s mi t t e d by t he b e l t i s :%2. 1 f kW.   \n ’  , ( P / 1 0 0 0 ) ) ;

Scilab code Exa 13.7  Example 7

1   clc

2   clear

3   //DATA GIVEN4   P = 3 5 ;   // p ower r e q u i r e d t o bet r an s mi t te d by t he b e l t i n kW

5   d = 1 . 5 ;   // e f f e c t i v e d ia me te r o f  p u l l ey i n m

128

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 130/137

6   N = 3 0 0 ;   // s pe ed o f t he p u l l e y i n

R.P.M.7   t h e t a = 1 1 / 2 4 * 2 * % p i ;   // a n gl e o f c o nt a ct i nr a d i a n s

8   m u = 0 . 3 ;   // c o e f f i c i e n t o f f r i c t i o n

9   t = 0 . 0 0 9 5 ;   // t h i c k n e s s o f t h e b e l ti n m

10   r h o = 1 1 0 0 ;   // d e n s i t y o f t hem a t e r i a l i n kg /mˆ 3

11   s i g m a = 2 . 5 ;   // p e r m i s s i b l e s t r e s s i nMN/mˆ2

1213   v = % p i * d * N / 6 0 ;   // s pe e d o f t h e b e l t i n m

/ s14   //P=(T2−T1 ) ∗v , s o ( T2−T1)=P/v . . . . . . . . . . . . . . . . . . . . ( 1 )15   c = % e ^ ( m u * t h e t a ) ;   // so , T2/T1=c . . . . . . . . ( 2 )16   //By e q ua t i on ( 1 ) and ( 2 ) ,17   T 2 = ( P / v * 1 0 0 0 ) / ( c - 1 ) ;   // t e n s i o n i n t he s l a c k

s i d e i n N18   T 1 = c * T 2 ;   // t e n s i o n i n t he t i g h t

s i d e i n N19

20   //maximum te ns i o n , Tmax=sigma ∗b∗ t =0.23 75∗b∗1 0 ˆ 6 N( 3 )

21   / / c e n t r i f u g a l t e n s i o n , Tc=m∗v ˆ 2 = 5 8 0 0 . 5∗b N( 4 )

22   //T1=Tmax−c( 5 )

23   / /By eq n . ( 3 ) , ( 4 ) and ( 5 )24   b = T 1 / ( ( s i g m a * 1 0 ^ 6 * t ) - ( t * 1 * r h o * v ^ 2 ) ) ;   // w i dt h o f  

t h e b e l t i n m25

26   printf ( ’ The Width o f t h e b e l t i s : %3 . 0 f mm ( s ay 1 50mm) .   \n ’ , ( b * 1 0 0 0 ) ) ;

129

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 131/137

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 132/137

Scilab code Exa 13.9  Example 9

1   clc

2   clear

3   //DATA GIVEN4   T o = 1 0 0 0 ;   / / i n i t i a l t e n s i o n i n t h e

b e l t i n N5   t h e t a = 1 5 0 ;   / / a n g l e o f e mb ra ce i n

d e g r e e s6   m u = 0 . 2 5 ;   // c o e f f i c i e n t o f 

f r i c t i o n7   v = 5 0 0 ;   // s pe e d o f t h e b e l t i n m

/min8

9   // I n i t i a l te ns i on , To=(T1+T2) /210   // so , (T1+T2 ) = 2 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 )11   t h e t a = t h e t a * ( % p i ) / 1 8 0 ;   // t h e ta c o nv e rt e d i n t o

r a d i a n s12   c = % e ^ ( m u * t h e t a ) ;   // so , T2/T1=c . . . . . . . . ( 2 )

13   //By e q ua t i on ( 1 ) and ( 2 ) ,14   T 2 = ( T o * 2 ) / ( c + 1 ) ;   // t e n s i o n i n t he s l a c k

s i d e i n N15   T 1 = c * T 2 ;   // t e n s i o n i n t he t i g h t

s i d e i n N16

17   v = v / 6 0 ;   // s pe ed o f t he b e l tc o n v er t e d i n t o m/ s

18   P = ( T 1 - T 2 ) * v ;   / / po wer t r a n s m i t t e d byt h e b e l t i n w a tt s

19

20   printf ( ’ ( i ) The T e ns io n i n t he t i g h t s i d e T1 i s : %4. 0 f N .   \n ’ , T 1 ) ;

21   printf ( ’ The T e n s i o n i n t h e s l a c k s i d e T2 i s :%3 . 1 f N .   \n ’ , T 2 ) ;

131

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 133/137

22   printf ( ’ ( i i ) The Power t r a n s mi t t e d by t he b e l t i s :

%2. 2 f kW.   \n ’  , ( P / 1 0 0 0 ) ) ;

Scilab code Exa 13.10  Example 10

1   clc

2   clear

3   //DATA GIVEN4   P = 4 0 0 ;   / /maximum v a l u e o f f o r c e

t ha t can be d ev el op ed i n N5   m u = 0 . 2 5 ;   // c o e f f i c i e n t o f 

f r i c t i o n6   d = 0 . 6 ;   / / d i a m et e r o f drum i n m7   // R e fe r t he f i g u r e8   t h e t a = 1 8 0 + 4 5 ;   // a n gl e o f c o nt a ct i n

d e g r e e s9   t h e t a = t h e t a * ( % p i ) / 1 8 0 ;   // t h e ta c o nv e rt e d i n t o

r a d i a n s10

11   //moments about A , Ma= 0,

12   T 1 = P * 1 / 0 . 5 ;13

14   // ( i ) Drum i s r o t a t i n g a n t i c l o c k w i s e15   //T1>T2 ( T1/T2 )=e ̂ (mu∗ t h e t a )16   T 2 = T 1 / ( % e ^ ( m u * t h e t a ) ) ;

17   M c a c = ( T 1 - T 2 ) * ( d / 2 ) ;   //maximum br ak in gt o r q u et h at can be d ev el op ed i n N

18

19   // ( i ) Drum i s r o t a t i n g c l o c k w i s e20   //T2>T1 ( T2/T1 )=e ̂ (mu∗ t h e t a )

21   T 2 = T 1 * ( % e ^ ( m u * t h e t a ) ) ;22   M c c = ( T 2 - T 1 ) * ( d / 2 ) ;   //maximum br ak in gt o r q u et h at can be d ev el op ed i n N

23

24   printf ( ’ ( i ) The Maximum b r a k i n g t o r q u e t h a t c an b e

132

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 134/137

d ev el op ed i n a n t i c l o c k w i s e d i r e c t i o n i s : %3 . 0 f Nm

.   \n ’ , M c a c ) ;25   printf ( ’ ( i i ) The Maximum b r a k i n g t o r q u e t h a t c an b ed e ve l op e d i n c l o c k w i s e d i r e c t i o n i s : %3 . 1 f Nm.   \

n ’ , M c c ) ;

Scilab code Exa 13.11  Example 11

1   clc

2   clear3   //DATA GIVEN4   P t = 8 0 ;   / / po wer t o be

t r a n s mi t t e d by t he r op e i n kW5   d = 1 . 5 ;   // d ia me te r o f p u l l e y i n

m6   N = 2 0 0 ;   // s pe ed o f t he p u l l e y i n

R.P.M.7   a l p h a = 4 5 / 2 ;   // s emi a n gl e o f g ro ov e

i n d e gr e e s8   t h e t a = 1 6 0 ;   // a n gl e o f c o nt a ct i n

d e g r e e s9   m u = 0 . 3 ;   // c o e f f i c i e n t o f 

f r i c t i o n10   m = 0 . 6 ;   // mass o f e ac h r op e p er

u n i t m et re l e n g th11   T s = 8 0 0 ;   // s a f e p u l l i n N12

13   / / c e n t r i f u g a l t e n s i o n , Tc=m∗v ˆ214   v = ( % p i ) * d * N / 6 0 ;   / / v e l o c i t y

o f t he r op e i n m/ s

15   T c = m * v ^ 2 ;16

17   T 1 = T s - T c ;   // t e n s i o n i nt h e t i g h t s i d e i n N

18   // (T1/T2)=e ̂ (mu∗ t h e t a )

133

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 135/137

19   t h e t a = t h e t a * ( % p i ) / 1 8 0 ;   / / t h e t a

c on v e rt e d i n t o r a di a n s20   a l p h a = a l p h a * ( % p i ) / 1 8 0 ;   // al p hac on v e rt e d i n t o r a di a n s

21   T 2 = T 1 / ( % e ^ ( m u * t h e t a / sin ( a l p h a ) ) ) ;   / / t e n s i o n ont h e s l a c k s i d e i n N

22   p = ( T 1 - T 2 ) * v ;   //pow e rt r an s mi t te d by t he b e l t i n w at ts

23

24   / / no . o f r o p e s r e q u i r e d , n=T o ta l po wer t r a n s m i t t e d /Power t r a n s m i t t e d by e ac h r o pe

25   n = P t / ( p / 1 0 0 0 ) ;

2627   // I n i t i a l t en s i o n in rope , To=(T1+T2+2Tc) /228   T o = ( T 1 + T 2 + 2 * T c ) / 2 ;

29

30   printf ( ’ ( i ) The Number o f r o p es r e q u i r e d f o r t hed r i v e s i s : %1 . 1 f s a y %1 . 0 f .   \n ’ , n , n ) ;

31   printf ( ’ ( i i ) The I n i t i a l t e n s i o n i n t h e r op e , To i s: %3 . 2 f N .   \n ’ , T o ) ;

Scilab code Exa 13.12  Example 12

1   clc

2   clear

3   //DATA GIVEN4   T = 7 2 ;   / / number o f t e e t h5   P c = 2 6 ;   // c i r c u l a r p i t ch i n mm6

7   / / c i r c u l a r p i t ch , Pc=( p i ∗D)/T

8   D = P c * T / ( % p i ) ;   // p i t c h d i am et e r i n m9   //Pc∗Pd=(p i )10   P d = ( % p i ) / P c ;   // d i a m et r a l p i t c h i n

t e e t h /mm11   // Module , m=D/T

134

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 136/137

12   m = D / T ;   / / m o d ul e i n mm/ t o o t h

1314   printf ( ’ ( i ) The P i t c h d ia me te rm , D i s : %3 . 2 f mm.   \n

’ , D ) ;

15   printf ( ’ ( i i ) The D i a me t ra l p i t ch , Pd i s : %1 . 2 f  t e e t h /mm.   \n ’ , P d ) ;

16   printf (  ’ ( i i i ) The M odul e , m i s : %1. 2 f mm/ t o ot h .   \n ’ ,m

) ;

Scilab code Exa 13.13  Example 13

1   clc

2   clear

3   //DATA GIVEN4   T a = 4 0 ;   // number o f t e e t h o f  

g e a r A5   T b = 1 0 0 ;   // number o f t e e t h o f  

g e a r B6   T c = 5 0 ;   // number o f t e e t h o f  

g e a r C

7   T d = 1 5 0 ;   // number o f t e e t h o f  g e a r D

8   T e = 5 2 ;   // number o f t e e t h o f  g e a r E

9   T f = 1 3 0 ;   // number o f t e e t h o f  g e a r F

10   N a = 1 0 0 0 ;   / / s p ee d o f t h e mo to rs h a f t i n R . P .M.

11

12   //(Nf/Na)=(Ta/Tb) ∗ (Tc/Td) ∗ ( T e / T f )

13   N f = ( T a / T b ) * ( T c / T d ) * ( T e / T f ) * N a ;   // S peed o f t heo ut pu t s h a f t i n R . P .M.14

15   printf ( ’ The S peed o f t he o ut pu t s h a ft , Nf i s : %3 . 2 f  R.P.M.   \n ’ , N f ) ;

135

7/21/2019 Elements of Mechanical Engineering - R. K. Rajput

http://slidepdf.com/reader/full/elements-of-mechanical-engineering-r-k-rajput 137/137

top related