exchangebias(eb): ii.fm partial wall models

Post on 09-Apr-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Exchange Bias(EB): II.FM Partial Wall Models

Detian Yang2019.11.01

Outline

1. Semiclassical Justification of the phenomenological free energy formulaR L Stamps 2000 J. Phys. D: Appl. Phys. 33 R247

2. FM Partial (Incomplete) Domain Wall Model

M. Kiwi, J. Mejia-Lopez, R. D. Portugal and R. Ramirez, Europhys. Lett., 48 (5), pp. 573-579 (1999) M. Kiwi et al. / Solid State Communications 116 (2000) 315โ€“319 M.Kiwi et al. Appl. Phys. Lett. 75, 3995 (1999)J. Mejia-Lopez et al. Journal of Magnetism and Magnetic Materials 241 (2002) 364โ€“370

Spin Vector Array Model(SVAM)

(1) Magnetic moments are represented by an array of classical spin vectors ๐‘บ"

(2) ๐‘บ"๐’ŠLattice structure is taken as simple cubic

(3) Equilibrium configurations are found by numerically integrating torque equations using a relaxation method: find zero torque configurations by numerically integrating the Landauโ€“Lifshitz equations of motion for each spin

Kim J-V, Wee L, Stamps R L and Street R 1999 IEEE Trans. Magn. 35 2994โ€“7

L. Wee, R. L. Stamps, and R. E. Camley ,Journal of Applied Physics 89, 6913 (2001)

Landauโ€“Lifshitz equations

Semiclassical Justification of the Phenomenological Model

Goal: Under a series of acceptable assumptions, SVAM is equivalent to phenomenological model

(2) Uncompensated interface: ๐ฝ% โ‰ซ ๐ฝ', while compensated interface: ๐ฝ% = 0, ๐ฝ' โ‰  0

(1) Justify the existence of biquadratic term, i.e. ๐ฝ' โ‰  0

(3) Suggest the potential existence of FM partial wall

R.L. Stamps, J. Phys. D: Appl. Phys. 33 (2000) R247

Semiclassical Justification of the Phenomenal Model

๐‘“": lattice vectors of FM; ๐‘Ž", ๐‘": lattice vectors of AFM;.๐‘›0, .๐‘›10: unit vectors of anisotropy easy axis of FM and AFM;

FM

AFM

Interface

๐›ฟ

๐น ๏ฟฝโƒ‘๏ฟฝ + ๐›ฟ โ‰ˆ ๐น ๏ฟฝโƒ‘๏ฟฝ + ๐›ฟ 8 โˆ‡๐น ๏ฟฝโƒ‘๏ฟฝ + %'๐›ฟ 8 โˆ‡

'๐น ๏ฟฝโƒ‘๏ฟฝ ๏ผŒ ๐น = ๐‘“", ๐‘™", ๐‘ก"

๐ท0 = ๐‘ง0 ๐ฝ0 ๐›ฟ'/2,

๐ท10 = ๐‘ง10 ๐ฝ10 ๐›ฟ'/2

Assumptions: (1) ) ๐‘ญ ๐’™ change slowly over lattice spacing length scales

(2) ๐‘ญ ๐’™ = ๐‘ญ ๐’š

(3) Nearest coordination neighbors

๐ฝยฑ =14 (๐ฝ1 ยฑ ๐ฝH)

๐“”๐’Š๐’๐’•๐’†๐’“ = ๐Ÿ๐ ๐‘ฑR๐’‡ 8 ๐’ + ๐‘ฑU๐’‡ 8 ๏ฟฝโƒ‘๏ฟฝ

z

Minimizing ๐“” = ๐“”๐’‡ + ๐“”๐’‚๐’‡ + ๐“”๐’Š๐’๐’•๐’†๐’“ by considering variations of ๐’‡, ๐’ and ๏ฟฝโƒ‘๏ฟฝwith constraints |๐’‡| = |๐’‚| = |๐’ƒ| = ๐Ÿ, i.e., |๐’‡| = ๐Ÿ, ๐’๐Ÿ + ๐’•๐Ÿ = ๐Ÿ

๐‘ซ๐’‚๐’‡ is large and so AFM two sublattice magnetizations remain nearly antiparallel

๐’ is small and ๐ƒ approaches to ๐…๐Ÿ

. Define ๐œท = ๐…๐Ÿโˆ’ ๐ƒ, ๐œท โ‰ช ๐Ÿ

๐ป

๐œŒ

๐ง๐Ÿ

โ„ฐ โ‰ˆ โˆซfRg โˆ’๐ป๐‘€0 cos ๐œƒ โˆ’ ๐œŒ + ๐ท0๐œƒm' + ๐พ0๐‘๐‘œ๐‘ '๐œƒ ๐‘‘๐‘ฆ

+ โˆซUgf โˆ’๐ป๐‘€10๐›ฝ cos ๐œ™ โˆ’ ๐œŒ + 2๐ท10 1 โˆ’ 2๐›ฝ' (๐›ฝm

'โˆ’๐œ™m') โˆ’ 2๐พ10(๐›ฝ'๐‘๐‘œ๐‘ '๐œ™ + (1 โˆ’ ๐›ฝ')๐‘ ๐‘–๐‘›'๐œ™) ๐‘‘๐‘ฆ+ 2๐œ–[๐ฝR๐›ฝy cos ๐œƒy โˆ’ ๐œ™y โˆ’ ๐ฝU(1 โˆ’

%'๐›ฝy

') sin ๐œƒy โˆ’ ๐œ™y ]

where ๐œƒy, ๐œ™y, ๐›ฝy denotes the values at ๐‘ฆ = 0

AFM (๐’(๐’š)) Direction: }โ„ฐ}~= 0 Magnitude: }โ„ฐ

}๏ฟฝ= 0

Equations

Boundary Condition at ๐’š = ๐ŸŽ

๐‘Ž๐‘“ ๐‘Ž๐‘“

FM: neglecting any deformation of the ferromagnet order(๐œฝ๐’š = ๐ŸŽ) and FM anisotropy(๐‘ฒ๐’‡ = ๐ŸŽ) ๐›ฟโ„ฐ๐›ฟ๐œƒ = 0

Assumptions: (1) canting of the antiferromagnet at the interface is small (๐œท, ๐œท๐’š, ๐“ โ‰ช ๐Ÿ)(2)there is no significant twist in the ferromagnet

Interface Exchange Energy

๐œท = ๐‘ช๐’†๐œŸ๐’š

๐ถ = โˆ’ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝU~๏ฟฝ๏ฟฝ๏ฟฝR๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝU~๏ฟฝ

= โˆ’ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝU~๏ฟฝ๏ฟฝ๏ฟฝ

%

%R๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

= โˆ’ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝU~๏ฟฝ๏ฟฝ๏ฟฝ

[1 โˆ’ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝU~๏ฟฝ๏ฟฝ๏ฟฝ

+ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝU~๏ฟฝ๏ฟฝ๏ฟฝ

'โˆ’ ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝ๏ฟฝ ๏ฟฝ๏ฟฝU~๏ฟฝ

๏ฟฝ๏ฟฝ

๏ฟฝ+ โ‹ฏ ]

๐‘ฑ๏ฟฝ๐ˆ๐œทโ‰ช ๐Ÿ (interlayer exchange relatively weak)

Boundary Condition at ๐’š = ๐ŸŽ

Where ๐›ผ = โˆ’๐œ™; ๐œŽ1 = 2 2๐œŽH;๐œƒยฑ = 2 2๐œ–๐ฝยฑ

๐ป

๐œŒ

๐ง๐Ÿ(1) Uncompensated case: ๐ฝ1 = 0, ๐‘œ๐‘Ÿ ๐ฝH = 0, ๐ฝ% โ‰  0, ๐ฝ' โ‰  0

(2) compensated case: ๐ฝ1 = ๐ฝH, ๐ฝ% = 0, ๐ฝ' โ‰  0

You can also derive these two equations from phenomenological model !

๐›ผ

FM Partial Wall Models

๐›ฟโ„ฐ๐›ฟ๐œƒ = 0

โ„ฐ โ‰ˆ ยกf

Rgโˆ’๐ป๐‘€0 cos ๐œƒ โˆ’ ๐œŒ + ๐ท0๐œƒm' + ๐พ0๐‘๐‘œ๐‘ '๐œƒ ๐‘‘๐‘ฆ

+ โˆซUgf ยข

ยฃโˆ’๐ป๐‘€10๐›ฝ cos ๐œ™ โˆ’ ๐œŒ + 2๐ท10 1 โˆ’ 2๐›ฝ' (๐›ฝm

'โˆ’๐œ™m') โˆ’2๐พ10(๐›ฝ'๐‘๐‘œ๐‘ '๐œ™ + (1 โˆ’ ๐›ฝ')๐‘ ๐‘–๐‘›'๐œ™) ๐‘‘๐‘ฆ+ 2๐œ–[๐ฝR๐›ฝy cos ๐œƒy โˆ’ ๐œ™y โˆ’ ๐ฝU(1 โˆ’

%'๐›ฝy') sin ๐œƒy โˆ’ ๐œ™y ]

FM partial wall could exist!

Neglecting FM anisotropy(๐‘ฒ๐’‡ = ๐ŸŽ),

FM Partial Wall Models in FeF2/Fe

M. Kiwi, J. Mejia-Lopez, R. D. Portugal and R. Ramirez, Europhys. Lett., 48 (5), pp. 573-579 (1999)

J. Noguรฉs, D. Lederman, T. J. Moran, Ivan K. Schuller, and K. V. Rao, Appl. Phys. Leb. 68, 3186 (1996)

sequential e-beam evaporations

MgO (100)

FeF2 (110) 90nmFe polycrystalline (110) (100) 6.7nm, 13nm, 130nm

Compensated AFM interface

Prototype system

Kirkpatrick S., Gelatt C. D. and Vechi M. P., Science, 220 (1983) 671

FM Partial Wall Models in FeF2/Fe

Camley R. E., Phys. Rev. B, 35 (1987) 3608; Camley R. E. and Tilley D. R., Phys. Rev. B, 37 (1988) 3413.

Range: A unit interface magnetic cell extends up to 65 F, and many AF monolayers;

Methods: Stimulated annealing and Camleyโ€™s method;

Results and Conclusions: (0) ๐‘‘ยคยฅยฆ~100๐‘›๐‘š, ๐‘‘ยคยฉยฅยฆ~a few monolayers(1) When measurement field points opposite to the cooling field, a long-rangeFM partial wall develops;

(2) Interface layer AF spins deviate significantly relative to the AF bulk, only a tiny deviation develops in the second AF layer and no appreciable cantingin the third;

(3) The presence of canted spins at the AF interface layer is no guarantee for ๐ปยช โ‰  0 in the absence of a symmetry-breaking mechanism

Pre-theoretical Simulations

Note for (3) โ€œwe performed simulations with a fraction of AF interface magnetic moments clamped,

๐‘‘ยค~ ๐ด/๐พ

FM Partial Wall Models in FeF2/FeAssumptions:(1) Perfect, flat, compensated two-sublahce AFM interface;(2) Strong AFM anisotropy(3)Symmetry-breaking Mechanism: During field cooling, the first AF interface layer freezes into the canted

spin configuraXon when ๐‘ป โ†’ ๐‘ป๐‘ต, and remains frozen in a metastable state during the cycling of ๐‘ฏ, where |๐‘ฏ| < ๐‘ฏ๐’„๐’‡For a single magnetic cell

Where ๐‘† = |๐‘†|; ๐œ‡ยด: Bohr magneton; ๐‘”: Fe gyromagnetic ratio๐ป:external magnetic field; ๐ฝยถ: Heisenberg exchange parameter; ๐พยท: uniaxial anisotropy; ๏ฟฝฬ‚๏ฟฝยฉยฅ: unit vector along AF uniaxial anisotropy direction;๐‘†(ยบ), ๐‘†(๏ฟฝ): canted spin vectors in the AF interface, belonging to ๐›ผ- and ฮฒ- sublattices; ๐‘†ยผ: spin vectors of the ๐‘˜-th FM layer, with 1 โ‰ค ๐‘˜ โ‰ค ๐‘, ๐‘˜=1 labeling FM interface;

FM Partial Wall Models in FeF2/Fe

Part I : field cool process

E =โ„‹ร‚รƒ +โ„‹รƒ/ร‚รƒ

S' =

๏ฟฝฬ‚๏ฟฝยฉยฅ

๐ปร…0

๐‘†(ยบ)

๐‘†(๏ฟฝ)

๐œƒ(ยบ)

๐œƒ(๏ฟฝ)

๐œƒ = ๐œƒ(ยบ) = โˆ’ ๐œƒ(๏ฟฝ)

describes the behavior of the system during the cooling process andthe removal of the cooling field

}ยช}๏ฟฝ= 0,

}ร†ยช}๏ฟฝร†

> 0๐œƒ = ๐œƒร…

This provides the symmetry breaking required for EB to develop !

(1) |๐ปร…0| < 2J โ„รƒ ยฉยฅ โˆ• ๐œ‡ยด๐‘”, ๐œƒ = ๐œƒร… >ร‹'

, Negative EB(2)|๐ปร…0| > 2J โ„รƒ ยฉยฅ โˆ• ๐œ‡ยด๐‘”, ๐œƒ = ๐œƒร… <

ร‹'

, Positive EB

(3) |๐ปร…0| = 2J โ„รƒ ยฉยฅ โˆ• ๐œ‡ยด๐‘”, ๐œƒ = ๐œƒร… =ร‹'

, No EB

Analytical Results:

Define ๐œƒ = ร‹'+ ๐›พ, and expand ๐ธ ๐œƒ relative to ๐›พ, then

minimizing ๐ธ ๐œƒ , to the second order of ๐›พ, we get

FM Partial Wall Models in FeF2/FePart II : measurement process

ฯต =โ„‹ร‚รƒ +โ„‹รƒ/ร‚รƒ

๐ฝยฅS'=

๐œƒยผ๐œƒ%๐ปร…0

๐‘†ยผ

FM

= 0

If ๐œ… = 0, ๐œƒ = 0, ๐œ‹

= 0

Analykcal Results:

Define , to the second order of ๐›ฟ

top related