fermions with long-range interactions

Post on 06-Apr-2022

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Fermions with long-range interactionsMARCIN SZYNISZEWSKI*,1,2, SUPERVISOR: NEIL DRUMMOND1

1Physics Department, Lancaster University, Lancaster, LA1 4YB, UK2NoWNano DTC, University of Manchester, Manchester, M13 9PL, UK

*E-mail for corresponding author: mszynisz@gmail.com

The Hamiltonian of the generalised t-V model on a 1D chain is [1]:

𝐻 = βˆ’π‘‘

𝑖=1

𝐿

πœ™π‘–β€ πœ™π‘–+1 + h.c. +

𝑖=1

𝐿

π‘š=1

𝑝

π‘ˆπ‘šπœ™π‘–β€ πœ™π‘–πœ™π‘–+π‘š

† πœ™π‘–+π‘š

𝐿 – system size (periodic), 𝑝 – max interaction range, π‘ˆπ‘š – potentials

INTRODUCTION1

At the critical density, if the potential is not decreasing uniformly, wecan have the following phases in the system [2]: Charge-density wave (CDW) phases – insulating Luttinger liquid, despite the insulating density Bond-order phase – phase with long-range ordering

At the atomic limit 𝑑 = 0 ,one can determine what the CDW phases are for specific systems (e.g. 𝑝 = 4, 𝑄 = 1/3):

PHASE DIAGRAM2

β€’ Luttinger liquidβ€’ Highly degenerate GSβ€’ Interacting β€œhard rods”, size 𝑝

Away from critical density

β€’ Mott insulatorβ€’ Simple ground stateβ€’ β€œRods” filling the lattice or

equally overlapping

Critical density

𝑄𝐢 =1

π‘š;π‘š = 1,… , 𝑝

Firstly, we transform the Hamiltonian to itsspin-half equivalent. The potential for 𝑝 = 2:

π‘ˆ1

𝑖=1

𝐿

ℙ𝑖↑ℙ𝑖+1↑ + π‘ˆ2

𝑖=1

𝐿

ℙ𝑖↑ℙ𝑖+2↑ ,

where ℙ↑ = ↑ ↑ . We can construct theHamiltonian using the states of theautomaton [4] on the right.

The full Hamiltonian for any interactionrange can be constructed using the followingautomaton:

The one-site Hamiltonianin MPO representation hasdimensions 𝑝 + 4 Γ— 𝑝 + 4 .

HAMILTONIAN AS MATRIX PRODUCT OPERATOR4

Although analysis of the atomic limit provides us with a completepicture of expected CDW phases, these phases may not be presentin real life situations (𝑑 β‰  0).

We have decided to usematrix product statesapproach[3] in order to see1. Emergence of the

non-CDW phases.2. How long-range

correlations will affectthe bond dimensionneeded.

3. If any CDW phasecan never emerge.

MOTIVATION3

PRELIMINARY RESULTS5

References:[1] G. GΓ³mez-Santos, Phys. Rev. Lett. 70, 3780 (1993).[2] P. Schmitteckert and R. Werner, Phys. Rev. B 69, 195115 (2004);T. Mishra et al., Phys. Rev. B 84, 115135 (2011).[3] D. Perez-Garcia et al., Quantum Inf. Comput. 7, 401 (2007);F. Verstraete et al., Adv. Phys. 57, 143 (2008).[4] U. SchollwΓΆck, β€œDMRG: Ground States, Time Evolution, and SpectralFunctions” from β€œEmergent Phenomena in Correlated Matter”.

OUTLOOK6

00

7

7

7

π‘ˆ1 π‘ˆ2

π‘ˆ3

π‘ˆ4 = 1

0

Ground state unit cell Energy●○○ 1

3π‘ˆ3

●●○○○○ 1

6π‘ˆ1

●○●○○○ 1

6π‘ˆ2 + π‘ˆ4

●●○○○●○○○ 1

9π‘ˆ1 + 2π‘ˆ4

●○●○●○○○○ 1

92π‘ˆ2 + π‘ˆ4

●○●○○●○●○○○○ 1

122π‘ˆ2 + π‘ˆ3

●●●○○○○●○●○○○○●○●○○○○ 1

212π‘ˆ1 + 3π‘ˆ2

Check the existence of bond-order

phases

Completethe results: more points near the liquid-insulator

transition

Bond dimension

vs. interaction

range

Determine which

CDW-phases will not

appear for 𝑑 β‰  0

0 2 4 6 8 10

10

8

6

4

2

0

π‘ˆ1

π‘ˆ2

Curvature:

Liquid

Insulator

Slice at π‘ˆ3 = 6

CDW●●○○○○

CDW●●○○○●○○○

CDW●○●○○○

Liquid

Liquid

Phases(●○●○●○○○○)

and (●●●○○○○●○●○○○○●○●○○○○)

are absent.

Atomic limit

top related