fast arithmetical algorithms in m bius number systems

Post on 17-Oct-2021

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fast arithmetical algorithms inMobius number systems

Petr KurkaCenter for Theoretical Study

Academy of Sciences and Charles University in Prague

Valparaiso, November 2011

Iterative systems

X compact metric space, A finite alphabet(Fa : X → X )a∈A continuous.(Fu : X → X )u∈A∗, Fuv = Fu ◦ Fv , Fλ = Id

Theorem(Barnsley) If (Fa : X → X )a∈A arecontractions, then there exists a unique attractorY ⊆ X with Y =

⋃a∈A Fa(Y ), and a continuous

surjective symbolic mapping Φ : AN → Y

{Φ(u)} =⋂

n>0

Fu[0,n)(X ), u ∈ AN

Binary system A = {0, 1}, Φ2 : AN → [0, 1]

F0(x) =x

2, F1(x) =

x + 1

2

Φ2(u) =∑

i≥0

ui · 2−i−1, u ∈ AN

0 1

[0][1]

Expansion graph: xa→ F−1

a (x) if x ∈ Wa = Fa[0, 1]

Binary signed system is redundant

A = {1, 0, 1}, Φ3 : AN → [−1, 1]

F1(x) =x − 1

2, F0(x) =

x

2, F1(x) =

x + 1

2

Φ3(u) =∑

i≥0

ui · 2−i−1, u ∈ AN

-1 1

[1] - [0] [1]

Real orientation-preserving Mobius transformations

Ma,b,c ,d(x) =ax + b

cx + d, ad − bc > 0

act on R = R ∪ {∞}and on U = {z ∈ C : ℑ(z) > 0}

Stereographic projection d(z) = iz+1z+i

d : R → ∂D = {z ∈ C : |z | = 1} unit circled : U → D = {z ∈ C : |z | < 1} unit disc

Disc Mobius transformations M = d ◦M ◦ d−1

F0(z) =3z−iiz+3

F0(x) = x/2hyperbolic

F1(z) =(2+i)z+1z+2−i

F1(x) = x + 1parabolic

F2(z) =(7+2i)z+i

−iz+(7−2i)

F2(x) =4x+13−x

elliptic

1/0

-4

-2

-1

-1/2

-1/4

0

1/4

1/2

1

2

4

1/0

-3

-2

-1

0

1

2

3

1/0

-1

0

1

Mean value E(Mℓ) =

∂D

z d(Mℓ) = M(0)

Circle metric and derivation

the length of arc between d(x) and d(y):

(x , y) = 2 arcsin|x − y |√

(x2 + 1)(y 2 + 1)

circle derivation of M(x) = (ax + b)/(cx + d):

M•(x) = limy→x

(M(x),M(y))

(x , y)

=(ad − bc)(x2 + 1)

(ax + b)2 + (cx + d)2

Contracting and expanding intervals

Uu = {x ∈ R : F •u (x) < 1}, Fu(Uu) = Vu

Vu = {x ∈ R : (F−1u )•(x) > 1}

F(x)=x/2UV

F(x)=x+1U

V−√2

−√22

√2

√22 −1

212

Mobius number system(MNS) (F ,W)

(Fa : R → R)a∈A Mobius transformationsWa ⊆ Va expansion intervals

⋃a∈AWa = R

Expansion graph: xa→ F−1

a (x) if x ∈ Wa

xu0→ F−1

u0(x)

u1→ F−1u0u1

(x)u2→ · · ·

x ∈ Wu0, F−1u0

(x) ∈ Wu1, F−1u0u1

(x) ∈ Wu2

Wu := Wu0 ∩ Fu0(Wu1) ∩ · · · ∩ Fu[0,n)(Wun)

x ∈ Wu iff u is the label of a path with source x :

Expansion subshift:

SW := {u ∈ AN : ∀n,Wu[0,n) 6= ∅}

Symbolic extension:

Φ(u) = limn→∞

Fu[0,n)(i) ∈ R, u ∈ SW

Φ : SW → R is continuous and surjective.

Continued fractions a0 − 1

a1 −1

a2 − · · ·= F a0

1 F0Fa11 F0 · · ·

F1(x) = x − 1, W1 = (∞,−1)

F0(x) = −1/x , W0 = (−1, 1)

F1(x) = x + 1, W1 = (1,∞)

SW is a SFT.

forbidden words:

00, 11, 11, 101, 101

xa→ F−1

a (x) if x ∈ Wa

-2 -1 0 1 2 3

11

0

1-

-1/1

-1/2-1/2

-1/3-1/3

0/1

1/2

1/1

1/31/2

0/1

1/3

3/2

2/1

1/1

3/2

2/1

3/1

3/14/1

4/11/0

-2/1

-3/2

-3/2

-1/1

-3/1

-2/1

-4/1

-3/1

1/0

-4/1

0

1 1-

01 01 -

10

11

10-

11--

010

011

010 -

011 --

101

-

110

111

101

-

110--

111 ---

Binary signed system, A = {1, 1, 2}

F1(x) = (x − 1)/2

F1(x) = (x + 1)/2

F2(x) = 2x

W1 = (−1, 0)1→ (−1, 1)

W1 = (0, 1)1→ (−1, 1)

W2 = (1,−1)2→ (12 ,−1

2)

SW is a SFT.

forbidden words:

12, 12, 211, 211

SW = {2nu : u ∈ {1, 1}N}Φ(2nu) =

∑∞i=0 ui · 2n−i

7/8

1/1

3/4

7/8

5/8

3/4

1/2

5/83/8

1/21/4

3/8

1/8

1/40/1

1/8

3/2

2/1

1/1

3/2

2/1

4/1

4/18/1

8/1

-8/1

-8/1

-4/1

-4/1

-2/1

-3/2

-1/1

-2/1

-3/2

-1/8

0/1

-1/4 -1/8

-3/8 -1/4

-1/2

-3/8

-5/8

-1/2

-3/4

-5/8

-7/8

-3/4

-1/1

-7/8

1

2

1- 11

11

-

21

22

21 -

11 -

11 --

111

111 -

111 -

111

--

211

221

222

221 -

211 --

111

-

111- -

111 --

111 ---

Fractional bilinear functions

P(x , y) =axy + bx + cy + d

exy + fx + gy + h, M(x) =

ax + b

cx + d.

Mx =

a 0 b 00 a 0 b

c 0 d 00 c 0 d

, My =

a b 0 0c d 0 00 0 a b

0 0 c d

P(Mx , y) = PMx(x , y), P(x ,My) = PMy(x , y),MP(x , y) are fractional bilinear functions.

Bilinear graph

vertices: (P , u, v), u, v ∈ SW .

(P , u, v)a→ (F−1

a P , u, v) if P(Wu0,Wv0) ⊆ Wa

(P , u, v)λ→ (PF x

u0, σ(u), v)

(P , u, v)λ→ (PF y

v0, u, σ(v))

Proposition If u, v ∈ SW and w ∈ AN is a label of apath with source (P , u, v), then w ∈ SW andΦ(w) = P(Φ(u),Φ(v)).

Linear graph

vertices: (M , u) ∈ M1 × SW ,

emission: (M , u)a→ (F−1

a M , u) if M(Wu0) ⊆ Wa

absorption: (M , u)λ→ (MFu0, σ(u))

Proposition There exists a path with source (M , u)whose label w = f (u) ∈ SW and Φ(w) = M(Φ(u)).

If M remain bounded, then the algorithm has lineartime complexity.

Linear graph

vertices: (M , u) ∈ M1 × SW ,

emission: (M , u)a→ (F−1

a M , u) if M(Wu0) ⊆ Wa

absorption: (M , u)λ→ (MFu0, σ(u))

Proposition There exists a path with source (M , u)whose label w = f (u) ∈ SW and Φ(w) = M(Φ(u)).

If M remain bounded, then the algorithm has lineartime complexity.

Bimodular group: det(M) = 2p

0_1

1_2

1_3

1_11_1

3_1

2_1

-2__1

-3__1

-1__1-1__1

-1__3

-1__2

0_1

1_0

-1__0

1

0

10

0

101

0

1012

0

1

1

11

1

110

1

1102

1

2

2

20

2

201

2

2011

2

2

3

21

3

210

3

2101

3 2

4 21 -

4 210

-

4 2101

-

4

2

5

20

5

201

-

5

2011

-

5

1

6

11 -

6

110

-

6

1102

-

6

1

7

10

7

101

-

7

1012

-

7

1

2

3

det(M) = 2, ||M || = 6, tr(M) = 3

a 0 1 2 3

Fax

x+2x+12

2xx+1 2x + 1

Wa = Va (−13 , 1) (0, 2) (12 ,∞) (1,−3)

Redundant bimodular system Wa = V(Fa)

1/0

-7/1

-5/1

-3/1

-2/1

-3/2

-4/3

-1/1

-3/4-2/3

-1/2

-1/3 -1/5

-1/7

0/1

1/7

1/5

1/3

1/2

2/3

3/4

1/1

4/33/2

2/1

3/15/1

7/1

0

12

345

6

7

00 01

02

03

04

06

07

10

1112

13

15

1617

20

21

22

23

2425

2630

31

32

3334

35

37

40

42

43

4445

46

47

51

5253

54

55

56

57

60

61

62

64

65

66

67

70

71

73

74

75

76 77

Top five algorithm:Keeps five matrices with the smallest norm.

Ergodic theory of singular transformations

M(x) = ax+bcx+d

, ad − bc = 0

M = {(x , y) ∈ R2: (ax0 + bx1)y1 = (cx0 + dx1)y0}

= (R× {sM}) ∪ ({um} × R)

sM = M(i) ∈ {ac, bd} ∩ R: stable point

uM = M−1(i) ∈ {−ba,−d

c} ∩ R: unstable point

If M is singular, then sMF = sM , uFM = uM .Emission acts on columns, absorption acts on rowsof singular matrices.

Growth of norm ||x || =√

x20 + x21

M•(x0x1) =

(ad − bc)(x20 + x21 )

(ax0 + bx1)2 + (cx0 + dx1)2

=det(M) · ||x ||2||M(x))||2

||M(x)||||x || =

√det(M)

M•(x)

Invariant emission measure

Partition of unity wa : R → [0, 1], a ∈ A

supp(wa) ⊆ Wa,∑

a∈Awa(x) = 1

Emission process xwa→ F−1

a (x) has a uniqueLebesgue-continuous invariant measure µ.

en =∑

u∈Ln(SW)

1

2

∫lndet(Fu)

(F−1u )•

en+m ≤ en + em: emission quotients

Invariant absorption measure

Pa =

∫wa dµ, Pab =

∫wa · wb ◦ F−1

a dµ

SW is a SFT of order 2: Rab = Pab/Pa.

Absorption process (x , a)Rab−→ (F t

b(x), b) in R× A

has a unique invariant measure ν(U , a) = Paνa(U)

an =∑

au∈Ln(SW)

1

2Pau

∫lndet(Fu)

(F tu)

• dνa

an+m ≤ an + am: absorption quotients

Transaction quotient

E = limn→∞

exp(en/n) : Emission quotient

A = limn→∞

exp(an/n) : Absorption quotient

T = E · A : Transaction quotient

T >√r : positional r -ary system (Heckmann).

T < 1.1: redundant bimodular system.

Conjecture There exists a multiplication algorithmwith average linear time complexity.

top related