feasibility of p-adic polynomials

Post on 10-Dec-2021

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Feasibility of p-adic Polynomials

Davi da SilvaUniversity of Chicago

July 27, 2011

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Motivation and applications

Cryptography

Factoring rational polynomials

Number theory

Question: given a system of polynomials over Qp , whatare its roots?

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Motivation and applications

Cryptography

Factoring rational polynomials

Number theory

Question: given a system of polynomials over Qp , whatare its roots?

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

What are the p-adics?

Recall from real analysis that the real numbers R are theCauchy sequence completion of Q with respect to themetric d(x, y) = |x − y |, where | · | is the usual absolutevalue, where the normal operations on Q are naturallyextended to R.

For a fixed prime number p, we can construct a metricfrom a different absolute value function. Note that for anynonzero rational number q, we can give it a unique primefactorization, allowing negative exponents (e.g.,28/9 = 223−271).If pk appears in the factorization of q, then we define thep-adic absolute value of q to be |q|p = p−k . (E.g.,|28/9|2 = 2−2 = 1/4, |28/9|3 = 32 = 9, |28/9|5 = 5−0 = 1.)If we additionally define |0|p = 0, then the functiondp(x, y) = |x − y |p defines a metric. We define the p-adicnumbers Qp to be the completion of Q with respect to thisnew metric dp .

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

What are the p-adics?

Recall from real analysis that the real numbers R are theCauchy sequence completion of Q with respect to themetric d(x, y) = |x − y |, where | · | is the usual absolutevalue, where the normal operations on Q are naturallyextended to R.For a fixed prime number p, we can construct a metricfrom a different absolute value function. Note that for anynonzero rational number q, we can give it a unique primefactorization, allowing negative exponents (e.g.,28/9 = 223−271).

If pk appears in the factorization of q, then we define thep-adic absolute value of q to be |q|p = p−k . (E.g.,|28/9|2 = 2−2 = 1/4, |28/9|3 = 32 = 9, |28/9|5 = 5−0 = 1.)If we additionally define |0|p = 0, then the functiondp(x, y) = |x − y |p defines a metric. We define the p-adicnumbers Qp to be the completion of Q with respect to thisnew metric dp .

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

What are the p-adics?

Recall from real analysis that the real numbers R are theCauchy sequence completion of Q with respect to themetric d(x, y) = |x − y |, where | · | is the usual absolutevalue, where the normal operations on Q are naturallyextended to R.For a fixed prime number p, we can construct a metricfrom a different absolute value function. Note that for anynonzero rational number q, we can give it a unique primefactorization, allowing negative exponents (e.g.,28/9 = 223−271).If pk appears in the factorization of q, then we define thep-adic absolute value of q to be |q|p = p−k . (E.g.,|28/9|2 = 2−2 = 1/4, |28/9|3 = 32 = 9, |28/9|5 = 5−0 = 1.)

If we additionally define |0|p = 0, then the functiondp(x, y) = |x − y |p defines a metric. We define the p-adicnumbers Qp to be the completion of Q with respect to thisnew metric dp .

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

What are the p-adics?

Recall from real analysis that the real numbers R are theCauchy sequence completion of Q with respect to themetric d(x, y) = |x − y |, where | · | is the usual absolutevalue, where the normal operations on Q are naturallyextended to R.For a fixed prime number p, we can construct a metricfrom a different absolute value function. Note that for anynonzero rational number q, we can give it a unique primefactorization, allowing negative exponents (e.g.,28/9 = 223−271).If pk appears in the factorization of q, then we define thep-adic absolute value of q to be |q|p = p−k . (E.g.,|28/9|2 = 2−2 = 1/4, |28/9|3 = 32 = 9, |28/9|5 = 5−0 = 1.)If we additionally define |0|p = 0, then the functiondp(x, y) = |x − y |p defines a metric. We define the p-adicnumbers Qp to be the completion of Q with respect to thisnew metric dp .

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Basic facts

We can extend +, ·, and | · |p to Qp , turning Qp into a fieldcontaining Q.

Every p-adic number q can be expressed uniquely in theform:

∞∑i=k

aip i

where the ai are integers between 0 and p − 1. This iscalled the p-adic expansion of q.

Qp cannot be turned into an ordered field and is totallydisconnected.

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Basic facts

We can extend +, ·, and | · |p to Qp , turning Qp into a fieldcontaining Q.

Every p-adic number q can be expressed uniquely in theform:

∞∑i=k

aip i

where the ai are integers between 0 and p − 1. This iscalled the p-adic expansion of q.

Qp cannot be turned into an ordered field and is totallydisconnected.

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Basic facts

We can extend +, ·, and | · |p to Qp , turning Qp into a fieldcontaining Q.

Every p-adic number q can be expressed uniquely in theform:

∞∑i=k

aip i

where the ai are integers between 0 and p − 1. This iscalled the p-adic expansion of q.

Qp cannot be turned into an ordered field and is totallydisconnected.

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Polynomials over Qp

Systems of p-adic polynomials can be reduced to singlepolynomial equations through trickery. Over R, it is easy tosee that a system of polynomials f1, . . . , fn has a root if andonly if the following polynomial has a root:

(f1)2 + (f2)2 + · · ·+ (fn)2

Something similar, but more complicated is possible overQp

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Polynomials over Qp

Two levels of complexity: number of variables and numberof terms.

Define Fn,m to be the set of polynomials in n variables andm terms.E.g., if f(x, y) = 4 + 2x10y4 + x15y6, then f ∈ F2,3.

But we can reduce further...

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Polynomials over Qp

Two levels of complexity: number of variables and numberof terms.

Define Fn,m to be the set of polynomials in n variables andm terms.E.g., if f(x, y) = 4 + 2x10y4 + x15y6, then f ∈ F2,3.

But we can reduce further...

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Honest polynomials

Consider again f(x, y) = 4 + 2x10y4 + x15y6. We knowthat f ∈ F2,3.

Substitute z = x5y2. Then f reduces to:

g(z) = 4 + 2z2 + z3

Then we need only solve g ∈ F1,3. The set of solutions of fis then {(x, y) : x5y2 = z for some z where g(z) = 0}.

Can this be done for other polynomials?

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Honest polynomials

Consider again f(x, y) = 4 + 2x10y4 + x15y6. We knowthat f ∈ F2,3.

Substitute z = x5y2. Then f reduces to:

g(z) = 4 + 2z2 + z3

Then we need only solve g ∈ F1,3. The set of solutions of fis then {(x, y) : x5y2 = z for some z where g(z) = 0}.

Can this be done for other polynomials?

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Honest polynomials

f(x, y) = 4x0y0 + 2x10y4 + x15y6

Each term has a factor of x and a factor of y; we can thinkof the exponents on each term as a vector in Z2, namely,(0, 0), (10, 4), (15, 6) for the above three termsrespectively.If we plot these points, they form a line. We callpolynomials for which this happens dishonest , and allothers honest .Example: f(x, y) = 3 + x + 7y is honest, because itsexponent vectors (0, 0), (1, 0) and (0, 1) do not lie in a line.We can always reduce dishonest polynomials to honestones by change-of-variable methods as seen before.Thus, we can restrict study to honest polynomials. Wedenote by F ∗n,m the set of honest polynomials in nvariables and m terms.

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Newton polytope for f(x, y) = 4x0y0 + 2x10y4 + x15y6

Newton polytope for f(x, y) = 3 + x + 7y

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Simple cases

Monomialsxd1

1 · · · xdnn = 0, same as in real case (if and only if some

xi = 0 when dix , 0).

Binomialsx2 + 1 = 0?

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Simple cases

Monomialsxd1

1 · · · xdnn = 0, same as in real case (if and only if some

xi = 0 when dix , 0).

Binomialsx2 + 1 = 0?

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Hensel’s Lemma

Theorem (Hensel’s Lemma)

Let f ∈ F1,n, and suppose we have x ∈ Qp such that:

f(x) ≡ 0 mod p and

f ′(x) . 0 mod p.

Then there exists x0 ∈ Qp such that:

f(x0) = 0, and

x0 ≡ x mod p

Uses adapted Newton’s method

Can be extended to higher powers of p, multiple variables

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Hensel’s lemma: example

Consider f(x) = x2 + 1 in Q5.

f(2) = 5 ≡ 0 mod 5 f ′(2) = 4 . 0 mod 5, thus byHensel’s lemma, there exists an x0 in Q5 satisfyingx2

0 = −1.

−1 has a square root! Which proves that Q5 cannot beordered.

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Hensel’s lemma: example

Consider f(x) = x2 + 1 in Q5.

f(2) = 5 ≡ 0 mod 5 f ′(2) = 4 . 0 mod 5, thus byHensel’s lemma, there exists an x0 in Q5 satisfyingx2

0 = −1.

−1 has a square root! Which proves that Q5 cannot beordered.

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Hensel’s lemma: example

Consider f(x) = x2 + 1 in Q5.

f(2) = 5 ≡ 0 mod 5 f ′(2) = 4 . 0 mod 5, thus byHensel’s lemma, there exists an x0 in Q5 satisfyingx2

0 = −1.

−1 has a square root! Which proves that Q5 cannot beordered.

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

More complicated polynomials

We can apply a version of Hensel’s lemma more generally.

Theorem (Birch and McCann)

Given a polynomial f in any number of variables over [Q]p ,there exists an integer D(f) such that if for some x we have

|f(x)|p < |D(f)|p

then we can refine x to a true root of f . Moreover, we cancalculate D(f).

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Birch and McCann

Good news: we can, in finite time, check if a polynomialhas a root. Just brute force check for:

f(x) ≡ 0 mod pR

where pR > |D(f)|−1p .

Bad news: D(f) is resource-intensive to calculate. If n isthe number of variables and d the degree, then

L(D(f)) < (2ndL(f))(2d)4nn!

taking f(x) = x7 + 4, we get:

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Birch and McCann

Good news: we can, in finite time, check if a polynomialhas a root. Just brute force check for:

f(x) ≡ 0 mod pR

where pR > |D(f)|−1p .

Bad news: D(f) is resource-intensive to calculate. If n isthe number of variables and d the degree, then

L(D(f)) < (2ndL(f))(2d)4nn!

taking f(x) = x7 + 4, we get:

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

L(D(f)) <19333264281334959478690053515795664423387946764381450654542262551041804628897211821857886513577419545858439735358669698984030651760105412130716409572405122442658961797539822338952893590140699079166598663682148017168884644056031637925155326893646940162312704215189827992536737192946871426590561959658753898205091640503148428908169392425185932175576810 33764453087920923956369810667371288974205526385135367143464561906167502970726504712524486476057166330728844298342919517364978030022251473663 88190637560540189965784127958446926663503878599874585771220380465820307761161992648760557018169228488048159680497348475599240382107647372869 53127736909063180888219962845900888170959843155649304800498477523622912423143837913284235360086572243436971731852708267608608416224987193888 86774621995452049705556011357005923477639435226450730541308569266773792530090205227886457244539696443077971220811050217647331617753931550473 74427006169667107504054190872534784859366597113730703173153900799873993824882162922569391197219345384430610117124584911245229330939654415004 27493506357399752980835300969261554659869198880886332653495415819809788011918846230441297647208396630888129631926621760950435205570044116659 20956163667630775508269905675090697561567681462111579966111671944332247877574871219345599338919610932098495256107502874357513111580297287287 50174173914016470595640676113325746643660474886284383532804616262475554950066460741775965193149538964142854642578728529899818673738874796709 84452149905653535579843058460191492084277518160815362298328773416573977668178575234627495103485837349022565685845524720865993770884625119910 74058143334259521325704752535688285563533465000511554537046680670026297241759069891554646175191972671878828350001258276425170821998791185113 98789237776423943562176546998152333847554013767178346626233841492723131320177769255664094994575716401817267792819131529949168032944957511541 56175907291869761367905077005195577050948345742927074448723711771828883349446731832134961647515366095987698998487383009238538840803314159656 85818253966971057431356935012850657615484161750002284975870971291644429827033566051394313338149330768459510942242979383995013895360809123904 67030093385641168029565433692675409810864099677033241527546321996935643789412419321547220236549888490281529589008816784610245865704248022588 74353313431293633525604213832630172566985850850583549591693666390699675117327358126484805714690040674385421597109612903329678594555493335001 13049595453542761946615692925677513324222034329747143058478730145092300399191510424525279150769097652553148263820279250828459068579674941950 89019114155246502840101536623337590448655892980256477817473507729841133169586496626760414000330198843819694296841079735426025475416495720510 20527182449545104967887793621298761577152281339945065120590008509440016474155910297918835391398923683986493677650251936004575387818689363688 67320772507279373085174827443461202863330918824543787162408791951491580499366898312839571513071389651061533372015688742785032852250207936198 71755656566646604415526757573110530569081255717807547284110849262898232214316009301522994672051315282706792270482251971164290477935589863473 17384406738558550742891818181102975857077200680978937578028801558796949106504454062855087485450284643979346120040531744059090084373803645025 99294358330576408001403494142659939565667792471621353269079509046486580675580027066187887338364379957201763353854223804520124778777814477912 89769688735392266233435679306193805989831174177447130405579159013727180175028044065660381812015102977968112688031951783579489534741050738872 04659640689718003011227780976729150792189538704571126176974089414249355746466960506239155665268750324608746540891226250399065114160736002020 25608454573224922982557754757544765192855251007607562958599094844144457882727651119842761188037971152914466738633927204203067903374584227372 20783736556929346414352406458395598020341650746124219231944751776047053466229911717153016824182022205447176953710557428643965545073094155945 81387294166285727569456107001116284178512189774612521714512784613630304580007333344148260808345326229548535122591715680334219522227727531010 005639255540923363761797

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

2776870538765384880850236686657758479110571426 66881598470090481050677593054802693440880997883314349466303470127750098598203607316316083293247786796357682195903001518653362172094100831501 50416009282139073548016549939169986120679046776519260597766334727638224731846568268030996254461300173875140624480328425187623808170263997372 09935791122989075431392880199666651535427122964093119609902615352133614233656270034709180593498687112465756128403365728728088698224866268256 24181135829323243249064092498228495196226133892068987681627268241598271817586210591019592386616553200363801575976790385248518829547445513064 65006044123578635375193925132201757084418380725264906517259321188332737907429741134157430677568646547474957039660069297603195720684793658185 36493982865702214229163008591658960409377322165874812642069224620035832582688210540150690415468773245456764938676331366478753370880541418571 60728201571628066149569052234686498837090223205180963259589979906825140347551407112314077091088161735346213874016140702048096491026734136636 38669433192190102990264743310463560589034691939310354520736830781238972717838427929257231997877025120194234188558328943090473231807066753637 36102993815162707633682796595609322246126939171375139546815844018565853497776479417604199556663028415350911614928040646055840625465301676548 19190121182407850871241184931835035387357799215528249863011999142482108202019656975633237627797072174290345530628310814027176575088405456921 52731097475133140929041440351130289721690769577748145199946443923907196348162257122881493750403460810540250190946966961141002201643558592392 36324093475381166774036651484629803823758649920824599814400993110529426132346008100875793157790041247049511101603725632151413699501152621197 78643274273058599220119548242392150117347612302406868919379272227674006992611976921660797046531766253590665143278669193055249065058801541289 68498195626718805917327562760458420798161573330682366427638017156302252302647391317157021711875489003439329522982168415388727510972464314106 58094748733121608969820541308612845596005255481294794025585762735245995076734671914944940782977151831293164311904657637368573917298425732961 35245164443319446361325443371197717209035665494159644812517338391650694363166765395897112736170705883937184291555006766938068339666233574486 30205872845533934074288451323207581755376964514594423488722380559995188787390474721746810282763613588158910419939546071908233655282222784783 99497978605777529043928817383709908382772627814683993733822318675567493782122179196080800235862012927332241392443147482116066746391805873932 86960726749568777492846330593622157178898576361544884766607137362685752157724008796460684722451833909727277552705297113731137200940590141818 42525931879736693053120699387826877059334724288418068954985682033771848945663567731633459264955361248627327112687776834054166202827465667420 82437364249844893356346131436719409558229760945808719842211717096774188911248439774078955796487942868245961948022315558728356719911468612508 24682092046587951074595824064773850366572293083696097335455083460968782433574676956473102148784275911787807732931690814649204490278476720703 63445298265370606430991650948382729272262308059070531019503783684192631413823533740904173560456662797153891800967176467846248719614240267779 03179672553711612771133136242150163099912570890134891245386064927853821421381625317708356140777507446398022656364172531680424542429031620648 39986605168659756323769134513089659030935511921455124893119649282909503701473139325194814013003001410709377319471053338338976687410348966754 64866762952070456631552140007979671251505785990845978114413181139801999119548323167770083127402823062823434612036160305993803379050870402972 50561473920523993435915883541936349660249791137050887392983267942364542868366719084556611626896479348569979476088133185774631619278338842922 15098340060258841070100937832566984972136339296726959189797228310469194537869857114784177040762903353812250606190205366894032100379717349104 065261430937893744944195

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

4551942021091893315046582487397778114102740801 28700751841565157654200943462776118894702386784436263382495897872086352685518244394188204540141287071531832668108835353447180803864257950835 48005776165783640956649540026189506148664220809117385565914304783230408921581750897046105875263423274341134280008680498272389043329299124763 24451327926634862713546618548842768306162952999188892337086651320827499491078284960131973849224931991173322743277977413512404191667984602906 61530749778997727378355722151719453593733125795624104085937521483652637986542134517133910075032188637732275234029805130660935874662855959492 33014180083332925323139860076856372151725787993249860699266079876018185333047962320439733280363688402448393283160624104349053309994029946516 54178287402665209806868234469672467349641288583129517323667633829295830133956700670542877366085497270431101337962307541619535454942878984823 02463145141143531507751671743284185325543593893285243512369585015080382012070637341894811249663271899917592170940381209119342678566768003503 52066435055945234507989849516732773401853417376599513587950602464377316502241502526713020475266318316765586193597329207863536907595606123799 22626959416671018802482341700044254117941778904560559194796871472688079622449766218636029191906195577932407980135466833969496624040124843449 66443499830356212459957202640850721716755631215785586684451047534075302472926216209467798290985426363226746020920881874576325567137568696360 34028639767482731406861997703694615581248394513975987414813208649886376642751409721311959318990898567051595729288753041692997497726786776787 76665780006044319102698955076222546580327692186015498340022794306089295146916184453460928039963292547510599979832884205964074785590540141837 77836551597971682649671142452041332426931044731074455699045923189732788038343759836539876312800296043537050973083174980001672055931722611853 44018394811324040253410849641775045489477869470032273993021926947339516165601055844482426420971617585219502951952603180185843459857422239317 67159184565886775198196981423241070130124535265068367126377560936071454075912707130237858511272581698736398278993723959122146129628657983577 52084590840267080593912712628517403124548944368492240145363556831270927009422742494596662504954799596383541037946452743275979447367026249361 28917983696919013015172148388320805823122694753507144892295718035686455710685557304016443177938347849178261208604558636478869398460620307716 48915329742625249703356039446321752358052142027709947588836308488041953785252109654884535122050706836417167686568383080726299669648450112620 76131766203717688485532333782738137981557149670005724676730624489831382372854161296432137383203602302892795329353462748398745976357965484916 51404081455101690579687397543134292577873698987784497712149295625539664401420295329861549724996214850019901641793735244392199477734135012413 12264291451808295244415295583472659497027057032923754179690121257389137919834495511336751551833436225889582099931180735639547771819072089269 20533110915059544524413186386298223242744635061015036890199290185910762847816320411705439888346906101020628960920759310335161319585780675532 63493547875825186150870900809166841340364629138463998603696160539952771086877493610527761447194233697953316826998399779374766758801826205367 15894056219071623371902273249273422519576921444786304257945976400366276543511217996939592481390814910120220576876612743453849390322954894769 94063505960092908958240765109231818355475791768239586385427994173065015888309147483415772282335022074415179733036699579983472842447980716356 82233221723166501345930030235982785069027620004393167729748230192189159041501062569385740085497539124231737227329432947011927354180251786879 40642001258393812674614583888067926968479532455273656803624385418276391695775313324459085996358921010174431727332982945463813543156612632508 44893719227486365094093642458171402601772056025320020646405486341464178953907671884804763187705163750951698671390248312022915784478142101053 631622424509275875982395

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

4981499329734625753956056408466254565855807880 41236075423753961168443589136840801742801470191482723941232108606027875928309054801248486292561098139657284944466082012135932641240835876708 21847116974565255868318426111019935477317159404608566704806206919961326009310526284468778703179786543021247185894066821715033013600196181513 34589891362021812423757538066728984958968821260392104779958254086791819887552038268612696911755419194394725935929625976261687472889791141638 88618372810430564394465416399313113723817407069473896125928508391162892983760339622802780125162672489764200362758344685630093770055060741060 76200124611831131989334796992424459100791986304208799308455904084930426716506514025379996483030608324172623555255326909648198100374876418304 53525212982282605386684374851352953969849377813012192519704844346836839019874114167929509509173480440815541564923141182359372409118644544732 08430051600214687327211635980633642115041442772289443888200623107311315581369877615686034360876930273543338201753898290985560860760981506111 35250624379456608932374119908468027118249760328896518566378350964899588555455622494975399278363613444740752987111006979598141751516216118734 90388432254708560793695924527664016065121114829331411291916724114373849088785230456241835849268578883769845115694129636217642725977720850251 69123090167106676031446987174769964995482693429113226858674031607792002006315387695304307696631812330404859286569857224365099301333167812240 40759987870899428185110097776237529656756014650759295275864327992258952907184121892327134509956170592235148257374494966000030800513040305842 14173022419621576268327577671083859624250967011276989845651269428389524282227006426878484585132636753334520888930866731162170669630885288947 31313743030597883186013725455815243935009271150909247869809914266995996370276678632156613075326973827465731371851496924476827601783224541117 66036522508354155875035284435866970527066677295998493469365702099032391638812172848855092635565413574159829951572539703092215072741841807056 83443353286197332510725728160744160460638703509987475761367892513496203491930529582856966091371776210150946261256284258255556802208436555942 70932064178136924422151462265247596221887688786934335277256448647093735935098890771278152305206115997893526683576513273378475013627418690457 29356618809627902694845553635404120682557871613379191950192062151085313244764782243887823486962712664063775831018884755806580476266182826472 52837445857013102586538020474661207237536832756085714085839436448821114682589771425886376600047632568685627883087087466633200688798182340570 11286107158670808446396855993589065557253656751805284968244597460544707465794756938575979957710217670938072888485422191914636416862806942091 02866561674907421629221319682380204407255043281483216875109658779314669013670720793670410130459850164000150045389752692140585220900441045644 72494833299344337960050740045253162906848409733153836550842484630861699178481261506414525413296217795933518952004771244780403441977357143147 29312376907575919238359999977359138890037099304191020575626243834387680086076433038737442785063322610345425510972514528801944016234737388323 03158748111943608713152892710277164432996692087887157730425122616305799493817711567467416785996468096229672026992938040310717063437525442653 72953155760420546534692838256935549579538230398902783409910491470986685242075515310118427054165809046196614908485780377719880641848311091668 97701118235658149944635093092332803724775083184084301445126516092158733586199260108567459723387788949465123595538222677165433011388971469578 67328111011097297865805682155360267648108361459470170122424562794620057269452367791169552797256332057936803753229342159625070574017613584033 10629066668913803922288445699728224590103843221410009615643216110710425533128362653139838192214806564710071930544384271195308540742333806169 88257217977276879282463800229823305242534899046152077053106503605603818069503805249506876655159191076166515836255389617798602831995998968095

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

9258569189421579248896856071334730561897959614452315812016458345276275 81922545570762265765142404956659460120525724175822876964790473426285784750016386128182627818451574714826448540531212380982773234558981478939 93611678012503076795256555547151898909084378558569378909970250573621311410109219719584140746947407093180153154716007934873672193053764621482 00897243913244901781078278398652625752955135309872736259599779493739151017096211807581786340102542674303493576417353270321262104393045939175 98523112084949227064704228210360027701406668877221071725091445594753868850779300591592625223568222936047134259113232323617758192275451621117 09289909623752210632799037132739096875874069972443909874473870474720190717154815040766507255570456978561517958891352342515792731266291633373 11318233449830954629363630073432096619067263458779478971063166485014501527704840359327341209375579332711362022023030290270919346971830858002 72644366250837812984322070884063394302585507671739072855424951902039651007786336248236776985785619828577367009966060476590825523642025151934 99700322494360898318051424345626433698559802756706940184090221209208821251385397748099806369394361868251837656564999550021086755706652361564 48059462993588729652526810462808896187929738363748082122394045159156056787029179457110904283865468305849945233218958064333605993464701290217 61995956933876920492955924599523614231169347935751846689553364020206257116469023990635871018497682049117591825215915280537815915871962893198 09624869901405190609515122221522051983632258927702179604308583851266716624532619480842013070311806548223666815029094102062730669036550259386 36588840269815018617823749949248526107709652352305938301317471075046765727228114933230059567795880662731346520428145543992531173899770920088 98294409921106875279355824005730703602559413991549360909538408983709008343156375221804788803563756996449738681623729312217421535902950467261 70573920925479711468844737785697470385022797971903928363870448062432360598895372923229171299325815273972290059598281501805853176974464464020 48601720999393889116545923819030599487015872491745766250177324315920019350507175299173524917421313603698106554426707217938259727506627385348 74693805092179637235538621492198525745781505547861523562697055568075427582514271379868665747454582623807900587044429890165506827155306306571 26442126852536918861711970955212244656195331650918762467970634421004978109890282824383408385485490725447498125742637978395466623516461462809 40236636037065830824288444221110353581035591737701571278344255798989136694333324288723276763636471983316000037700956435118678397573774769878 38710098460056366794868741099979072708414574668288814078042149042375107397920285310853739748325041833382776748347936616663172705910102576712 02163808754750742950349377072312032116483095376348082029270415804529997671123864535245084097229358710254565652838504860969861755888459168529 47325794468976750993515050263719082118436428044325187417309904508225917209991932706811056011820661743340005563203390572447494043978246308658 44739272103904884138159459414067067567417653547992459793060152975217286352846154667776280575820666901510805471839253416474258687312371960862 31965135309055205239410258677533852630061858198655633747040416868618216824617911767714089655710718050760519806128710542068921241876884472869 47584448647725254674685218301099840235496656340540023729522625245446108602985677616600341949288841987509029539428042321736958370474486865212 93181047875730375260033772548445553641427436515624125926162503970885023049466752679447682703639607172365967127147323092638568128000247203007 77855813127964850835727360398445595417592620165863724281323724103426788829267366454417373343825993756449773116118717968933558628939365169806 67096158071350687756414669769020894906537242640356478771890299850051597815777044556384498552806649943510425361801462614177381401881391551683 11013783891836223136452207241550789338750777834456437545017112170467670344584923456616307202138982006731832473778779286103310591826580086935 5640438299135807480491138669759012750360422354086113699113146691464137

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

7199188373246741206605662801845319362060219134350275144916498005561185 43541739896312740684473694207491244532354239139224878717686711994795295538620550159360799713028854768438041523993496680243159594865969623349 50988598328403754755588664392226586199880895816930570838659979022892824282948266930427067312266731837490218714684892871738100493261649529839 51712607406260344015233530898132454884509415904964384636391430723705171904567686533547695258057556529762684247408869236632016577754326954093 22077254519118582446088502581801973248700497474897113500403224067469788382903329116638642694709861429945910962893254169827026500193379290507 26557674381422315050042768285607870105862709195298402557541974236878833059454155099652315999917772543786265038710239359963379244033365151731 91080813593228366264511906675401380280960257653902094980092387565565263728142063493966638550293417192037419090382748878522357286489270695126 70335026676122538051388340227378644479231486170161957921977119753627994474494157361045369193981305946055505242046508174899347373502807919216 22513310736051536711217504026618753088842465392372914753149368795556569451139108131566649581159196400487942775849692765994637669846977935071 26440452005819032654532006039350369187305290551993056086280221111480578603389475304124976992255439235798922936179059319476653541800250591617 05574624434194278897094655822621168510632343469550157649759721567480052072884378399426521794656412568689321087294219610252736870006284081581 45302009617848980051828143538412475172290779392713662452989662863973250564015402000593209088756461030608775460159145662775675729930496629315 52367855473648273548072027374035668875414381888567668698723157412211588685050449983283316889070625920757243214457091817699287375536927414745 10622918328579913707603169889291381596467176444556132160228833957212116278883362246691879734019313491117063081318900131028527973178631567546 41243747559866076594311536666777575362424168783399145616749570569773570238502333563561904336211374115633317502339088378404419179762591439327 40608182314524784846851592097557031319557726486913052223650516572231323971068837470718402236792978382026600980199675909467363203546454674990 28692108531049192314727981562381670557729582809365438004019190127080010278755850894558206116429818462011053557073212761035286647747807963540 13969200485292725340971365567520652320721539480220334830756841935850717725426345146956701018294688315450061189086730205218119081036790348152 68632476756934347822164472302148192720110129891050174456874579543083349015466789889714268406717359828844402096033897759983872158916658254816 81435615061892226610259644793803825361050991004053214411642520929119175273199787639340087920590289639360277067412915200195263965247512822498 69306364645459357789945744637611916870044629212670811289393805318805508887091657458828605013087610309080738617604412507010602465972099204920 82249508841077585044805520961583876393090752171709763669211886686345725669686424215682855430282139431917902045975913113849145474067646281070 19036821740898095616985949717481593060425861954672758670209784879024047835317856209812906951200524451707221275990672778236299023304965806815 02679979960011315776055150816108005662255732910231857894265282831875618210622344783311114700198503061053952743901132834902116905644225345550 79947339854197547673448416415407396766793101965172964088559836683009028319978464062783091149653770204702544317112890715322760473604803001373 03390563661330180685323667019939354757074429076590729473947469164198298772214025516731598169016766669903755887525430684490625459370870357507 85764467540867773396685482445664198222258230437996892226120590909525907210949705964050091695973580249262485118940967059521205606504799313985 07334702948586702474004522632580080870480414456295216639460557886479570130888647292924606264538178213031040820515644282770463889992688266035 19854724652896561502296155394739684288750993074146542679838111833008065931683798331665646581179999108917791761114099001769238562209575112929 2042257949658219115499480409009012584403263847900996186955078922518132

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

4858944343561458439132622102614695719129830478982352293011207825526602 73714010287212314692045557033711193824048390350249785951770487835274263675177858358704638367318321867269465636610668103456184824246233177077 45373891706497498077245788728570419127544308031377049364361858429630928829233300644173100299921989735395524004421126612325745497807342190161 83089918297112704324321115594941966044950609238486977132011551133023370588231311141044006494777147145445809224383164130697218871604719463200 38190543562983316153072226386394440126721514668809257896914976486680066250921799515833044989750619232338163523080812096290138363992374368086 57951812239428541116040309748896151784235427881156165587867227942179001542466692763465671137372864507782029818944015777436093339622269983412 04990834574614556475708105650275745515310745898792918234712722939795017953791812427357058435862349363327929144235223597597348834369848767975 36055469352953921034893817467265987919890687224162849694274303998264251656932565675474648226666935461365547939980161781610890483167266991240 04755807766255219555479088824614505969364276595097175444296996977508295239858832167163041879599154644170455233787863728420494955189228080186 71080860942054747625657840042531516567796418130444255876141190570276241032586375234331733338906181684963029802621133953349565160559573593064 18807775049842826905916936495344607353481432464973156371688754075077504321535259646020421571169496018403612934258042250644714685152596572359 56864677794342048946085467435267349561795463081591540291118300678632541279198160672625618738700502846620271798199070611558671230733863674724 72419891451334773150721680658801428108464278650176180467797563498966029176256621193455139416694994156442223947119209638107009139873533439123 57217470429426746434945104966054417430975416732689414196608192839480418010769309507089020100008112497113839303216324981723181952629251399772 45152416969228570770218371752507901386747470721638747191000167428346517781056883511185500589675371469648537434035499678202848832296633941114 60115014933069286525562310200248497711455741516156224495423374479365649705544398060382982857585769756120760800794335970962469675992697917926 64533230211690432311656844200886613904324124070014176128533366727774723048188494816226118688899046166605142246323833299229104553358823112703 80112099553827520010566254439024684882634606492327740313545745650630975295892996485164656792119952609817811192920911554027479387110657041536 86576228486280772224394323347830650899206421193995857546744820643753037557739883892952878597407243581889190997708295978928521532624431679828 25917627053235565756772736867683451631214545611653743564886274127044931130751322785292672608016674212564342794263920679187638026506260932774 12520997924229800131549416449526940609839380470142412382023694433851016328065242617721405844817349367040566205386773481746146771115842954618 58391166204099725215973562810440310027423457258990303556074144988135163678274745935574702161885293397155313822120364727455648666967893392501 85761114293765543627185319659342074659518082784610316195017298867123185877993192307322044186342626125376324128388922321339535019789208940386 69538684904123428831697637484377786169853697401385980628849041119458286714327023944375785839793374980112238792666530441838045142845793089525 90764695381224638720657611167005247236489609963161708850069825718133324436168036876193200398888635968390276653753398110039829006695184665589 66302132992588631082716008707334951724327425300231263498582119446281087461380580432629817388972009252184127953071743683164539992634766639736 02983340950253590540990251360057745640282610514061956694014694477030331942578010271247807899674399864860330601567261282206900988018841216512 14570419635050517074569174370418773220891828444364112062297140179964974587479731783477099523726581259400491039415288613588571004377699667991 37915068174101304007322007819805578840601459954875096451931869037978094196739136158661479043401739719003122508331626519602143646155693582390 17572057170601817264353729955957485329315235144983904240628001148761229944675465912636695627566339139009734003065424727977286951227604808089

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

0796019994058290280157421295579005015248751326060110425010146736260030 10793543490050714698372582630264321246428654163030161706148632476789892747575636407137429318806814266500288111124454802856386357388113847046 20111986870381511545695047556494744738810232949380202263436223150924956918047534728745652931837314202669019699786819522249164134775315502688 29395749515999666133061732136731782631760338757908231135744508755270982164221743875742326480934895175910241980838152311681865693753220074578 35625344940411437262133590772236927994807143641164226605771876940501218422916672320928540774134381780996068455843776190296000004594483481108 40633514694243513888259718116410528931834376959976035890969801260736605364284162934532412295651506297344469237130869337989625068928844830652 30995770007303558503542603770055159243932604950424858288901988771414122689496066683791679137945056073667757030299542145784364976990040728336 17174178403383929371372856467355775378395939570660329378684365796216976155443619182693805380648353286742423772086224617911686275935704922990 95010705274564630213134639794247956998466722121673653472114421083051166439571085797828405847640731317461189582472087233909379669552298817827 77234151232140630734496735582004207304133034848078195213204317691405498462008176278717688168761491760124249647464191755884573322332582647923 17942894151968383106018252184835449768251173942751134558235134300561575653099284666018558494681985608958687748106818202361802474656120253777 10386861156431346334668071784313404678604454251373387086193471852723066061570999973074346684007738128548434504149439479683412047705313813859 46891568600263779010675483266390169607683363586101249036910948461894699621069096434362996035114007326743075234263659617662555790584040785186 44529405551521848635417977071928564688526800219637990555142353851476780178552220399242452493636477741738508948252626990998450973741356439740 03049786863401323877245541534841230728499692568191274789879023661203449912289739089351327840821454848179828920198928056232301101127453195782 77481587658146798602468004305409875547668392372080733097874944673821398860340759511362617963333433501827077326566822912399658925853798155304 54993434884046590436151060547559722746416171720727325940371428268014985558149666971040156413729691378329746121431783717804745235867058038514 00432981474700671361355464192052791137223089311470216657497307797356193680811103936630564961418119437341723242226318294872268277783945511589 32847386918338958784464179617907328476604855638260066000315195653914953364146043150665917059369780029008293299219597013992778003864301078792 39533639881612080535433730683926266437028926879676029093608202164315514173601781214416186048510639966182231824648689570041567863753216639534 09902612234611745359604044877712973089851989432616382256343948616554829775906481351210103368109247835742219175393395763206740912644019072730 71740370214304160541302566786641517096643808458609546674432708720059416444095186656062571144322680938655684116915490412657269794303132017033 17960436795481002390105203908089910697623558431933539932270452295463708578255734003673151877904775398582849166026386576057005166801737623802 86981556065158530970358129579966765341775084841489045199781404386457738736127994423611289775666839916845557927997829107727621958479271109590 81887780679964471419309703296802698222422070138269348514291096585916599231408441322144345564668305275411394696136564091845412673652219856196 59058762325948454523079938160456053261893207281984176648801742405402859915815700607437446495655889867881589033605545795704931674389845467335 88149298249350503467604862460509785170248849544934677160586511665300504742846290355186055540837887824927286236479503038844508369239761484371 44941170872515498796751712362109662990355002723200032118868487836255306041919740016367734987309687250753794881134720678864790804199167651142 06298390997751901453399467529422308485145936816085194821169975682145786634990776686637758838156555184792450294060363206762460863477325489979 0915644551290031696555050611485839033979984268518850223235573646272454

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

6499783532699065215359952122405024749296670048568960960100000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000000

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

0000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 000000000000000000000000000000000000000000

Really big!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

More sophisticated results

We can do better, though:

Theorem (Avendano, Ibrahim, Rojas, Rusek)

For a fixed prime p, finding a root to a function in F1,3 is NP.Furthermore, allowing p to vary, finding roots for almost allpolynomials in one variable with integer coefficients is NP, as itis for

⋃n F

∗n,n+1.

NC ⊆ P ⊆ NP ⊆ EXPTIME

For f(x) = 4 + x7, taking p = 2, finding a root wouldrequire checking for a root to an associated polynomialover Z/32Z. Much better!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

More sophisticated results

We can do better, though:

Theorem (Avendano, Ibrahim, Rojas, Rusek)

For a fixed prime p, finding a root to a function in F1,3 is NP.Furthermore, allowing p to vary, finding roots for almost allpolynomials in one variable with integer coefficients is NP, as itis for

⋃n F

∗n,n+1.

NC ⊆ P ⊆ NP ⊆ EXPTIME

For f(x) = 4 + x7, taking p = 2, finding a root wouldrequire checking for a root to an associated polynomialover Z/32Z. Much better!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

More sophisticated results

We can do better, though:

Theorem (Avendano, Ibrahim, Rojas, Rusek)

For a fixed prime p, finding a root to a function in F1,3 is NP.Furthermore, allowing p to vary, finding roots for almost allpolynomials in one variable with integer coefficients is NP, as itis for

⋃n F

∗n,n+1.

NC ⊆ P ⊆ NP ⊆ EXPTIME

For f(x) = 4 + x7, taking p = 2, finding a root wouldrequire checking for a root to an associated polynomialover Z/32Z. Much better!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

More sophisticated results

We can do better, though:

Theorem (Avendano, Ibrahim, Rojas, Rusek)

For a fixed prime p, finding a root to a function in F1,3 is NP.Furthermore, allowing p to vary, finding roots for almost allpolynomials in one variable with integer coefficients is NP, as itis for

⋃n F

∗n,n+1.

NC ⊆ P ⊆ NP ⊆ EXPTIME

For f(x) = 4 + x7, taking p = 2, finding a root wouldrequire checking for a root to an associated polynomialover Z/32Z. Much better!

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Neat result

Define the p-adic Newton polytope of a polynomialf(x) = a0xd0 + · · ·+ anxdn to be the convex hull of{(di ,− logp |ai |p) : i = 0, . . . , n}.It can be shown that if a lower edge of the p-adic Newtonpolytope has an inner normal vector of the form (1, k) andhorizontal length m, then f has exactly m roots with p-adicabsolute value pk in Cp .

Consider f(x) = 1875 − (24875x)/4 + (24125x2)/4 −(9605x3)/4 + (1783x4)/4 − 37x5 + x6. Then the 2-adic Newtonpolytope tells us that there is one root with absolute value 1/4,two with absolute value 2, and ohe with absolute value 1. Theroots of f are 20, 1/2,3/2, and 5 (with multiplicity three).

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Neat result

Define the p-adic Newton polytope of a polynomialf(x) = a0xd0 + · · ·+ anxdn to be the convex hull of{(di ,− logp |ai |p) : i = 0, . . . , n}.It can be shown that if a lower edge of the p-adic Newtonpolytope has an inner normal vector of the form (1, k) andhorizontal length m, then f has exactly m roots with p-adicabsolute value pk in Cp .Consider f(x) = 1875 − (24875x)/4 + (24125x2)/4 −(9605x3)/4 + (1783x4)/4 − 37x5 + x6. Then the 2-adic Newtonpolytope tells us that there is one root with absolute value 1/4,two with absolute value 2, and ohe with absolute value 1. Theroots of f are 20, 1/2,3/2, and 5 (with multiplicity three).

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

Acknowledgements

I would like to thank Dr. Rojas for his knowledge and support.

Feasibility ofp-adic

Polynomials

Davi da SilvaUniversity of

Chicago

References

Martın Avendano, Ashraf Ibrahim, J. Maurice Rojas, andKorben Rusek. Faster p-adic feasibility for certainmultivariate sparse polynomials. Preprint, 2011.

B.J. Birch and K McCann. A Criterion for the p-adicSolubility of Diophantine Equations. The Quarterly Journalof Mathematics, Oxford Series, Vol. 18. 1967.

Marvin J. Greenberg. Strictly Local Solutions ofDiophantine Equations. Pacific Journal of Mathematics,Vol. 51, No. 1. 1974.

top related